Advancing Tree Species Classification with Multi-Temporal UAV Imagery, GEOBIA, and Machine Learning
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methods
2.3. Image Acquisition and Data Preprocessing
2.4. Field Reference Data
2.5. Tree Crown Extraction
2.6. Machine Learning Models
2.6.1. Random Forest (RF)
2.6.2. Extra Trees (ET)
2.6.3. eXtreme Gradient Boost (XGBoost)
2.6.4. Support Vector Machine (SVM)
2.7. Model Scenarios
2.8. Accuracy Assessment
3. Results
3.1. Evaluating Tree Classification Across Single-Date Imagery Using Different Machine Learning Models
3.2. Assessment of Tree Species Classification from Multi-Temporal Data
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
GEOBIA | Geographical object-based image analysis |
UAV | Unmanned aerial vehicle |
RF | Random Forest |
ET | Extra Tree |
XGBoost | eXtreme Gradient Boosting |
SVM | Support Vector Machine |
KNN | K-nearest neighbour |
NN | Neural networks |
OA | Overall Accuracy |
DJI | Da-Jiang Innovations |
CMOS | Complementary Metal-Oxide-Semiconductor |
PST | Pakistan Standard Time |
RTK | Real-Time Kinematic |
GNSS | Global Navigation Satellite System |
GCP | Ground control point |
DSM | Digital surface model |
GIS | Geographic Information System |
RGB | Red, Green and Blue |
DTM | Digital terrain model |
GLCM | Grey-level co-occurrence matrix |
GLDV | Grey-level difference vectors |
MCC | Matthew’s correlation coefficient |
References
- Kozlowski, G.; Song, Y.G. Importance, Tools, and Challenges of Protecting Trees. Sustainability 2022, 14, 13107. Available online: https://www.mdpi.com/2071-1050/14/20/13107/htm (accessed on 30 December 2024). [CrossRef]
- Schnabel, F.; Schwarz, J.A.; Dănescu, A.; Fichtner, A.; Nock, C.A.; Bauhus, J.; Potvin, C. Drivers of productivity and its temporal stability in a tropical tree diversity experiment. Glob. Chang. Biol. 2019, 25, 4257–4272. Available online: https://onlinelibrary.wiley.com/doi/full/10.1111/gcb.14792 (accessed on 30 December 2024). [CrossRef]
- Fan, Z.P.; Wang, Q.; Li, F.Y.; Sun, X.K. Absorption Ability of Different Tree Species to S, Cl and Heavy Metals in Urban Forest Ecosystem. Adv. Mater. Res. 2012, 14, 48–53. Available online: https://www.scientific.net/AMR.518-523.48 (accessed on 12 May 2024). [CrossRef]
- Zhang, W.-K.; Wang, B.; Niu, X. Study on the Adsorption Capacities for Airborne Particulates of Landscape Plants in Different Polluted Regions in Beijing (China). Int. J. Environ. Res. Public Health 2015, 12, 9623–9638. [Google Scholar] [CrossRef]
- Wang, K.; Wang, T.; Liu, X. A Review: Individual Tree Species Classification Using Integrated Airborne LiDAR and Optical Imagery with a Focus on the Urban Environment. Forests 2018, 10, 1. Available online: https://www.mdpi.com/1999-4907/10/1/1 (accessed on 12 May 2025). [CrossRef]
- Naseri, M.H.; Shataee Jouibary, S.; Habashi, H. Analysis of forest tree dieback using UltraCam and UAV imagery. Scand. J. For. Res. 2023, 38, 392–400. Available online: https://www.tandfonline.com/doi/full/10.1080/02827581.2023.2231349 (accessed on 30 December 2024). [CrossRef]
- Wang, Y.; Wang, J.; Chang, S.; Sun, L.; An, L.; Chen, Y.; Xu, J. Classification of street tree species using uav tilt photogrammetry. Remote Sens. 2021, 13, 216. [Google Scholar] [CrossRef]
- Wu, J.; Man, Q.; Yang, X.; Dong, P.; Ma, X.; Liu, C.; Han, C. Fine Classification of Urban Tree Species Based on UAV-Based RGB Imagery and LiDAR Data. Forests 2024, 15, 390. [Google Scholar] [CrossRef]
- Chiang, S.H.; Valdez, M. Tree Species Classification by Integrating Satellite Imagery and Topographic Variables Using Maximum Entropy Method in a Mongolian Forest. Forests 2019, 10, 961. Available online: https://www.mdpi.com/1999-4907/10/11/961/htm (accessed on 23 January 2025).
