A GEOBIA Approach for Multitemporal Land-Cover and Land-Use Change Analysis in a Tropical Watershed in the Southeastern Amazon
Abstract
1. Introduction
2. Dataset and Methods
2.1. Study Area
2.2. Remote Sensing Dataset and Field Data Collection
2.3. Digital Image Processing
2.4. Geographic Object-Based Image Analysis (GEOBIA)
2.4.1. Segmentation
2.4.2. Multiresolution Classification
2.4.3. Classification Accuracy Assessment of the LCLU Classes
2.4.4. Object-Based Change Detection Analysis
3. Results
3.1. Overall Classification and Accuracy Assessment of Multitemporal LCLU Maps
3.2. Analysis of Multitemporal LCLU Changes
3.3. LCLU “from-to” Change Detection Analysis
4. Discussion
4.1. Issues of Accuracy for Multitemporal LCLU Classes
4.2. LCLU Assessment Using Time Series Satellite Images and GEOBIA
4.3. LCLU “from-to” Change Detection Approach
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Singh, A. Review article digital change detection techniques using remotely-sensed data. Int. J. Remote Sens. 1989, 10, 989–1003. [Google Scholar] [CrossRef]
- Lu, D.; Li, G.; Moran, E.; Hetrick, S. Spatiotemporal analysis of land-use and land-cover change in the brazilian amazon. Int. J. Remote Sens. 2013, 34, 5953–5978. [Google Scholar] [CrossRef] [PubMed]
- Blaschke, T.; Hay, G.J.; Kelly, M.; Lang, S.; Hofmann, P.; Addink, E.; Queiroz Feitosa, R.; van der Meer, F.; van der Werff, H.; van Coillie, F.; et al. Geographic object-based image analysis—Towards a new paradigm. ISPRS J. Photogramm. Remote Sens. 2014, 87, 180–191. [Google Scholar] [CrossRef] [PubMed]
- Burnett, C.; Blaschke, T. A multi-scale segmentation/object relationship modelling methodology for landscape analysis. Ecol. Model. 2003, 168, 233–249. [Google Scholar] [CrossRef]
- Liu, D.; Xia, F. Assessing object-based classification: Advantages and limitations. Remote Sens. Lett. 2010, 1, 187–194. [Google Scholar] [CrossRef]
- Platt, R.V.; Rapoza, L. An evaluation of an object-oriented paradigm for land use/land cover classification. Prof. Geogr. 2008, 60, 87–100. [Google Scholar] [CrossRef]
- Tompoulidou, M.; Gitas, I.Z.; Polychronaki, A.; Mallinis, G. A GEOBIA framework for the implementation of national and international forest definitions using very high spatial resolution optical satellite data. Geocarto Int. 2016, 31, 342–354. [Google Scholar] [CrossRef]
- Garcia-Pedrero, A.; Gonzalo-Martin, C.; Fonseca-Luengo, D.; Lillo-Saavedra, M. A GEOBIA methodology for fragmented agricultural landscapes. Remote Sens. 2015, 7, 767–787. [Google Scholar] [CrossRef]
- Blaschke, T. Object based image analysis for remote sensing. ISPRS J. Photogramm. Remote Sens. 2010, 65, 2–16. [Google Scholar] [CrossRef]
- Chen, G.; Hay, G.J.; Carvalho, L.M.T.; Wulder, M.A. Object-based change detection. Int. J. Remote Sens. 2012, 33, 4434–4457. [Google Scholar] [CrossRef]
- Desclée, B.; Bogaert, P.; Defourny, P. Forest change detection by statistical object-based method. Remote Sens. Environ. 2006, 102, 1–11. [Google Scholar] [CrossRef]
