The Role of Bioactive Glasses in Dental Erosion―A Narrative Review
Abstract
1. Introduction
2. Bioactive Materials and Bioactivity
3. Bioactive Glasses
3.1. Composition of Bioactive Glasses
3.2. Mechanism of HCA Formation
- Initially, cation exchange occurs, involving glass network modifiers (Na+ and Ca2+) and H2O from body fluid.Si–O–Na+ + H+ + OH− → Si–OH+ + Na+(aq) + OH−
- This results in a silica-rich layer with the formation of silanol groups and a silica gel layer measuring 1–2 µm in thickness. This process raises the solution’s pH due to an increased number of OH− ions, dependent on the glass’ composition.Si–O–Si + H2O → Si–OH + OH–Si
- Then condensation and re-polymerization of Si–O bonds occur to form a silica-rich layer on the surface.
- Subsequently, amorphous calcium hydroxyl phosphate precipitates on the silica-rich layer through calcium ion precipitation (CaO–P2O5),
- Eventually, the incorporation of OH−/PO43− anions from the supersaturated solution takes place and this material then crystallizes to form calcium-deficient HCA.
3.3. Preparation of Bioactive Glasses
4. Discussion
5. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lussi, A.; Hellwig, E.; Cans, C.; Jaeggi, T. Dental Erosion. Oper. Dent. 2009, 34, 251–262. [Google Scholar] [CrossRef]
- Yip, H.K.; Smales, J.; Kaidonis, J.A. Management of tooth tissue loss from erosion. Quintessence Int. 2002, 33, 516–520. [Google Scholar] [PubMed]
- Carvalho, T.S.; Colon, P.; Ganss, C.; Huysmans, M.C.; Lussi, A.; Schlueter, N. Consensus report of the European Federation of Conservative Dentistry: Erosive tooth wear—Diagnosis and management. Clin. Oral Investig. 2015, 19, 1557–1561. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zou, Y.; Ding, G. Dietary factors associated with dental erosion: A meta-analysis. PLoS ONE 2012, 7, e42626. [Google Scholar] [CrossRef] [PubMed]
- Lussi, A. Dental erosion-Novel remineralizing agents in prevention or repair. Adv. Dent. Res. 2009, 21, 13–16. [Google Scholar] [CrossRef] [PubMed]
- Dionysopoulos, D.; Tolidis, K.; Sfeikos, T. Effect of air-abrasion pre-treatment with bioactive glass 45S5 on enamel surface loss after erosion/abrasion challenge. Dent. Mater. 2019, 35, e193–e203. [Google Scholar] [CrossRef] [PubMed]
- Tantbirojn, D.; Huang, A.; Ericson, M.D.; Poolthong, S. Change in surface hardness of enamel by a cola drink and a CPP-ACP paste. J. Dent. 2008, 36, 74–79. [Google Scholar] [CrossRef] [PubMed]
- Bartlett, D.W.; Lussi, A.; West, N.X.; Bouchard, P.; Sanz, M.; Bourgeois, D. Prevalence of tooth wear on buccal and lingual surfaces and possible risk factors in young European adults. J. Dent. 2013, 41, 1007–1013. [Google Scholar] [CrossRef]
- Lussi, A. Erosive tooth wear: A multifactorial condition of growing concern and increasing knowledge. In Dental Erosion: From Diagnosis to Therapy; Whitford, G.M., Ed.; Karger Publishers: Basel, Switzerland, 2006; Volume 20, pp. 1–8. [Google Scholar] [CrossRef]
- Lussi, A.; Jaeggi, T.; Zero, D. The role of diet in the aetiology of dental erosion. Caries Res. 2004, 38, 34–44. [Google Scholar] [CrossRef]