- Qin, H.; Zhou, W.; Yao, Y.; Wang, W. Individual tree segmentation and tree species classification in subtropical broadleaf forests using UAV-based LiDAR, hyperspectral, and ultrahigh-resolution RGB data. Remote Sens. Environ. 2022, 280, 113143. [Google Scholar] [CrossRef]
- Fassnacht, F.E.; Latifi, H.; Stereńczak, K.; Modzelewska, A.; Lefsky, M.; Waser, L.T.; Straub, C.; Ghosh, A. Review of studies on tree species classification from remotely sensed data. Remote Sens. Environ. 2016, 186, 64–87. Available online: https://www.sciencedirect.com/science/article/pii/S0034425716303169 (accessed on 30 November 2022). [CrossRef]
- Manzoor, A.T.; Habib, N.; Abbas, S. Performance of NDVI and GOSIF in monitoring vegetation responses to rainfall in a desert ecosystem. Remote Sens. Appl. Soc. Environ. 2025, 39, 101621. Available online: https://www.sciencedirect.com/science/article/pii/S2352938525001740 (accessed on 25 August 2025). [CrossRef]
- Usman, M.; Gul, A.A.; Abbas, S.; Rabbani, U.; Irteza, S.M. Identifying morphological hotspots in large rivers by optimizing image enhancement. Remote Sens. Lett. 2023, 14, 1173–1185. [Google Scholar] [CrossRef]
- Abbas, S.; Akhter, A.M.; Mushtaque, M.; Usama, R.M.; Rasool, A.; Umar, M.; Mahmood, M.U.; Malik, M. Enhancing vegetation cover growth through water spreading bunds and dry afforestation in arid rangelands: Integrating remote sensing indicators with field insights. Sci. Total Environ. 2025, 978, 179382. Available online: https://www.sciencedirect.com/science/article/pii/S0048969725010186 (accessed on 27 August 2025). [CrossRef]
- Umar, M.; Abbas, S. Advancing mangrove mapping with the integrated mangrove index (IMI) and the role of tidal dynamics. Int. J. Remote Sens. 2025, 46, 4409–4429. [Google Scholar] [CrossRef]
- Reese, H.M.; Lillesand, T.M.; Nagel, D.E.; Stewart, J.S.; Goldmann, R.A.; Simmons, T.E.; Chipman, J.W.; Tessar, P.A. Statewide land cover derived from multiseasonal Landsat TM data: A retrospective of the WISCLAND project. Remote Sens. Environ. 2002, 82, 224–237. [Google Scholar] [CrossRef]
- Zhu, X.; Liu, D. Accurate mapping of forest types using dense seasonal landsat time-series. ISPRS J. Photogramm. Remote Sens. 2014, 96, 1–11. [Google Scholar] [CrossRef]
- Porwal, M.C.; Pant, D.N. Forest cover type and landuse mapping using landsat Thematic Mapper False colour Composite a case study for chakrata in western himalayas U.P. J. Indian Soc. Remote Sens. 1989, 17, 33–40. [Google Scholar] [CrossRef]
- Persson, M.; Lindberg, E.; Reese, H. Tree Species Classification with Multi-Temporal Sentinel-2 Data. Remote Sens. 2018, 10, 1794. Available online: https://www.mdpi.com/2072-4292/10/11/1794 (accessed on 1 July 2023). [CrossRef]
- Hassaan, O.; Nasir, A.K.; Roth, H.; Khan, M.F. Precision Forestry: Trees Counting in Urban Areas Using Visible Imagery based on an Unmanned Aerial Vehicle. IFAC-PapersOnLine 2016, 49, 16–21. Available online: https://www.sciencedirect.com/science/article/pii/S2405896316315658 (accessed on 11 June 2023). [CrossRef]
- Detka, J.; Coyle, H.; Gomez, M.; Gilbert, G.S. A Drone-Powered Deep Learning Methodology for High Precision Remote Sensing in California’s Coastal Shrubs. Drones 2023, 7, 421. [Google Scholar] [CrossRef]
- Bian, L.; Zhang, H.; Ge, Y.; Čepl, J.; Stejskal, J.; EL-Kassaby, Y.A. Closing the gap between phenotyping and genotyping: Review of advanced, image-based phenotyping technologies in forestry. Ann. For. Sci. 2022, 79, 22. [Google Scholar] [CrossRef]
- Diez, Y.; Kentsch, S.; Fukuda, M.; Caceres, M.L.L.; Moritake, K.; Cabezas, M. Deep learning in forestry using uav-acquired rgb data: A practical review. Remote Sens. 2021, 13, 2837. [Google Scholar] [CrossRef]
- Onishi, M.; Ise, T. Explainable identification and mapping of trees using UAV RGB image and deep learning. Sci. Rep. 2021, 11, 903. [Google Scholar] [CrossRef] [PubMed]
- Chianucci, F.; Disperati, L.; Guzzi, D.; Bianchini, D.; Nardino, V.; Lastri, C.; Rindinella, A.; Corona, P. Estimation of canopy attributes in beech forests using true colour digital images from a small fixed-wing UAV. Int. J. Appl. Earth Obs. Geoinf. 2016, 47, 60–68. Available online: https://www.sciencedirect.com/science/article/pii/S0303243415300702 (accessed on 11 June 2023). [CrossRef]
