The Role of Bioactive Glasses in Dental Erosion―A Narrative Review
Abstract
:1. Introduction
2. Bioactive Materials and Bioactivity
3. Bioactive Glasses
3.1. Composition of Bioactive Glasses
3.2. Mechanism of HCA Formation
- Initially, cation exchange occurs, involving glass network modifiers (Na+ and Ca2+) and H2O from body fluid.Si–O–Na+ + H+ + OH− → Si–OH+ + Na+(aq) + OH−
- This results in a silica-rich layer with the formation of silanol groups and a silica gel layer measuring 1–2 µm in thickness. This process raises the solution’s pH due to an increased number of OH− ions, dependent on the glass’ composition.Si–O–Si + H2O → Si–OH + OH–Si
- Then condensation and re-polymerization of Si–O bonds occur to form a silica-rich layer on the surface.
- Subsequently, amorphous calcium hydroxyl phosphate precipitates on the silica-rich layer through calcium ion precipitation (CaO–P2O5),
- Eventually, the incorporation of OH−/PO43− anions from the supersaturated solution takes place and this material then crystallizes to form calcium-deficient HCA.
3.3. Preparation of Bioactive Glasses
4. Discussion
5. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lussi, A.; Hellwig, E.; Cans, C.; Jaeggi, T. Dental Erosion. Oper. Dent. 2009, 34, 251–262. [Google Scholar] [CrossRef]
- Yip, H.K.; Smales, J.; Kaidonis, J.A. Management of tooth tissue loss from erosion. Quintessence Int. 2002, 33, 516–520. [Google Scholar] [PubMed]
- Carvalho, T.S.; Colon, P.; Ganss, C.; Huysmans, M.C.; Lussi, A.; Schlueter, N. Consensus report of the European Federation of Conservative Dentistry: Erosive tooth wear—Diagnosis and management. Clin. Oral Investig. 2015, 19, 1557–1561. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zou, Y.; Ding, G. Dietary factors associated with dental erosion: A meta-analysis. PLoS ONE 2012, 7, e42626. [Google Scholar] [CrossRef] [PubMed]
- Lussi, A. Dental erosion-Novel remineralizing agents in prevention or repair. Adv. Dent. Res. 2009, 21, 13–16. [Google Scholar] [CrossRef] [PubMed]
- Dionysopoulos, D.; Tolidis, K.; Sfeikos, T. Effect of air-abrasion pre-treatment with bioactive glass 45S5 on enamel surface loss after erosion/abrasion challenge. Dent. Mater. 2019, 35, e193–e203. [Google Scholar] [CrossRef] [PubMed]
- Tantbirojn, D.; Huang, A.; Ericson, M.D.; Poolthong, S. Change in surface hardness of enamel by a cola drink and a CPP-ACP paste. J. Dent. 2008, 36, 74–79. [Google Scholar] [CrossRef] [PubMed]
- Bartlett, D.W.; Lussi, A.; West, N.X.; Bouchard, P.; Sanz, M.; Bourgeois, D. Prevalence of tooth wear on buccal and lingual surfaces and possible risk factors in young European adults. J. Dent. 2013, 41, 1007–1013. [Google Scholar] [CrossRef]
- Lussi, A. Erosive tooth wear: A multifactorial condition of growing concern and increasing knowledge. In Dental Erosion: From Diagnosis to Therapy; Whitford, G.M., Ed.; Karger Publishers: Basel, Switzerland, 2006; Volume 20, pp. 1–8. [Google Scholar] [CrossRef]
- Lussi, A.; Jaeggi, T.; Zero, D. The role of diet in the aetiology of dental erosion. Caries Res. 2004, 38, 34–44. [Google Scholar] [CrossRef]
- Hunt, J.N. The composition of gastric juice. J. Physiol. 1951, 113, 419–424. [Google Scholar] [CrossRef] [PubMed]
- Bartlett, D.W.; Evans, D.F.; Smith, B.G. The relationship between gastro-oesophageal reflux disease and dental erosion. J. Oral Rehabil. 1996, 23, 289–297. [Google Scholar] [CrossRef] [PubMed]
- Dent, J.; El-Serag, H.B.; Wallander, M.A.; Johansson, S. Epidemiology of gastro-esophageal reflux disease: A systematic review. Gut 2005, 54, 710–717. [Google Scholar] [CrossRef] [PubMed]
