An Estimation of Clayey-Oriented Rock Mass Material Properties, Sited in Koropi, Athens, Greece, through Feed-Forward Neural Networks
Abstract
:1. Introduction
2. Feed-Forward Neural Networks
3. Geological Strength Index and the Relation to the Material Variables of Strength and Stiffness
4. Numerical Application-Formulation of Dataset from In Situ Measurements and Construction of the Feed-Forward Neural Network-Discussion
4.1. Research Methodology
4.2. Results and Discussion—Advantages and Limitations of the Proposed Models
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hawkins, L.; Wootton, P.; Holmes, W. Coal seam structure delineation by downhole-crosshole seismic methods. Geoexploration 1987, 24, 409–419. [Google Scholar] [CrossRef]
- Bowles, J. Foundation Analysis and Design; McGraw Hill: New York, NY, USA, 1988; ISBN 13: 978-0070067769. [Google Scholar]
- Clayton, C.R.I. The Standard Penetration Test (SPT): Methods and Use: R143-Softcover; Construction Industry Research and Information Association: London, UK, 1995; ISBN 13: 9780860174196. [Google Scholar]
- Eslami, A.; Moshfeghi, S.; MolaAbasi, H.; Eslami, M. Piezocone and Cone Penetration Test (CPTu and CPT) Applications in Foundation Engineering; Butterworth-Heinemann: Oxford, UK, 2019; ISBN 13: 978-0081027660. [Google Scholar]
- Huynh, V.H.; Nguyen, T.; Nguyen, D.P.; Nguyen, T.S.; Huynh, T.M.D.; Nguyen, T.C. A novel direct SPT method to accurately estimate ultimate axial bearing capacity of bored PHC nodular piles with 81 case studies in Vietnam. Soils Found. 2022, 62, 101163. [Google Scholar] [CrossRef]
- Hwang, J.H.; Lu, C.C.; Wang, J.S. Characterized model uncertainties of CPT-based simplified procedures for assessing soil liquefaction and its application to Taiwan offshore wind farms. Appl. Ocean Res. 2023, 138, 103645. [Google Scholar] [CrossRef]
- Barton, N. The shear strength of rock and rock joints. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1976, 13, 255–279. [Google Scholar] [CrossRef]
- Hoek, E.; Brown, E.T. Underground Excavations in Rock; Institution of Mining and Metallurgy: London, UK, 1980. [Google Scholar]
- Hoek, E.; Marinos, P. GSI: A Geologically Friendly Tool for Rock Mass Strength Estimation; 2000. Available online: https://onepetro.org/ISRMIS/proceedings-abstract/IS00/All-IS00/50905 (accessed on 1 September 2023).
- Zhao, L.; Yu, C.; Li, L.; An, A.; Nie, Z.; Peng, A.; Zuo, S. Rock slope reliability analysis using Barton-Bandis failure criterion with modified pseudo-dynamic approach. Soil Dyn. Earthq. Eng. 2020, 139, 106310. [Google Scholar] [CrossRef]
- Zhong, J.; Yang, X. Two-dimensional face stability analysis in rock masses governed by the Hoek-Brown strength criterion with a new multi-horn mechanism. Int. J. Min. Sci. Technol. 2023, 33, 963–976. [Google Scholar] [CrossRef]
- Granata, F.; de Marinis, G. Machine learning methods for wastewater hydraulics. Flow Meas. Instrum. 2017, 57, 1–9. [Google Scholar] [CrossRef]
- Asteris, P.G.; PLevris, V. Anisotropic Masonry Failure Criterion Using Artificial Neural Networks. Neural Comput. Appl. 2017, 28, 2207–2229. [Google Scholar] [CrossRef]
- Budak, A.; Sarvari, P.A. Profit margin prediction in sustainable road freight transportation using machine learning. J. Clean. Prod. 2021, 314, 127990. [Google Scholar] [CrossRef]
- Nikolopoulos, S.; Kalogeris, I.; Papadopoulos, V. Machine learning accelerated transient analysis of stochastic nonlinear structures. Eng. Struct. 2022, 257, 114020. [Google Scholar] [CrossRef]
- Savvides, A.A.; Papadopoulos, L. A neural network model for the estimation of failure stresses and strains in cohesive soils. Geotechnics 2022, 2, 1084–1108. [Google Scholar] [CrossRef]
- Mohammadi, A.; Karimzadeh, S.; Amir, S.; Ozsarac, V.; Lourenço, P.B. The Potential of Region-Specific Machine-Learning-Based Ground Motion Models: Application to Turkey. Soil Dyn. Earthq. Eng. 2023, 172, 108008. [Google Scholar] [CrossRef]
- Azarafza, M.; Nanehkaran, Y.A.; Rajabion, L.; Akgün, H.; Rahnamarad, J.; Derakhshani, R.; Raoof, A. Application of the modified Q-slope classification system for sedimentary rock slope stability assessment in Iran. Eng. Geol. 2020, 264, 105349. [Google Scholar] [CrossRef]
- Brousset, J.; Pehovaz, H.; Quispe, G.; Raymundo, C.; Moguerza, J.M. Rock mass classification method applying neural networks to minimize geomechanical characterization in underground Peruvian mines. Energy Rep. 2023, 9, 376–386. [Google Scholar] [CrossRef]