- Hunt, J.N. The composition of gastric juice. J. Physiol. 1951, 113, 419–424. [Google Scholar] [CrossRef] [PubMed]
- Bartlett, D.W.; Evans, D.F.; Smith, B.G. The relationship between gastro-oesophageal reflux disease and dental erosion. J. Oral Rehabil. 1996, 23, 289–297. [Google Scholar] [CrossRef] [PubMed]
- Dent, J.; El-Serag, H.B.; Wallander, M.A.; Johansson, S. Epidemiology of gastro-esophageal reflux disease: A systematic review. Gut 2005, 54, 710–717. [Google Scholar] [CrossRef] [PubMed]
- Buzalaf, M.A.; Magalhães, A.C.; Rios, D. Prevention of erosive tooth wear: Targeting nutritional and patient-related risks factors. Br. Dent. J. 2018, 224, 371–378. [Google Scholar] [CrossRef] [PubMed]
- Bakry, A.S.; Marghalani, H.Y.; Amin, O.A.; Tagami, J. The effect of a bioglass paste on enamel exposed to erosive challenge. J. Dent. 2014, 42, 1458–1463. [Google Scholar] [CrossRef] [PubMed]
- Karaoulani, K.; Dionysopoulos, D.; Tolidis, K.; Kouros, P.; Konstantinidis, A.; Hill, R. Effect of air-abrasion pretreatment with three bioactive materials on enamel susceptibility to erosion by artificial gastric juice. Dent. Mater. 2022, 38, 1218–1231. [Google Scholar] [CrossRef] [PubMed]
- Taha, A.A.; Fleming, P.S.; Hill, R.G.; Patel, M.P. Enamel remineralization with novel bioactive glass air abrasion. J. Dent. Res. 2018, 97, 1438–1444. [Google Scholar] [CrossRef] [PubMed]
- Zawaideh, F.I.; Owais, A.I.; Mushtaha, S. Effect of CPP-ACP or a potassium nitrate sodium fluoride dentifrice on enamel erosion prevention. J. Clin. Pediatr. Dent. 2017, 41, 135–140. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.P.; Huang, S.B.; Liu, Y.; Li, J.Y.; Yu, H.Y. The CPP-ACP relieved enamel erosion from a carbonated soft beverage: An in vitro AFM and XRD study. Arch. Oral Biol. 2014, 59, 277–282. [Google Scholar] [CrossRef]
- Srinivasan, N.; Kavitha, M.; Loganathan, S.C. Comparison of the remineralization potential of CPP-ACP and CPP-ACP with 900 ppm fluoride on eroded human enamel: An in situ study. Arch. Oral Biol. 2010, 55, 541–544. [Google Scholar] [CrossRef]
- Min, J.H.; Kwon, H.K.; Kim, B.I. Prevention of dental erosion of a sports drink by nano-sized hydroxyapatite in situ study. Int. J. Paediatr. Dent. 2015, 25, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Rezvani, M.B.; Rouhollahi, M.R.; Andalib, F.; Hamze, F. Nano-hydroxyapatite could compensate the adverse effect of soft carbonated drinks on enamel. J. Contemp. Dent. Pract. 2016, 17, 635–638. [Google Scholar] [CrossRef] [PubMed]
- Dionysopoulos, D.; Tolidis, K.; Sfeikos, T. Effect of CPP-ACPF and nano-hydroxyapatite preventive treatments on the susceptibility of enamel to erosive challenge. Oral Health Prev. Dent. 2019, 17, 357–364. [Google Scholar] [PubMed]
- Shellis, R.P.; Barbour, M.E.; Jesani, A.; Lussi, A. Effects of buffering properties and undissociated acid concentration on dissolution of dental enamel in relation to pH and acid type. Caries Res. 2013, 47, 601–611. [Google Scholar] [CrossRef] [PubMed]
- Ganss, C.; von Hinckeldey, J.; Tolle, A.; Schulze, K.; Klimek, J.; Schlueter, N. Efficacy of the stannous ion and a biopolymer in toothpastes on enamel erosion/abrasion. J. Dent. 2012, 40, 1036–1043. [Google Scholar] [CrossRef] [PubMed]