- Williams, J. UAV survey mapping of illegal deforestation in Madagascar. Plants People Planet 2024, 6, 1413–1424. Available online: https://nph.onlinelibrary.wiley.com/doi/10.1002/ppp3.10533 (accessed on 24 August 2025). [CrossRef]
- Mäyrä, J.; Tanhuanpää, T.; Kuzmin, A.; Heinaro, E.; Kumpula, T.; Vihervaara, P. Using UAV images and deep learning to enhance the mapping of deadwood in boreal forests. Remote Sens. Environ. 2025, 329, 114906. Available online: https://www.sciencedirect.com/science/article/pii/S0034425725003104 (accessed on 24 August 2025). [CrossRef]
- Shi, W.; Liao, X.; Wang, S.; Ye, H.; Wang, D.; Yue, H.; Liu, J. Evaluation of a CNN model to map vegetation classification in a subalpine coniferous forest using UAV imagery. Ecol. Inform. 2025, 87, 103111. Available online: https://linkinghub.elsevier.com/retrieve/pii/S1574954125001207 (accessed on 24 August 2025). [CrossRef]
- SHAMTA, I.; Demir, B.E. Development of a deep learning-based surveillance system for forest fire detection and monitoring using UAV. PLoS ONE 2024, 19, e0299058. [Google Scholar] [CrossRef] [PubMed]
- Troles, J.; Schmid, U.; Fan, W.; Tian, J. BAMFORESTS: Bamberg Benchmark Forest Dataset of Individual Tree Crowns in Very-High-Resolution UAV Images. Remote Sens. 2024, 16, 1935. Available online: https://www.mdpi.com/2072-4292/16/11/1935 (accessed on 20 August 2025). [CrossRef]
- Joshi, D.; Witharana, C. Vision Transformer-Based Unhealthy Tree Crown Detection in Mixed Northeastern US Forests and Evaluation of Annotation Uncertainty. Remote Sens. 2025, 17, 1066. Available online: https://www.mdpi.com/2072-4292/17/6/1066/htm (accessed on 14 August 2025). [CrossRef]
- Ferreira, M.P.; dos Santos, D.R.; Ferrari, F.; Coelho, L.C.T.; Martins, G.B.; Feitosa, R.Q. Improving urban tree species classification by deep-learning based fusion of digital aerial images and LiDAR. Urban For. Urban Green. 2024, 94, 128240. Available online: https://linkinghub.elsevier.com/retrieve/pii/S1618866724000384 (accessed on 22 August 2025). [CrossRef]
- Jo, W.-K.; Park, J.-H. High-Accuracy Tree Type Classification in Urban Forests Using Drone-Based RGB Imagery and Optimized SVM. Korean J. Remote Sens. 2025, 41, 209–223. Available online: http://kjrs.or.kr/journal/view.html?doi=10.7780/kjrs.2025.41.1.17 (accessed on 23 August 2025). [CrossRef]
- DAmato, J.P.; Rinaldi, P.; Boroni, G. Urban tree surveying using aerial UAV images and machine learning algorithms. World J. Inf. Syst. 2025, 1, 71–82. Available online: https://wjis.org/index.php/wjis/article/view/20 (accessed on 25 August 2025). [CrossRef]
- Azizi, Z.; Miraki, M. Individual urban trees detection based on point clouds derived from UAV-RGB imagery and local maxima algorithm, a case study of Fateh Garden, Iran. Environ. Dev. Sustain. 2024, 26, 2331–2344. [Google Scholar] [CrossRef]
- Li, X.; Wang, L.; Guan, H.; Chen, K.; Zang, Y.; Yu, Y. Urban Tree Species Classification Using UAV-Based Multispectral Images and LiDAR Point Clouds. J. Geovisualization Spat. Anal. 2024, 8, 1–17. [Google Scholar] [CrossRef]
- Schiefer, F.; Kattenborn, T.; Frick, A.; Frey, J.; Schall, P.; Koch, B.; Schmidtlein, S. Mapping forest tree species in high resolution UAV-based RGB-imagery by means of convolutional neural networks. ISPRS J. Photogramm. Remote Sens. 2020, 170, 205–215. Available online: https://www.sciencedirect.com/science/article/pii/S0924271620302938 (accessed on 17 June 2023). [CrossRef]
- Guo, Q.; Zhang, J.; Guo, S.; Ye, Z.; Deng, H.; Hou, X.; Zhang, H. Urban Tree Classification Based on Object-Oriented Approach and Random Forest Algorithm Using Unmanned Aerial Vehicle (UAV) Multispectral Imagery. Remote Sens. 2022, 14, 3885. Available online: https://www.mdpi.com/2072-4292/14/16/3885/htm (accessed on 14 December 2024). [CrossRef]
- Sprott, A.H.; Piwowar, J.M. How to recognize different types of trees from quite a long way away: Combining UAV and spaceborne imagery for stand-level tree species identification. J. Unmanned Veh. Syst. 2021, 9, 166–181. [Google Scholar] [CrossRef]