- Lyons, M.B.; Phinn, S.R.; Roelfsema, C.M. Long term land cover and seagrass mapping using landsat and object-based image analysis from 1972 to 2010 in the coastal environment of south east queensland, australia. ISPRS J. Photogramm. Remote Sens. 2012, 71, 34–46. [Google Scholar] [CrossRef]
- Nascimento, W.R., Jr.; Souza-Filho, P.W.M.; Proisy, C.; Lucas, R.M.; Rosenqvist, A. Mapping changes in the largest continuous amazonian mangrove belt using object-based classification of multisensor satellite imagery. Estuar. Coast. Shelf Sci. 2013, 117, 83–93. [Google Scholar] [CrossRef]
- Chen, J.M.; Chen, J.M.; Liao, A.; Cao, X.; Chen, L.; Chen, X.; He, C.; Han, G.; Peng, S.; Lu, M.; et al. Global land cover mapping at 30 m resolution: A pok-based operational approach. ISPRS J. Photogramm. Remote Sens. 2015, 103, 7–27. [Google Scholar] [CrossRef]
- Lu, D.; Li, G.; Moran, E. Current situation and needs of change detection techniques. Int. J. Image Data Fusion 2014, 5, 13–38. [Google Scholar] [CrossRef]
- Asner, G.P.; Llactayo, W.; Tupayachi, R.; Luna, E.R. Elevated rates of gold mining in the amazon revealed through high-resolution monitoring. Proc. Natl. Acad. Sci. USA 2013, 110, 18454–18459. [Google Scholar] [CrossRef] [PubMed]
- Sonter, L.J.; Moran, C.J.; Barrett, D.J.; Soares-Filho, B.S. Processes of land use change in mining regions. J. Clean. Prod. 2014, 84, 494–501. [Google Scholar] [CrossRef]
- Sonter, L.J.; Herrera, D.; Barrett, D.J.; Galford, G.L.; Moran, C.J.; Soares-Filho, B.S. Mining drives extensive deforestation in the brazilian amazon. Nat. Commun. 2017, 8, 1013. [Google Scholar] [CrossRef] [PubMed]
- Lobo, F.; Souza-Filho, P.; Novo, E.; Carlos, F.; Barbosa, C. Mapping mining areas in the brazilian amazon using msi/sentinel-2 imagery (2017). Remote Sens. 2018, 10, 1178. [Google Scholar] [CrossRef]
- Souza-Filho, P.W.M.; de Souza, E.B.; Silva Júnior, R.O.; Nascimento, W.R., Jr.; Versiani de Mendonça, B.R.; Guimarães, J.T.F.; Dall’Agnol, R.; Siqueira, J.O. Four decades of land-cover, land-use and hydroclimatology changes in the itacaiúnas river watershed, southeastern amazon. J. Environ. Manag. 2016, 167, 175–184. [Google Scholar] [CrossRef] [PubMed]
- Costa, M.H.; Botta, A.; Cardille, J.A. Effects of large-scale changes in land cover on the discharge of the tocantins river, southeastern amazonia. J. Hydrol. 2003, 283, 206–217. [Google Scholar] [CrossRef]
- Silva Júnior, R.O.; de Souza, E.B.; Tavares, A.L.; Mota, J.A.; Ferreira, D.B.S.; Souza-Filho, P.W.M.; da Rocha, E.J.P. Three decades of reference evapotranspiration estimates for a tropical watershed in the eastern amazon. Anais Acad. Bras. Cienc. 2017, 89, 1985–2002. [Google Scholar] [CrossRef] [PubMed]
- Piló, L.B.; Auler, A.S.; Martins, F.D. Carajás national forest: Iron ore plateaus and caves in southeastern amazon. In Landscapes and Landforms of Brazil; Vieira, B.C., Salgado, A.A.R., Santos, L.J.C., Eds.; Springer: Berlin, Germany, 2015; pp. 273–283. [Google Scholar]
- Diegues, A.C.; Millikan, E.C.B.; Ferraz, I.T.; Hebette, J. Deforestation and Livelihoods in the Brazilian Amazon; NUPAUB: São Paulo, Brazil, 1997; p. 189. [Google Scholar]