- Jones, J.R.; Sepulveda, P. Bioactive materials for tissue engineering scaffolds. In Future Strategies for Tissue and Organ Replacement; Polak, J.M., Hench, L.L., Kemp, P., Eds.; Imperial College Press: London, UK, 2002; p. 3. [Google Scholar]
- Thompson, I.D.; Hench, L.L. Mechanical properties of bioactive glasses, glass–ceramics and composites. Proc. Inst. Mech. Eng. H 1998, 212, 127–136. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Thompson, I.; Boccaccini, A. 45S5 Bioglass®-derived glass–ceramic scaffolds for bone tissue engineering. Biomaterials 2006, 27, 2414–2425. [Google Scholar] [CrossRef] [PubMed]
- Dionysopoulos, D.; Gerasimidou, O.; Beltes, C. Dentin hypersensitivity: Etiology, diagnosis and contemporary therapeutic approaches—A review in literature. Appl. Sci. 2023, 13, 11632. [Google Scholar] [CrossRef]
- Williams, D.F.; Black, J.; Doherty, P.J. Biomaterial–Tissue Interfaces. In Second Consensus Conference on Definitions in Biomaterials; Doherty, P.J., Williams, R.L., Williams, D.F., Lee, A.J.C., Eds.; Elsevier: Amsterdam, The Netherlands, 1992; pp. 525–533. [Google Scholar]
- Cao, W.; Hench, L.L. Bioactive Materials. Ceram. Int. 1998, 22, 493–507. [Google Scholar] [CrossRef]
- Zhang, X.D.; Williams, D.F. Definitions in Biomaterials for the Twenty-First Century; Elsevier: Oxford, UK, 2019. [Google Scholar]
- Williams, D.F. Biocompatibility pathways and mechanisms for bioactive materials: The bioactivity zone. Bioact. Mater. 2021, 10, 306–322. [Google Scholar] [CrossRef]
- Ong, J.L.; Chan, D.C.N. A review of hydroxyapatite and its use as a coating in dental implants. Crit. Rev. Biomed. Eng. 2017, 45, 411–451. [Google Scholar] [CrossRef] [PubMed]
- Baino, F.; Hamzehlou, S.; Kargozar, S. Bioactive Glasses: Where Are We and Where Are We Going? J. Funct. Biomater. 2018, 9, 25. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Kolzow, J.; Chen, R.R.; Du, J. Effect of solution condition on hydroxyapatite formation in evaluating bioactivity of B(2)O(3) containing 45S5 bioactive glasses. Bioact. Mater. 2019, 4, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Jones, J.; Clare, A. (Eds.) Bio-Glasses: An Introduction; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Hench, L.L.; Splinter, R.J.; Allen, W.C.; Greenlee, T.K. Bonding mechanisms at the interface of ceramic prosthetic materials. J. Biomed. Mater. Res. Symp. 1971, 5, 117–141. [Google Scholar] [CrossRef]
- Hench, L.L. The story of bioglass. J. Mater. Sci. Mater. Med. 2006, 17, 967–978. [Google Scholar] [CrossRef]
- El-Meliegy, E.; Noort, R. Glasses and Glass Ceramics for Medical Applications; Springer: New York, NY, USA, 2012. [Google Scholar]