- Hartling, S.; Sagan, V.; Maimaitijiang, M. Urban tree species classification using UAV-based multi-sensor data fusion and machine learning. GIScience Remote Sens. 2021, 58, 1250–1275. Available online: https://www.tandfonline.com/doi/abs/10.1080/15481603.2021.1974275 (accessed on 3 February 2025). [CrossRef]
- Adhikari, A.; Kumar, M.; Agrawal, S.; Raghavendra, S. An Integrated Object and Machine Learning Approach for Tree Canopy Extraction from UAV Datasets. J. Indian Soc. Remote Sens. 2021, 49, 471–478. Available online: https://link.springer.com/article/10.1007/s12524-020-01240-2 (accessed on 3 February 2025). [CrossRef]
- da Silva, S.D.P.; Eugenio, F.C.; Fantinel, R.A.; de Amaral, L.P.; dos Santos, A.R.; Mallmann, C.L.; dos Santos, F.D.; Pereira, R.S.; Ruoso, R. Modeling and detection of invasive trees using UAV image and machine learning in a subtropical forest in Brazil. Ecol. Inform. 2023, 74, 101989. Available online: https://linkinghub.elsevier.com/retrieve/pii/S1574954123000183 (accessed on 3 February 2025). [CrossRef]
- Amin, G.; Imtiaz, I.; Haroon, E.; Saqib, N.; Shahzad, M.; Nazeer, M. Assessment of Machine Learning Algorithms for Land Cover Classification in a Complex Mountainous Landscape. J. Geovisualization Spat. Anal. 2024, 8, 34. [Google Scholar] [CrossRef]
- Bakacsy, L.; Tobak, Z.; van Leeuwen, B.; Szilassi, P.; Biró, C.; Szatmári, J. Drone-Based Identification and Monitoring of Two Invasive Alien Plant Species in Open Sand Grasslands by Six RGB Vegetation Indices. Drones 2023, 7, 207. [Google Scholar] [CrossRef]
- Sohl, M.A.; Mahmood, S.A.; Rasheed, M.U. Comparative performance of four machine learning models for land cover classification in a low-cost UAV ultra-high-resolution RGB-only orthomosaic. Earth Sci. Inform. 2024, 17, 2869–2885. [Google Scholar] [CrossRef]
- Usman, M.; Ejaz, M.; Nichol, J.E.; Farid, M.S.; Abbas, S.; Khan, M.H. A Comparison of Machine Learning Models for Mapping Tree Species Using WorldView-2 Imagery in the Agroforestry Landscape of West Africa. ISPRS Int. J. Geo-Inf. 2023, 12, 142. [Google Scholar] [CrossRef]
- Mishra, N.B.; Mainali, K.P.; Shrestha, B.B.; Radenz, J.; Karki, D. Species-Level Vegetation Mapping in a Himalayan Treeline Ecotone Using Unmanned Aerial System (UAS) Imagery. ISPRS Int. J. Geo-Inf. 2018, 7, 445. Available online: https://www.mdpi.com/2220-9964/7/11/445/htm (accessed on 22 August 2025). [CrossRef]
- Ma, L.; Fu, T.; Blaschke, T.; Li, M.; Tiede, D.; Zhou, Z.; Ma, X.; Chen, D. Evaluation of Feature Selection Methods for Object-Based Land Cover Mapping of Unmanned Aerial Vehicle Imagery Using Random Forest and Support Vector Machine Classifiers. ISPRS Int. J. Geo-Inf. 2017, 6, 51. Available online: https://www.mdpi.com/2220-9964/6/2/51/htm (accessed on 22 August 2025). [CrossRef]
- Apurva, S.A. Comparative Analysis of Detection of Diseases in Apple Tree Leaves Using ResNet and CNN. In Scalable Modeling and Efficient Management of IoT Applications; IGI Global Scientific Publishing: Hershey, PA, USA, 2024; pp. 119–136. Available online: https://www.igi-global.com/chapter/comparative-analysis-of-detection-of-diseases-in-apple-tree-leaves-using-resnet-and-cnn/358716 (accessed on 15 August 2025).
- Ren, D.; Li, M.; Hong, Z.; Liu, L.; Huang, J.; Sun, H.; Ren, S.; Sao, P.; Wang, W.; Zhang, J. MASFNet: Multi-level attention and spatial sampling fusion network for pine wilt disease trees detection. Ecol. Indic. 2025, 170, 113073. Available online: https://linkinghub.elsevier.com/retrieve/pii/S1470160X25000020 (accessed on 20 August 2025). [CrossRef]
- Li, Q.; Yan, Y. Street tree segmentation from mobile laser scanning data using deep learning-based image instance segmentation. Urban For. Urban Green. 2024, 92, 128200. Available online: https://linkinghub.elsevier.com/retrieve/pii/S1618866723003710 (accessed on 22 August 2025). [CrossRef]
- Kuang, W.; Ho, H.W.; Zhou, Y.; Suandi, S.A.; Ismail, F. A comprehensive review on tree detection methods using point cloud and aerial imagery from unmanned aerial vehicles. Comput. Electron. Agric. 2024, 227, 109476. Available online: https://linkinghub.elsevier.com/retrieve/pii/S0168169924008676 (accessed on 21 August 2025). [CrossRef]