- Nepstad, D.; Schwartzman, S.; Bamberger, B.; Santilli, M.; Ray, D.; Schlesinger, P.; Lefebvre, P.; Alencar, A.; Prinz, E.; Fiske, G.; et al. Inhibition of amazon deforestation and fire by parks and indigenous lands. Conserv. Boil. 2006, 20, 65–73. [Google Scholar] [CrossRef]
- Laurance, W.F.; Goosem, M.; Laurance, S.G.W. Impacts of roads and linear clearings on tropical forests. Trends Ecol. Evol. 2009, 24, 659–669. [Google Scholar] [CrossRef] [PubMed]
- Barber, C.P.; Cochrane, M.A.; Souza, C.M., Jr.; Laurance, W.F. Roads, deforestation, and the mitigating effect of protected areas in the amazon. Boil. Conserv. 2014, 177, 203–209. [Google Scholar] [CrossRef]
- Uhl, C.; Buschbacher, R. A disturbing synergism between cattle ranch burning practices and selective tree harvesting in the eastern amazon. Biotropica 1985, 17, 265–268. [Google Scholar] [CrossRef]
- Morton, D.C.; DeFries, R.S.; Shimabukuro, Y.E.; Anderson, L.O.; Arai, E.; del Bon Espirito-Santo, F.; Freitas, R.; Morisette, J. Cropland expansion changes deforestation dynamics in the southern brazilian amazon. Proc. Natl. Acad. Sci. USA 2006, 103, 14637–14641. [Google Scholar] [CrossRef] [PubMed]
- Martinelli, L.A.; Naylor, R.; Vitousek, P.M.; Moutinho, P. Agriculture in brazil: Impacts, costs, and opportunities for a sustainable future. Curr. Opin. Environ. Sustain. 2010, 2, 431–438. [Google Scholar] [CrossRef]
- Godar, J.; Gardner, T.A.; Tizado, E.J.; Pacheco, P. Actor-specific contributions to the deforestation slowdown in the brazilian amazon. Proc. Natl. Acad. Sci. USA 2014, 111, 15591–15596. [Google Scholar] [CrossRef] [PubMed]
- Khanna, J.; Medvigy, D.; Fueglistaler, S.; Walko, R. Regional dry-season climate changes due to three decades of amazonian deforestation. Nat. Clim. Chang. 2017, 7, 200–204. [Google Scholar] [CrossRef]
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; Gonçalves, J.L.M.; Sparovek, G. Koppen’s climate classification map for brazil. Meteorol. Z. 2013, 22, 711–728. [Google Scholar] [CrossRef]
- Moraes, B.C.; Costa, J.M.N.; Costa, A.C.L.; Costa, M.H. Variação espacial e temporal da precipitação no estado do pará. Acta Amazon. 2005, 35, 207–214. [Google Scholar] [CrossRef]
- Irons, J.R.; Dwyer, J.L.; Barsi, J.A. The next landsat satellite: The landsat data continuity mission. Remote Sens. Environ. 2012, 122, 11–21. [Google Scholar] [CrossRef]
- Di Gregorio, A. Land Cover Classification System: Classification Concepts and User Manual; UNEP-FAO: Roma, Italy, 2005. [Google Scholar]
- Ellis, E.C.; Ramankutty, N. Putting people in the map: Anthropogenic biomes of the world. Front. Ecol. Environ. 2007, 6, 439–447. [Google Scholar] [CrossRef]
- Junk, W.J.; Piedade, M.T.F.; Schöngart, J.; Cohn-Haft, M.; Adeney, J.; Wittmann, F. A classification of major naturally-occurring amazonian lowland wetlands. Wetlands 2011, 31, 623–640. [Google Scholar] [CrossRef]
- PCI Geomatica. Geomatica ii: Course Guide. Version 0.2; PCI Geomatics: Markham, ON, Canada, 2015; p. 169. [Google Scholar]