- Ferreira, M.M.; Brito, A.F.; Brazete, D.; Pereira, I.C.; Carrilho, E.; Abrantes, A.M.; Pires, A.S.; Aguiar, M.J.; Carvalho, L.; Botelho, M.F.; et al. Doping -TCP as a strategy for enhancing the regenerative potential of composite -TCP-alkali-free bioactive glass bone grafts. Experimental study in rats. Materials 2018, 12, 4. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, O.; Alhalawani, A.; Arshad, S.; Towler, M.R. Rapidly-dissolving silver-containing bioactive glasses for cariostatic applications. J. Funct. Biomater. 2018, 9, 28. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Chen, X.; Brauer, D.S.; Wilson, R.M.; Law, R.V.; Hill, R.G.; Karpukhina, N. Sodium is not essential for high bioactivity of glasses. Int. J. Appl. Glass Sci. 2017, 8, 428–437. [Google Scholar] [CrossRef] [PubMed]
- Hill, R.G.; Brauer, D.S. Predicting the bioactivity of glasses using the network connectivity or split network models. J. Non-Cryst. Solids 2011, 357, 3884–3887. [Google Scholar] [CrossRef]
- Jones, J.; Gentleman, E.; Polak, J. Bioactive glass scaffolds for bone regeneration. Elements 2007, 3, 393–399. [Google Scholar] [CrossRef]
- Thuy, T.T.; Nakagaki, H.; Kato, K.; Hung, P.A.; Inukai, J.; Tsuboi, S.; Nakagaki, H.; Hirose, M.N.; Igarashi, S.; Robinson, C. Effect of strontium in combination with fluoride on enamel remineralization in vitro. Arch. Oral Biol. 2008, 53, 1017–1022. [Google Scholar] [CrossRef] [PubMed]
- Groh, D.; Döhler, F.; Brauer, D.S. Bioactive glasses with improved processing. Part 1. Thermal properties, ion release and apatite formation. Acta Biomater. 2014, 10, 4465–4473. [Google Scholar] [CrossRef] [PubMed]
- Hoppe, A.; Mouriño, V.; Boccaccini, A.R. Therapeutic inorganic ions in bioactive glasses to enhance bone formation and beyond. Biomater. Sci. 2013, 1, 254–256. [Google Scholar]
- Hench, L.L. Bioceramics. J. Am. Ceram. Soc. 1998, 81, 1705–1728. [Google Scholar] [CrossRef]
- Kaur, G.; Pandey, O.P.; Singh, K.; Homa, D.; Scott, B.; Pickrell, G. A review of bioactive glasses: Their structure, properties, fabrication, and apatite formation. J. Biomed. Mater. Res. Part A 2014, 102, 254–274. [Google Scholar] [CrossRef] [PubMed]
- Ferraris, S.; Yamaguchi, S.; Barbani, N.; Cazzola, M.; Cristallini, C.; Miola, M.; Vernè, E.; Spriano, S. Bioactive materials: In vitro investigation of different mechanisms of hydroxyapatite precipitation. Acta Biomater. 2020, 102, 468–480. [Google Scholar] [CrossRef]
- Shelby, J.E. Introduction to Glass Science and Technology; Royal Society of Chemistry: Cambridge, UK, 2005. [Google Scholar]
- Chen, Q.Z.; Xu, J.L.; Yu, L.G.; Fang, X.Y.; Khor, K.A. Spark plasma sintering of sol–gel derived 45S5 Bioglass®-ceramics: Mechanical properties and biocompatibility evaluation. Mater. Sci. Eng. C 2012, 32, 494–502. [Google Scholar] [CrossRef]
- Filho, O.P.; La Torre, G.P.; Hench, L.L. Effect of crystallization on apatite-layer formation of bioactive glass 45S5. J. Biomed. Mater. Res. 1996, 30, 509–514. [Google Scholar] [CrossRef]
- Skallevold, H.E.; Rokaya, D.; Khurshid, Z.; Zafar, M.S. Bioactive glass applications in Dentistry. Int. J. Mol. Sci. 2019, 20, 5960. [Google Scholar] [CrossRef]
- Fernandes, H.R.; Gaddam, A.; Rebelo, A.; Brazete, D.; Stan, G.E.; Ferreira, J.M.F. Bioactive glasses and glass-ceramics for healthcare applications in bone regeneration and tissue engineering. Materials 2018, 11, 2530. [Google Scholar] [CrossRef]