- Zheng, J.; Yuan, S.; Li, W.; Fu, H.; Yu, L.; Huang, J. A Review of Individual Tree Crown Detection and Delineation From Optical Remote Sensing Images: Current progress and future. IEEE Geosci. Remote Sens. Mag. 2025, 13, 209–236. Available online: https://ieeexplore.ieee.org/document/10750500/ (accessed on 24 August 2025). [CrossRef]
- Zhong, L.; Dai, Z.; Fang, P.; Cao, Y.; Wang, L. A Review: Tree Species Classification Based on Remote Sensing Data and Classic Deep Learning-Based Methods. Forests 2024, 15, 852. Available online: https://www.mdpi.com/1999-4907/15/5/852/htm (accessed on 21 August 2025). [CrossRef]
- Gärtner, P.; Förster, M.; Kleinschmit, B. The benefit of synthetically generated RapidEye and Landsat 8 data fusion time series for riparian forest disturbance monitoring. Remote Sens. Environ. 2016, 177, 237–247. [Google Scholar] [CrossRef]
- Chen, G.; Weng, Q.; Hay, G.J.; He, Y. Geographic object-based image analysis (GEOBIA): Emerging trends and future opportunities. GIScience Remote Sens. 2018, 55, 159–182. Available online: https://www.tandfonline.com/doi/full/10.1080/15481603.2018.1426092 (accessed on 1 July 2023). [CrossRef]
- Lang, S. Object-based image analysis for remote sensing applications: Modeling reality—dealing with complexity. In Object-Based Image Analysis; Springer: Berlin/Heidelberg, Germany, 2008; pp. 3–27. [Google Scholar] [CrossRef]
- Blaschke, T. Object based image analysis for remote sensing. ISPRS J. Photogramm. Remote Sens. 2010, 65, 2–16. Available online: https://www.sciencedirect.com/science/article/pii/S0924271609000884 (accessed on 22 August 2022). [CrossRef]
- Castilla, G.; Hay, G.J. Image objects and geographic objects. In Object-Based Image Analysis: Spatial Concepts for Knowledge-Driven Remote Sensing Applications; Springer: Berlin/Heidelberg, Germany, 2008; pp. 91–110. Available online: https://link.springer.com/chapter/10.1007/978-3-540-77058-9_5 (accessed on 22 August 2025).
- Iqbal, I.M.; Shabbir, A.; Shabbir, K.; Naveed, M.; Urooj, F.; Butt, A.; Khan, R.; Singh, N. Tree Flora of the Botanical Garden and two campuses of Punjab University Lahore Pakistan. Biologia 2020, 66, 99–124. Available online: www.cabi.org (accessed on 16 September 2024).
- Shakrullah, K.; Shirazi, S.A. Changing Landscape Patterns and Its Effect on Rising Land Surface Temperature of Lahore-Pakistan. Pak. J. Sci. 2023, 74, 195–202. [Google Scholar] [CrossRef]
- DJI DJI Mavic 2 2022. Available online: https://www.dji.com/cn/mavic-2/info (accessed on 15 June 2023).
- Babaasa, D.; Finn, J.T.; Schweik, C.M.; Fuller, T.K.; Sheil, D. Predictive mapping of tree species assemblages in an African montane rainforest. Biotropica 2024, 56, e13302. [Google Scholar] [CrossRef]
- Anita, M.; Poonam, J. Species Composition and Diversity of Tree Species in Nanta Forest Region in Kota District, Rajasthan, India. Int. J. Environ. Clim. Chang. 2023, 13, 220–227. Available online: https://journalijecc.com/index.php/IJECC/article/view/1729 (accessed on 9 December 2024). [CrossRef]
- Wang, Y.; Wu, L.; Qi, Q.; Wang, J. Local Scale-Guided Hierarchical Region Merging and Further Over- and Under-Segmentation Processing for Hybrid Remote Sensing Image Segmentation. IEEE Access 2022, 10, 81492–81505. [Google Scholar] [CrossRef]
- Souza-Filho, P.W.M.; Nascimento, W.R.; Santos, D.C.; Weber, E.J.; Silva, R.O.; Siqueira, J.O. A GEOBIA Approach for Multitemporal Land-Cover and Land-Use Change Analysis in a Tropical Watershed in the Southeastern Amazon. Remote Sens. 2018, 10, 1683. Available online: https://www.mdpi.com/2072-4292/10/11/1683/htm (accessed on 30 January 2025). [CrossRef]
- Pu, R. Mapping Tree Species Using Advanced Remote Sensing Technologies: A State-of-the-Art Review and Perspective. J. Remote Sens. 2021. Available online: https://spj.science.org/doi/10.34133/2021/9812624 (accessed on 3 February 2025). [CrossRef]
- Laliberte, A.S.; Rango, A. Texture and Scale in Object-Based Analysis of Subdecimeter Resolution Unmanned Aerial Vehicle (UAV) Imagery. IEEE Trans. Geosci. Remote Sens. 2009, 47, 761–770. [Google Scholar] [CrossRef]
- Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic Minority Over-sampling Technique. J. Artif. Intell. Res. 2002, 16, 321–357. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Guimarães, N.; Pádua, L.; Marques, P.; Silva, N.; Peres, E.; Sousa, J.J. Forestry remote sensing from unmanned aerial vehicles: A review focusing on the data, processing and potentialities. Remote Sens. 2020, 12, 1046. [Google Scholar] [CrossRef]
- Feng, Q.; Liu, J.; Gong, J. UAV Remote Sensing for Urban Vegetation Mapping Using Random Forest and Texture Analysis. Remote Sens. 2015, 7, 1074–1094. [Google Scholar] [CrossRef]
- Sheykhmousa, M.; Mahdianpari, M.; Ghanbari, H.; Mohammadimanesh, F.; Ghamisi, P.; Homayouni, S. Support Vector Machine Versus Random Forest for Remote Sensing Image Classification: A Meta-Analysis and Systematic Review. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 6308–6325. [Google Scholar] [CrossRef]
- Rigatti, S.J. Random Forest. J. Insur. Med. 2017, 47, 31–39. [Google Scholar] [CrossRef]
- Raczko, E.; Zagajewski, B. Comparison of support vector machine, random forest and neural network classifiers for tree species classification on airborne hyperspectral APEX images. Eur. J. Remote Sens. 2017, 50, 144–154. [Google Scholar] [CrossRef]
- You, H.; Huang, Y.; Qin, Z.; Chen, J.; Liu, Y. Forest Tree Species Classification Based on Sentinel-2 Images and Auxiliary Data. Forests 2022, 13, 1416. Available online: https://www.mdpi.com/1999-4907/13/9/1416/htm (accessed on 1 February 2025). [CrossRef]
- Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Adugna, T.; Xu, W.; Fan, J. Comparison of Random Forest and Support Vector Machine Classifiers for Regional Land Cover Mapping Using Coarse Resolution FY-3C Images. Remote Sens. 2022, 14, 574. [Google Scholar] [CrossRef]
- Deur, M.; Gašparović, M.; Balenović, I. Tree Species Classification in Mixed Deciduous Forests Using Very High Spatial Resolution Satellite Imagery and Machine Learning Methods. Remote Sens. 2020, 12, 3926. [Google Scholar] [CrossRef]
- Immitzer, M.; Atzberger, C.; Koukal, T. Tree Species Classification with Random Forest Using Very High Spatial Resolution 8-Band WorldView-2 Satellite Data. Remote Sens. 2012, 4, 2661–2693. [Google Scholar] [CrossRef]
- Liu, X.; Frey, J.; Denter, M.; Zielewska-Büttner, K.; Still, N.; Koch, B. Mapping standing dead trees in temperate montane forests using a pixel- and object-based image fusion method and stereo WorldView-3 imagery. Ecol. Indic. 2021, 133, 108438. [Google Scholar] [CrossRef]
- Geurts, P.; Ernst, D.; Wehenkel, L. Extremely randomized trees. Mach. Learn. 2006, 63, 3–42. [Google Scholar] [CrossRef]
- Zafari, A.; Zurita-Milla, R.; Izquierdo-Verdiguier, E. Land Cover Classification Using Extremely Randomized Trees: A Kernel Perspective. IEEE Geosci. Remote Sens. Lett. 2020, 17, 1702–1706. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. Available online: https://dl.acm.org/doi/10.1145/2939672.2939785 (accessed on 22 August 2025).
- Wan, H.; Tang, Y.; Jing, L.; Li, H.; Qiu, F.; Wu, W. Tree Species Classification of Forest Stands Using Multisource Remote Sensing Data. Remote Sens. 2021, 13, 144. Available online: https://www.mdpi.com/2072-4292/13/1/144 (accessed on 21 September 2024). [CrossRef]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Van der Linden, S. Classifying segmented hyperspectral data from a heterogeneous urban environment using support vector machines. J. Appl. Remote Sens. 2007, 1, 013543. [Google Scholar] [CrossRef]
- Li, D.; Ke, Y.; Gong, H.; Li, X. Object-Based Urban Tree Species Classification Using Bi-Temporal WorldView-2 and WorldView-3 Images. Remote Sens. 2015, 7, 16917–16937. [Google Scholar] [CrossRef]
- Lantzanakis, G.; Mitraka, Z.; Chrysoulakis, N. X-SVM: An Extension of C-SVM Algorithm for Classification of High-Resolution Satellite Imagery. IEEE Trans. Geosci. Remote Sens. 2020, 59, 3805–3815. [Google Scholar] [CrossRef]
- Lundberg, S.M.; Allen, P.G.; Lee, S.-I. A Unified Approach to Interpreting Model Predictions. Adv. Neural Inf. Process. Syst. 2017, 30, 4768–4777. Available online: https://github.com/slundberg/shap (accessed on 14 August 2024).