- Millán, M.; Picardo, A.; Galindo, R. Application of artificial neural networks for predicting the bearing capacity of the tip of a pile embedded in a rock mass. Eng. Appl. Artif. Intell. 2023, 124, 106568. [Google Scholar] [CrossRef]
- Beiki, M.; Bashari, A.; Majdi, A. Genetic programming approach for estimating the deformation modulus of rock mass using sensitivity analysis by neural network. Int. J. Rock Mech. Min. Sci. 2010, 203, 1091–1103. [Google Scholar] [CrossRef]
- Alemdag, S.; Gurocak, Z.; Cevik, A.; Cabalar, A.; Gokceoglu, C. Modeling deformation modulus of a stratified sedimentary rock mass using neural network, fuzzy inference and genetic programming. Eng. Geol. 2016, 203, 70–82. [Google Scholar] [CrossRef]
- Dzimunya, N.; Fujii, Y.; Kawamura, Y. Integrating the effect of abutments in estimating the average vertical stress of elastic hard rock pillars by combining numerical modelling and artificial neural networks. Undergr. Space 2023, 13, 121–135. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J. A method for stochastic optimization. arXiv 2015, arXiv:1412.6980. [Google Scholar]
- Fletcher, R. Practical Methods of Optimization; Wiley and Sons: Hoboken, NJ, USA, 1987. [Google Scholar]
- Hoek, E.; Marinos, P.; Marinos, V. The geological strength index: Applicationsand limitations. Bull. Eng. Geol. Environ. 2005, 64, 55–65. [Google Scholar] [CrossRef]
- Hoek, E.; Marinos, P. Estimating thegeotechnical properties of heteroge-neous rock masses such as flysch. Bull. Eng. Geol. Environ. 2001, 60, 82–92. [Google Scholar]
- Hoek, E.; Carranza-Torres, C.; Corkum, B. Hoek-Brown failure criterion—2002 Edition. Proc. NARMS-TAC Conf. Tor. 2002, 1, 267–273. [Google Scholar]
- Rahn, P.H. Engineering Geology an Environmental Approach; Prentice Hall: Upper Saddle River, NJ, USA, 1996. [Google Scholar]
Rock Type | Class | Group | Texture | |||
---|---|---|---|---|---|---|
Coarse | Medium | Fine | Very Fine | |||
Sedimentary | Clastic | Conglomerates (21 ± 3) | Sandstones (17 ± 4) | Slitstones (7 ± 2) | Claystones (4 ± 2) | |
Breccias (19 ± 5) | Greywackes (18 ± 3) | Shales (6 ± 2) | ||||
Marls (7 ± 2) | ||||||
Non-Clastic | Carbonates | Crystalline Limestone (12 ± 3) | Sparitic Limestone (10 ± 2) | Micritic Limestones (9 ± 2) | Dolomites (9 ± 3) | |
Evaporites | Gypsum (8 ± 2) | Anhydrite (9 ± 2) | ||||
Organic | Chalk (7 ± 2) | |||||
Metamorphic | Non-Foliated | Marble (9 ± 3) | Hornfels (19 ± 4) Metasandstone (19 ± 3) | Quartzites (20 ± 3) | ||
Slightly Foliated | Migmatite (29 ± 3) | Amphibolites (26 ± 6) | Gneiss (28 ± 5) | |||
Foliated | Schists (12 ± 3) | Phyllites (7 ± 3) | Slates (7 ± 4) | |||
Igneous | Plutonic | Light-Felsic | Granite (32 ± 3) Granodiorite (29 ± 3) | Diorite (25 ± 5) Granodiorite (29 ± 3) | ||
Dark-Mafic | Gabbro (27 ± 3) Norite (20 ± 5) | Dolerite (16 ± 5) | ||||
Hypabbyssal | Porphyries (20 ± 5) | Diabase (15 ± 5) | Peridotite (25 ± 5) | |||
Volcanic | Lava | Rhyolite (25 ± 5) Andesite (25 ± 5) | Dacite (25 ± 3) Basalt (25 ± 5) | Obsidian (19 ± 3) | ||
Pyroclastic | Agglomerate (19 ± 3) | Breccia (19 ± 5) | Tuff (13 ± 5) |
Model Formulated (Parameter Estimated) | Error |
---|---|
NN1 (E) | 0.08 |
NN2 (c) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Savvides, A.-A.; Antoniou, A.A.; Papadopoulos, L.; Monia, A.; Kofina, K. An Estimation of Clayey-Oriented Rock Mass Material Properties, Sited in Koropi, Athens, Greece, through Feed-Forward Neural Networks. Geotechnics 2023, 3, 975-988. https://doi.org/10.3390/geotechnics3040052
Savvides A-A, Antoniou AA, Papadopoulos L, Monia A, Kofina K. An Estimation of Clayey-Oriented Rock Mass Material Properties, Sited in Koropi, Athens, Greece, through Feed-Forward Neural Networks. Geotechnics. 2023; 3(4):975-988. https://doi.org/10.3390/geotechnics3040052
Chicago/Turabian StyleSavvides, Ambrosios-Antonios, Andreas A. Antoniou, Leonidas Papadopoulos, Anastasia Monia, and Kalliopi Kofina. 2023. "An Estimation of Clayey-Oriented Rock Mass Material Properties, Sited in Koropi, Athens, Greece, through Feed-Forward Neural Networks" Geotechnics 3, no. 4: 975-988. https://doi.org/10.3390/geotechnics3040052
APA StyleSavvides, A. -A., Antoniou, A. A., Papadopoulos, L., Monia, A., & Kofina, K. (2023). An Estimation of Clayey-Oriented Rock Mass Material Properties, Sited in Koropi, Athens, Greece, through Feed-Forward Neural Networks. Geotechnics, 3(4), 975-988. https://doi.org/10.3390/geotechnics3040052