- Tarpley, J.D.; Schneider, S.R.; Money, R.L. Global vegetation indices from the noaa-7 meteorological satellite. J. Clim. Appl. Meteorol. 1984, 23, 491–494. [Google Scholar] [CrossRef]
- Crippen, R.E. Selection of landsat tm band and band-ratio combinations to maximize lithologic information in color composite displays. In Proceedings of the 7th Thematic Conference on Remote Sensing for Exploration Geology II, Calgary, AB, Canada, 2–6 October 1989; pp. 912–921. [Google Scholar]
- Saura, S. Effects of minimum mapping unit on land cover data spatial configuration and composition. Int. J. Remote Sens. 2002, 23, 4853–4880. [Google Scholar] [CrossRef]
- Baatz, M.; Schape, A. Multiresolution segmentation: An optimization approach for high quality multi-scale image segmentation. In Angewandte Geographische Informationsverarbeitung; Strbl, J., Blaschke, T., Eds.; Wichmann: Heidelberg, Germany, 2000; pp. 12–23. [Google Scholar]
- Zhang, X.; Tong, H.; Chen, X. Multi-scale segmentation algorithm parameters optimization based on evolutionary computation. In Proceedings of the 6th International Symposium Computational Intelligence and Intelligent Systems: Isica 2012, Wuhan, China, 27–28 October 2012; Li, Z., Li, X., Liu, Y., Cai, Z., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 347–358. [Google Scholar]
- Drăguţ, L.; Tiede, D.; Levick, S.R. Esp: A tool to estimate scale parameter for multiresolution image segmentation of remotely sensed data. Int. J. Geogr. Inf. Sci. 2010, 24, 859–871. [Google Scholar] [CrossRef]
- Kavzoglu, T.; Erdemir, M.Y.; Tonbul, H. A region-based multi-scale approach for object-based image analysis. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, XLI-B7, 241–247. [Google Scholar] [CrossRef]
- Lowe, S.H.; Guo, X. Detecting an optimal scale parameter in object-oriented classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2011, 4, 890–895. [Google Scholar] [CrossRef]
- Mesner, N.; Ostir, K. Investigating the impact of spatial and spectral resolution of satellite images on segmentation quality. APPRES 2014, 8, 1–14. [Google Scholar] [CrossRef]
- Benz, U.C.; Hofmann, P.; Willhauck, G.; Lingenfelder, I.; Heynen, M. Multi-resolution, object-oriented fuzzy analysis of remote sensing data for gis-ready information. ISPRS J. Photogramm. Remote Sens. 2004, 58, 239–258. [Google Scholar] [CrossRef]
- Radoux, J.; Bogaert, P.; Fasbender, D.; Defourny, P. Thematic accuracy assessment of geographic object-based image classification. Int. J. Geogr. Inf. Sci. 2011, 25, 895–911. [Google Scholar] [CrossRef]
- Congalton, R.G.; Green, K. Assessing the Accuracy of Remotely Sensed Data: Principles and Practices, 2nd ed.; CRC Press Taylor & Francis Group: Boca Raton, FL, USA, 2009; p. 183. [Google Scholar]
- Congalton, R.G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 1991, 37, 35–46. [Google Scholar] [CrossRef]
- Story, M.; Congalton, R. Accuracy assessment—A user’s perspective. Photogramm. Eng. Remote Sens. 1986, 52, 397–399. [Google Scholar]