- Sun, C.; Li, J.; Liu, Y.; Liu, Y.; Liu, R. Plant species classification in salt marshes using phenological parameters derived from Sentinel-2 pixel-differential time-series. Remote Sens. Environ. 2021, 256, 112320. [Google Scholar] [CrossRef]
- Elatawneh, A.; Rappl, A.; Rehush, N.; Schneider, T.; Knoke, T. Forest tree species identification using phenological stages and RapidEye: A case study in the forest of Freising. In From the Basics to the Services; GITO Verlag: Berlin, Germany, 2013; pp. 21–38. [Google Scholar]
- Chen, S.; Chen, M.; Zhao, B.; Mao, T.; Wu, J.; Bao, W. Urban Tree Canopy Mapping Based on Double-Branch Convolutional Neural Network and Multi-Temporal High Spatial Resolution Satellite Imagery. Remote Sens. 2023, 15, 765. Available online: https://www.mdpi.com/2072-4292/15/3/765/htm (accessed on 1 February 2025). [CrossRef]
- Jiang, M.; Kong, J.; Zhang, Z.; Hu, J.; Qin, Y.; Shang, K.; Zhao, M.; Zhang, J. Seeing Trees from Drones: The Role of Leaf Phenology Transition in Mapping Species Distribution in Species-Rich Montane Forests. Forests 2023, 14, 908. [Google Scholar] [CrossRef]
- Abbas, S.; Peng, Q.; Wong, M.S.; Li, Z.; Wang, J.; Ng, K.T.K.; Kwok, C.Y.T.; Hui, K.K.W. Characterizing and classifying urban tree species using bi-monthly terrestrial hyperspectral images in Hong Kong. ISPRS J. Photogramm. Remote Sens. 2021, 177, 204–216. Available online: https://www.sciencedirect.com/science/article/pii/S0924271621001283 (accessed on 1 August 2025). [CrossRef]
- Guo, X.; Liu, Q.; Sharma, R.P.; Chen, Q.; Ye, Q.; Tang, S.; Fu, L. Tree Recognition on the Plantation Using UAV Images with Ultrahigh Spatial Resolution in a Complex Environment. Remote Sens. 2021, 13, 4122. [Google Scholar] [CrossRef]
- Santos, L.A.; Ferreira, K.R.; Camara, G.; Picoli, M.C.A.; Simoes, R.E. Quality control and class noise reduction of satellite image time series. ISPRS J. Photogramm. Remote Sens. 2021, 177, 75–88. [Google Scholar] [CrossRef]
- Yang, Q.; Su, Y.; Jin, S.; Kelly, M.; Hu, T.; Ma, Q.; Li, Y.; Song, S.; Zhang, J.; Xu, G.; et al. The Influence of Vegetation Characteristics on Individual Tree Segmentation Methods with Airborne LiDAR Data. Remote Sens. 2019, 11, 2880. [Google Scholar] [CrossRef]
- Torresan, C.; Corona, P.; Scrinzi, G.; Marsal, J.V. Using classification trees to predict forest structure types from LiDAR data. Ann. For. Res. 2016, 59, 281–298. [Google Scholar] [CrossRef]
- Quan, Y.; Zhong, X.; Feng, W.; Dauphin, G.; Gao, L.; Xing, M. A Novel Feature Extension Method for the Forest Disaster Monitoring Using Multispectral Data. Remote Sens. 2020, 12, 2261. [Google Scholar] [CrossRef]
- Hebryn-Baidy, L.; Rees, G. Machine Learning Algorithms Evaluated for Urban Land Use and Land Cover Classification Using Sentinel 2 Data. Smartindustry 2024, 10, 664–665. Available online: https://api.semanticscholar.org/CorpusID:270381005 (accessed on 11 November 2024).
- Jombo, S.; Adam, E.; Tesfamichael, S. Classification of urban tree species using LiDAR data and WorldView-2 satellite imagery in a heterogeneous environment. Geocarto Int. 2022, 37, 9943–9966. Available online: https://www.tandfonline.com/doi/pdf/10.1080/10106049.2022.2028904 (accessed on 22 August 2025). [CrossRef]
- Man, Q.; Dong, P.; Zhang, B.; Liu, H.; Yang, X.; Wu, J.; Liu, C.; Han, C.; Zhou, C.; Tan, Z. Precise identification of individual tree species in urban areas with high canopy density by multi-sensor UAV data in two seasons. Int. J. Digit. Earth 2025, 18, 2496804. Available online: https://www.tandfonline.com/doi/pdf/10.1080/17538947.2025.2496804 (accessed on 22 August 2025). [CrossRef]
Sr. No. | Flying Month | Season | Camera Angle | Image Overlap | Flight Height |
---|---|---|---|---|---|
1 | 30 August 2023 | Summer | 90° | 80% | 100 m |
2 | 29 October 2023 | Autumn | |||
3 | 28 January 2024 | Winter | |||
4 | 11 February 2024 | Early Spring |
No. | Local Name | Scientific Name | Family Name | Sample |
---|---|---|---|---|
1 | Jatropha | Jatropha integerrima | Euphorbiaceae | 39 |
2 | Teak Wood | Tectona grandis | Verbenaceae | 33 |
3 | Amaltas | Cassia fistula | Fabaceae | 25 |
4 | Villayati Shishum | Millettia ovalifolia | Fabaceae | 22 |