- Wu, C.; Fan, W.; Gelinsky, M.; Xiao, Y.; Simon, P.; Schulze, R.; Doert, T.; Luo, Y.; Cuniberti, G. Bioactive SrO-SiO2 glass with well-ordered mesopores: Characterization, physiochemistry and biological properties. Acta Biomater. 2011, 7, 1797–1806. [Google Scholar] [CrossRef] [PubMed]
- Dionysopoulos, D.; Tolidis, K.; Tsitrou, E.; Kouros, P.; Naka, O. Quantitative and qualitative evaluation of enamel erosion following air abrasion with bioactive glass 45S5. Oral Health Prev. Dent. 2020, 18, 529–536. [Google Scholar]
- Salma, R.S.; Eldardiry, N.K.; Elmaddah, H.A.; Ismail, H.A.; Salem, E.M. Comparative analysis of the effect of Bioactive Glass 45S5 on enamel erosion progression in human dentitions (in vitro study). Clin. Oral Investig. 2023, 27, 1707–1721. [Google Scholar] [CrossRef] [PubMed]
- Johnson King, O.; Milly, H.; Boyes, V.; Austin, R.; Festy, F.; Banerjee, A. The effect of air-abrasion on the susceptibility of sound enamel to acid challenge. J. Dent. 2016, 46, 36–41. [Google Scholar] [CrossRef] [PubMed]
- Viana, Í.E.L.; Borges, R.; Marchi, J.; Feitosa, S.; Marques, M.M.; Scaramucci, T. A 58S bioactive glass for dentin hypersensitivity and erosive tooth wear: An in vitro study. J. Dent. 2022, 127, 104343. [Google Scholar] [CrossRef] [PubMed]
- Abbassy, M.A.; Bakry, A.S.; Hill, R. The efficiency of fluoride bioactive glasses in protecting enamel surrounding orthodontic bracket. BioMed Res. Int. 2021, 2021, 5544196. [Google Scholar] [CrossRef] [PubMed]
- Suryani, H.; Gehlot, P.M.; Manjunath, M.K. Evaluation of the remineralisation potential of bioactive glass, nanohydroxyapatite and casein phosphopeptide-amorphous calcium phosphate fluoride-based toothpastes on enamel erosion lesion—An ex vivo study. Indian J. Dent. Res. 2020, 31, 670–677. [Google Scholar]
- Araujo, L.C.; Amorim, A.A.; Vivanco, R.G.; Arruda, C.N.F.; Bikker, F.J.; Pires-de-Souza, F.C.P. The effect of Phytosphingosine and bioactive glass-ceramics in preventing dental enamel erosion. Braz. Dent. J. 2023, 34, 88–96. [Google Scholar] [CrossRef] [PubMed]
- Nyland, B.P.; Pereira, C.P.; Soares, P.; da Luz Weiss, D.S.; Mikos, W.L.; Brancher, J.A.; Vieira, S.; Freire, A. Enamel erosion control by strontium-containing TiO2- and/or MgO-doped phosphate bioactive glass. Clin. Oral Investig. 2022, 26, 1915–1925. [Google Scholar] [CrossRef]
- Fan, Y.; Sun, Z.; Moradian-Oldak, J. Effect of fluoride on the morphology of calcium phosphate crystals grown on acid- etched human enamel. Caries Res. 2009, 43, 132–136. [Google Scholar] [CrossRef]
- Iijima, M.; Moradian-Oldak, J. Control of apatite crystal growth in a fluoride containing amelogenin-rich matrix. Biomaterials 2005, 26, 1595–1603. [Google Scholar] [CrossRef] [PubMed]
- Iijima, M. Formation of octacalcium phosphate in vitro. In: Chow LC, Eanes ED, editors. Octacalcium Phosphate. Monogr. Oral Sci. 2001, 18, 17–49. [Google Scholar] [PubMed]
- Ganss, C.; Lussi, A.; Scharmann, I.; Weigelt, T.; Hardt, M.; Klimek, J.; Schlueter, N. Comparison of calcium analysis, longitudinal microradiography and profilometry for the quantitative assessment of erosion in dentine. Caries Res. 2009, 43, 422–429. [Google Scholar] [CrossRef] [PubMed]