- Pontius, R.G.; Millones, M. Death to kappa: Birth of quantity disagreement and allocation disagreement for accuracy assessment. Int. J. Remote Sens. 2011, 32, 4407–4429. [Google Scholar] [CrossRef]
- Sa, P.; Marques, I. The carajas iron ore project: The strategy of a third world state- owned enterprise in a depressed market. Resour. Policy 1985, 11, 245–256. [Google Scholar]
- Guiot, J.; de Vernal, A. Is spatial autocorrelation introducing biases in the apparent accuracy of paleoclimatic reconstructions? Quat. Sci. Rev. 2011, 30, 1965–1972. [Google Scholar] [CrossRef]
- Cohen, J. A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 1960, XX, 37–46. [Google Scholar] [CrossRef]
- Foody, G.M. Status of land cover classification accuracy assessment. Remote Sens. Environ. 2002, 80, 185–201. [Google Scholar] [CrossRef]
- Fearnside, P.M. Deforestation in brazilian amazonia: History, rates, and consequences deforestación en la amazonía brasileña: Historia, tasas y consecuencias. Conserv. Boil. 2005, 19, 680–688. [Google Scholar] [CrossRef]
- Ferreira, J.; Aragão, L.E.O.C.; Barlow, J.; Barreto, P.; Berenguer, E.; Bustamante, M.; Gardner, T.A.; Lees, A.C.; Lima, A.; Louzada, J.; et al. Brazil’s environmental leadership at risk: Mining and dams threaten protected areas. Science 2014, 346, 706–707. [Google Scholar] [CrossRef] [PubMed]
- Martins, F.D.; Mendonça, M.V. Floresta nacional de carajás: Compatibilizando a mineração com a preservação. In A Diversidade Cabe Na Unidade?: Áreas Protegidas Do Brasil; Bensusan, N., Prates, A.P., Eds.; IEB: Brasília, Brazil, 2014; pp. 580–591. [Google Scholar]
- Souza-Filho, P.W.M.; Gianninia, T.C.; Jaffé, R.; Furtini Neto, A.E.; Gastauer, M.; Oliveiraa, G.; Mota, J.A.; Guimarães, J.T.F.; De Souza, E.B.; Imperatriz-Fonseca, V.L.; et al. Understanding sustainable development in mining based on science oriented approach: A study case in the carajás mineral province, amazon region, brazil. Resour. Policy 2018. in review. [Google Scholar]
- Roberts, J.T. Squatters and urban growth in amazonia. Geogr. Rev. 1992, 82, 441–457. [Google Scholar] [CrossRef]
Process Tree | Child Processes | Algorithm | Membership Functions with Their Intervals | |||||
---|---|---|---|---|---|---|---|---|
OLI Bands | TM Bands | Sentinel 2A | ||||||
1. Segmentation | Multiresolution segmentation | hsc = 50 wsp = 0.5 wcp = 0.5 | hsc = 50 wsp = 0.5 wcp = 0.5 | hsc = 10 wsp = 0.5 wcp = 0.5 | ||||
2. Classification | (2.1) Classify black-water bodies | Classification, filter unclassified | B5: 3.78–15.7 | B2: 4.2–6.9 | NDVI: −0.9–0.5 | |||
B6: 0.6–12.3 | B3: 4.6–7.4 | |||||||
B7: 0.5–10.4 | B4: 4.9–8.9 | |||||||
B5: 0.78–3.6 | ||||||||
(2.2) Classify white-water bodies | Classification, filter unclassified | B1: 4.8–10.6 | B2: 5.1–11.3 | NDVI: −0.9–0.5 | ||||
B4: 0.9–13.1 | B3: 5.6–12.6 | |||||||
B5: 4.1–22.2 | B4: 4.2–24.4 | |||||||
B5: 0.8–14.9 | ||||||||
(2.3) Classify bare soil | Classification, filter unclassified | B3: 1.8–4.1 | B3: 6.3–25.1 | |||||
B8: 1.5–2.9 | NDVI: 8.4–64.4 | |||||||