5 | Karenwood | Hetrophragma adenophyllum | Bignoniaceae | 18 |
6 | Alstonia | Alstonia scholaris | Apocynaceae | 17 |
7 | Chir Pine | Pinus roxburghii | Pinaceae | 17 |
8 | Dhrek, Bakain | Melia azedarach | Meliaceae | 15 |
Sr. No. | Texture Features | Calculation Equations | Features Description |
---|---|---|---|
1 | Mean | The Mean value in the GLCM window. | |
2 | Homogeneity | Gradually decreases in weight as values are further from the diagonal and weight values by the inverse of the contrast weight. | |
3 | Contrast | Measures local diversity in an image. | |
4 | Dissimilarity | Very similar to contrast factors, but it increases linearly. | |
5 | Entropy | High value if the values in GLCM are equally distributed. | |
6 | Angular Second Moment | The uniformity of greyscale in the GLCM window. | |
7 | Correlation | A linear relationship between the grey levels of adjacent pixels. | |
8 | Standard Deviation | Combination of neighbour and reference pixels. | |
9 | GLDV angular second moment | Quantify uniformity of texture in an image. | |
10 | GLDV entropy | Measures the randomness or unpredictability of the texture. |
Summer | Autumn | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Model | OA | Precision | Recall | F1 | Kappa | MCC | OA | Precision | Recall | F1 | Kappa | MCC |
RF | 75% | 0.76 | 0.75 | 0.73 | 0.71 | 0.72 | 63% | 0.62 | 0.63 | 0.60 | 0.57 | 0.58 |
ET | 74% | 0.74 | 0.74 | 0.72 | 0.69 | 0.70 | 67% | 0.68 | 0.67 | 0.65 | 0.62 | 0.63 |
XGBoost | 74% | 0.77 | 0.74 | 0.73 | 0.70 | 0.71 | 65% | 0.64 | 0.65 | 0.63 | 0.59 | 0.60 |
SVM | 72% | 0.72 | 0.72 | 0.70 | 0.67 | 0.68 | 57% | 0.59 | 0.57 | 0.55 | 0.50 | 0.52 |
Winter | Early Spring | |||||||||||
Model | OA | Precision | Recall | F1 | Kappa | MCC | OA | Precision | Recall | F1 | Kappa | MCC |
RF | 68% | 0.68 | 0.70 | 0.66 | 0.63 | 0.64 | 61% | 0.61 | 0.59 | 0.58 | 0.54 | 0.55 |
ET | 66% | 0.66 | 0.64 | 0.63 | 0.60 | 0.61 | 62% | 0.62 | 0.59 | 0.58 | 0.55 | 0.56 |
XGBoost | 64% | 0.64 | 0.61 | 0.61 | 0.58 | 0.59 | 64% | 0.64 | 0.62 | 0.62 | 0.58 | 0.59 |
SVM | 65% | 0.65 | 0.65 | 0.62 | 0.59 | 0.61 | 62% | 0.63 | 0.62 | 0.58 | 0.55 | 0.57 |
Multi-Temporal Image Composite | ||||||
---|---|---|---|---|---|---|
Model | OA | Precision | Recall | F1 | Kappa | MCC |
RF | 86% | 0.88 | 0.86 | 0.85 | 0.83 | 0.84 |
ET | 84% | 0.87 | 0.84 | 0.83 | 0.80 | 0.81 |
XGBoost | 83% | 0.85 | 0.83 | 0.82 | 0.80 | 0.80 |
SVM | 77% | 0.80 | 0.77 | 0.76 | 0.74 | 0.75 |
Local Name (Species Name) | Precision | Recall | F1 | Support |
---|---|---|---|---|
Jatropha (Jatropha integerrima) | 1 | 1 | 1 | 14 |
Teak Wood (Tectona grandis) | 0.67 | 0.86 | 0.75 | 14 |
Amaltas (Cassia fistula) | 0.91 | 0.77 | 0.83 | 13 |
Villayati Shishum (Millettia ovalifolia) | 0.7 | 0.7 | 0.7 | 10 |
Karenwood (Hetrophragma adenophyllum) | 0.63 | 0.56 | 0.59 | 9 |
Alstonia (Alstonia scholaris) | 1 | 1 | 1 | 8 |
Chir Pine (Pinus roxburghii) | 0.8 | 0.57 | 0.67 | 7 |
Dhrek, Bakain (Melia azedarach) | 0.8 | 1 | 0.93 | 7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qasim, H.; Ding, X.; Usman, M.; Abbas, S.; Shahzad, N.; Keshk, H.M.; Bilal, M.; Ahmad, U. Advancing Tree Species Classification with Multi-Temporal UAV Imagery, GEOBIA, and Machine Learning. Geomatics 2025, 5, 42. https://doi.org/10.3390/geomatics5030042
Qasim H, Ding X, Usman M, Abbas S, Shahzad N, Keshk HM, Bilal M, Ahmad U. Advancing Tree Species Classification with Multi-Temporal UAV Imagery, GEOBIA, and Machine Learning. Geomatics. 2025; 5(3):42. https://doi.org/10.3390/geomatics5030042
Chicago/Turabian StyleQasim, Hassan, Xiaoli Ding, Muhammad Usman, Sawaid Abbas, Naeem Shahzad, Hatem M. Keshk, Muhammad Bilal, and Usman Ahmad. 2025. "Advancing Tree Species Classification with Multi-Temporal UAV Imagery, GEOBIA, and Machine Learning" Geomatics 5, no. 3: 42. https://doi.org/10.3390/geomatics5030042
APA StyleQasim, H., Ding, X., Usman, M., Abbas, S., Shahzad, N., Keshk, H. M., Bilal, M., & Ahmad, U. (2025). Advancing Tree Species Classification with Multi-Temporal UAV Imagery, GEOBIA, and Machine Learning. Geomatics, 5(3), 42. https://doi.org/10.3390/geomatics5030042