- Buzalaf, M.A.; Magalhães, A.C.; Rios, D. Prevention of erosive tooth wear: Targeting nutritional and patient-related risks factors. Br. Dent. J. 2018, 224, 371–378. [Google Scholar] [CrossRef] [PubMed]
- Bakry, A.S.; Marghalani, H.Y.; Amin, O.A.; Tagami, J. The effect of a bioglass paste on enamel exposed to erosive challenge. J. Dent. 2014, 42, 1458–1463. [Google Scholar] [CrossRef] [PubMed]
- Karaoulani, K.; Dionysopoulos, D.; Tolidis, K.; Kouros, P.; Konstantinidis, A.; Hill, R. Effect of air-abrasion pretreatment with three bioactive materials on enamel susceptibility to erosion by artificial gastric juice. Dent. Mater. 2022, 38, 1218–1231. [Google Scholar] [CrossRef] [PubMed]
- Taha, A.A.; Fleming, P.S.; Hill, R.G.; Patel, M.P. Enamel remineralization with novel bioactive glass air abrasion. J. Dent. Res. 2018, 97, 1438–1444. [Google Scholar] [CrossRef] [PubMed]
- Zawaideh, F.I.; Owais, A.I.; Mushtaha, S. Effect of CPP-ACP or a potassium nitrate sodium fluoride dentifrice on enamel erosion prevention. J. Clin. Pediatr. Dent. 2017, 41, 135–140. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.P.; Huang, S.B.; Liu, Y.; Li, J.Y.; Yu, H.Y. The CPP-ACP relieved enamel erosion from a carbonated soft beverage: An in vitro AFM and XRD study. Arch. Oral Biol. 2014, 59, 277–282. [Google Scholar] [CrossRef]
- Srinivasan, N.; Kavitha, M.; Loganathan, S.C. Comparison of the remineralization potential of CPP-ACP and CPP-ACP with 900 ppm fluoride on eroded human enamel: An in situ study. Arch. Oral Biol. 2010, 55, 541–544. [Google Scholar] [CrossRef]
- Min, J.H.; Kwon, H.K.; Kim, B.I. Prevention of dental erosion of a sports drink by nano-sized hydroxyapatite in situ study. Int. J. Paediatr. Dent. 2015, 25, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Rezvani, M.B.; Rouhollahi, M.R.; Andalib, F.; Hamze, F. Nano-hydroxyapatite could compensate the adverse effect of soft carbonated drinks on enamel. J. Contemp. Dent. Pract. 2016, 17, 635–638. [Google Scholar] [CrossRef] [PubMed]
- Dionysopoulos, D.; Tolidis, K.; Sfeikos, T. Effect of CPP-ACPF and nano-hydroxyapatite preventive treatments on the susceptibility of enamel to erosive challenge. Oral Health Prev. Dent. 2019, 17, 357–364. [Google Scholar] [PubMed]
- Shellis, R.P.; Barbour, M.E.; Jesani, A.; Lussi, A. Effects of buffering properties and undissociated acid concentration on dissolution of dental enamel in relation to pH and acid type. Caries Res. 2013, 47, 601–611. [Google Scholar] [CrossRef] [PubMed]
- Ganss, C.; von Hinckeldey, J.; Tolle, A.; Schulze, K.; Klimek, J.; Schlueter, N. Efficacy of the stannous ion and a biopolymer in toothpastes on enamel erosion/abrasion. J. Dent. 2012, 40, 1036–1043. [Google Scholar] [CrossRef] [PubMed]
- Jones, J.R.; Sepulveda, P. Bioactive materials for tissue engineering scaffolds. In Future Strategies for Tissue and Organ Replacement; Polak, J.M., Hench, L.L., Kemp, P., Eds.; Imperial College Press: London, UK, 2002; p. 3. [Google Scholar]
- Thompson, I.D.; Hench, L.L. Mechanical properties of bioactive glasses, glass–ceramics and composites. Proc. Inst. Mech. Eng. H 1998, 212, 127–136. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Thompson, I.; Boccaccini, A. 45S5 Bioglass®-derived glass–ceramic scaffolds for bone tissue engineering. Biomaterials 2006, 27, 2414–2425. [Google Scholar] [CrossRef] [PubMed]
- Dionysopoulos, D.; Gerasimidou, O.; Beltes, C. Dentin hypersensitivity: Etiology, diagnosis and contemporary therapeutic approaches—A review in literature. Appl. Sci. 2023, 13, 11632. [Google Scholar] [CrossRef]