(2.4) Classify Pasture/agriculture | Classification, filter unclassified | B5: 22.2–45.3 | Bg *: 8.4–14.3 | B03: 5.4–11 | ||||
B8: 5.7–9.2 | B2: 4.6–10.4 | B04: 3.5–7 | ||||||
B4: 27.6–48.1 | not forest: | |||||||
B5: 11.7–32.9 | ||||||||
(2.5) Classify forest | Classification, filter unclassified | MD *: 0.9–1.5 | MD *: 24–39 | MD *: 0.1–0.4 | ||||
B04: 0–6 | ||||||||
3. Group | (3.1) Group black and white-water bodies | Merge region | ||||||
(3.2) Group soil, pasture, agriculture | Merge region |
LCLU Change Class | 1984–1994 | 1994–2004 | 2004–2013 | 2013–2017 | 1984–2017 | |||||
---|---|---|---|---|---|---|---|---|---|---|
Area (km2) | % | Area (km2) | % | Area (km2) | % | Area (km2) | % | Area (km2) | % | |
Forest—Mine | 26.33 | 0.07 | 24.89 | 0.06 | 36.44 | 0.09 | 22.94 | 0.06 | 111.38 | 0.27 |
Forest—Pasture | 7924.76 | 19.81 | 7956.45 | 20.02 | 3006.22 | 7.54 | 1632.03 | 3.97 | 17,397.93 | 42.23 |
Forest—Urban | 7.18 | 0.02 | 4.22 | 0.01 | 8.96 | 0.02 | 1.97 | 0.00 | 91.49 | 0.22 |
Pasture—Forest | 652.10 | 1.63 | 722.59 | 1.82 | 1387.83 | 3.48 | 1432.81 | 3.48 | 555.06 | 1.35 |
Pasture—Urban | 12.26 | 0.03 | 0.00 | 0.00 | 75.15 | 0.19 | 55.99 | 0.14 | 82.18 | 0.20 |
Savanna—Mine | 3.88 | 0.01 | 5.60 | 0.01 | 4.86 | 0.01 | 11.72 | 0.03 | 22.66 | 0.06 |
Unchanged Forest | 28,178.47 | 70.44 | 20,462.89 | 51.50 | 18,070.91 | 45.30 | 18,392.93 | 44.73 | 19,319.24 | 46.89 |
Unchanged Mining | 13.59 | 0.03 | 34.01 | 0.09 | 54.89 | 0.14 | 117.19 | 0.28 | 20.86 | 0.05 |
Unchanged Savanna | 102.26 | 0.26 | 99.32 | 0.25 | 94.24 | 0.24 | 86.04 | 0.21 | 82.44 | 0.20 |
Unchanged Pasture | 3073.03 | 7.68 | 10,398.94 | 26.17 | 17,102.48 | 42.87 | 19,227.57 | 46.76 | 3502.21 | 8.50 |
Unchanged Urban | 11.31 | 0.03 | 27.42 | 0.07 | 51.00 | 0.13 | 138.21 | 0.34 | 13.54 | 0.03 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Souza-Filho, P.W.M.; Nascimento, W.R.; Santos, D.C.; Weber, E.J.; Silva, R.O.; Siqueira, J.O. A GEOBIA Approach for Multitemporal Land-Cover and Land-Use Change Analysis in a Tropical Watershed in the Southeastern Amazon. Remote Sens. 2018, 10, 1683. https://doi.org/10.3390/rs10111683
Souza-Filho PWM, Nascimento WR, Santos DC, Weber EJ, Silva RO, Siqueira JO. A GEOBIA Approach for Multitemporal Land-Cover and Land-Use Change Analysis in a Tropical Watershed in the Southeastern Amazon. Remote Sensing. 2018; 10(11):1683. https://doi.org/10.3390/rs10111683
Chicago/Turabian StyleSouza-Filho, Pedro Walfir M., Wilson R. Nascimento, Diogo C. Santos, Eliseu J. Weber, Renato O. Silva, and José O. Siqueira. 2018. "A GEOBIA Approach for Multitemporal Land-Cover and Land-Use Change Analysis in a Tropical Watershed in the Southeastern Amazon" Remote Sensing 10, no. 11: 1683. https://doi.org/10.3390/rs10111683
APA StyleSouza-Filho, P. W. M., Nascimento, W. R., Santos, D. C., Weber, E. J., Silva, R. O., & Siqueira, J. O. (2018). A GEOBIA Approach for Multitemporal Land-Cover and Land-Use Change Analysis in a Tropical Watershed in the Southeastern Amazon. Remote Sensing, 10(11), 1683. https://doi.org/10.3390/rs10111683