- Bakry, A.S.; Takahashi, H.; Otsuki, M.; Tagami, J. Evaluation of new treatment for incipient enamel demineralization using 45S5 bioglass. Dent. Mater. 2014, 30, 314–320. [Google Scholar] [CrossRef]
- Beletskii, B.I.; Sventskaya, N.V. Silicon in living organisms and new-generation biocomposite materials (review). Glass Ceram. 2009, 66, 104–108. [Google Scholar] [CrossRef]
45S5 | S53P4 | 58S | 70S30C | 13-93 |
---|---|---|---|---|
45 wt% SiO2 | 53 wt% SiO2 | 58 wt% SiO2 | 70 wt% SiO2 | 53 wt% SiO2 |
24.5 wt% CaO | 20 wt% CaO | 24.5 wt% CaO | 30 wt% CaO | 20 wt% CaO |
24.5 wt% Na2O | 23 wt% Na2O | 24.5 wt% Na2O | - | 6 wt% Na2O |
6 wt% P2O5 | 4 wt% P2O5 | 6 wt% P2O5 | - | 4 wt% P2O5 |
- | - | - | - | 12 wt% K2O |
- | - | - | - | 5 wt% MgO |
Authors and Year of Publication | Form of BAG | Type of BAG | Type of Tooth Tissues | Erosive Challenge | Methods | Effectiveness |
---|---|---|---|---|---|---|
Araujo et al., 2023 [64] | Slurry | Biosilicate | Bovine enamel | Erosive cycling (soft drink) | Rugosimeter, hardness tester | Yes |
Salma et al., 2023 [59] | Air-abrasion powder | 45S5 | Human enamel primary and permanent | Erosive cycling (citric acid) | Lining stylus profilometer, SEM-EDS | Yes |
Viana et al., 2022 [61] | Paste | 58S | Human dentin | Erosion-abrasion cycling (citric acid) | Optical Profilometer | No |
Karaoulani et al., 2022 [16] | Air-abrasion powder | 45S5, BioMinF | Human enamel | Erosive cycling (hydrochloric acid) | Confocal microscope, SEM-EDS | Yes |
Nyland et al., 2022 [65] | Slurry | 45S5 | Human enamel | Erosive cycling (citric acid) | Optical profilometer, hardness tester, SEM | Yes |
Abbassy et al., 2021 [62] | Paste | Four fluoride- containing BAGs | Human enamel | Erosive cycling (citric acid) | FTIR/ATR, SEM | Yes |
Suryani et al., 2020 [63] | Paste | 45S5 | Human enamel | Erosive cycling (citric acid) | Hardness tester, SEM | Yes |
Dionysopoulos et al., 2020 [58] | Air-abrasion powder | 45S5 | Bovine enamel | Erosion-abrasion cycling (soft drink) | Optical profilometer, hardness tester, SEM-EDS | Yes |
Dionysopoulos et al., 2019 [6] | Air-abrasion powder | 45S5 | Bovine enamel | Erosive cycling (soft drink) | Optical profilometry hardness tester, SEM-EDS | Yes |
Bakry et al., 2014 [15] | Paste | 45S5 | Human enamel | Erosive cycling (soft drink) | Hardness tester, SEM-EDS | Yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dionysopoulos, D. The Role of Bioactive Glasses in Dental Erosion―A Narrative Review. Compounds 2024, 4, 442-452. https://doi.org/10.3390/compounds4030027
Dionysopoulos D. The Role of Bioactive Glasses in Dental Erosion―A Narrative Review. Compounds. 2024; 4(3):442-452. https://doi.org/10.3390/compounds4030027
Chicago/Turabian StyleDionysopoulos, Dimitrios. 2024. "The Role of Bioactive Glasses in Dental Erosion―A Narrative Review" Compounds 4, no. 3: 442-452. https://doi.org/10.3390/compounds4030027
APA StyleDionysopoulos, D. (2024). The Role of Bioactive Glasses in Dental Erosion―A Narrative Review. Compounds, 4(3), 442-452. https://doi.org/10.3390/compounds4030027