- Williams, D.F.; Black, J.; Doherty, P.J. Biomaterial–Tissue Interfaces. In Second Consensus Conference on Definitions in Biomaterials; Doherty, P.J., Williams, R.L., Williams, D.F., Lee, A.J.C., Eds.; Elsevier: Amsterdam, The Netherlands, 1992; pp. 525–533. [Google Scholar]
- Cao, W.; Hench, L.L. Bioactive Materials. Ceram. Int. 1998, 22, 493–507. [Google Scholar] [CrossRef]
- Zhang, X.D.; Williams, D.F. Definitions in Biomaterials for the Twenty-First Century; Elsevier: Oxford, UK, 2019. [Google Scholar]
- Williams, D.F. Biocompatibility pathways and mechanisms for bioactive materials: The bioactivity zone. Bioact. Mater. 2021, 10, 306–322. [Google Scholar] [CrossRef]
- Ong, J.L.; Chan, D.C.N. A review of hydroxyapatite and its use as a coating in dental implants. Crit. Rev. Biomed. Eng. 2017, 45, 411–451. [Google Scholar] [CrossRef] [PubMed]
- Baino, F.; Hamzehlou, S.; Kargozar, S. Bioactive Glasses: Where Are We and Where Are We Going? J. Funct. Biomater. 2018, 9, 25. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Kolzow, J.; Chen, R.R.; Du, J. Effect of solution condition on hydroxyapatite formation in evaluating bioactivity of B(2)O(3) containing 45S5 bioactive glasses. Bioact. Mater. 2019, 4, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Jones, J.; Clare, A. (Eds.) Bio-Glasses: An Introduction; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Hench, L.L.; Splinter, R.J.; Allen, W.C.; Greenlee, T.K. Bonding mechanisms at the interface of ceramic prosthetic materials. J. Biomed. Mater. Res. Symp. 1971, 5, 117–141. [Google Scholar] [CrossRef]
- Hench, L.L. The story of bioglass. J. Mater. Sci. Mater. Med. 2006, 17, 967–978. [Google Scholar] [CrossRef]
- El-Meliegy, E.; Noort, R. Glasses and Glass Ceramics for Medical Applications; Springer: New York, NY, USA, 2012. [Google Scholar]
- Ferreira, M.M.; Brito, A.F.; Brazete, D.; Pereira, I.C.; Carrilho, E.; Abrantes, A.M.; Pires, A.S.; Aguiar, M.J.; Carvalho, L.; Botelho, M.F.; et al. Doping -TCP as a strategy for enhancing the regenerative potential of composite -TCP-alkali-free bioactive glass bone grafts. Experimental study in rats. Materials 2018, 12, 4. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, O.; Alhalawani, A.; Arshad, S.; Towler, M.R. Rapidly-dissolving silver-containing bioactive glasses for cariostatic applications. J. Funct. Biomater. 2018, 9, 28. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Chen, X.; Brauer, D.S.; Wilson, R.M.; Law, R.V.; Hill, R.G.; Karpukhina, N. Sodium is not essential for high bioactivity of glasses. Int. J. Appl. Glass Sci. 2017, 8, 428–437. [Google Scholar] [CrossRef] [PubMed]
- Hill, R.G.; Brauer, D.S. Predicting the bioactivity of glasses using the network connectivity or split network models. J. Non-Cryst. Solids 2011, 357, 3884–3887. [Google Scholar] [CrossRef]
- Jones, J.; Gentleman, E.; Polak, J. Bioactive glass scaffolds for bone regeneration. Elements 2007, 3, 393–399. [Google Scholar] [CrossRef]
- Thuy, T.T.; Nakagaki, H.; Kato, K.; Hung, P.A.; Inukai, J.; Tsuboi, S.; Nakagaki, H.; Hirose, M.N.; Igarashi, S.; Robinson, C. Effect of strontium in combination with fluoride on enamel remineralization in vitro. Arch. Oral Biol. 2008, 53, 1017–1022. [Google Scholar] [CrossRef] [PubMed]
- Groh, D.; Döhler, F.; Brauer, D.S. Bioactive glasses with improved processing. Part 1. Thermal properties, ion release and apatite formation. Acta Biomater. 2014, 10, 4465–4473. [Google Scholar] [CrossRef] [PubMed]
- Hoppe, A.; Mouriño, V.; Boccaccini, A.R. Therapeutic inorganic ions in bioactive glasses to enhance bone formation and beyond. Biomater. Sci. 2013, 1, 254–256. [Google Scholar]
- Hench, L.L. Bioceramics. J. Am. Ceram. Soc. 1998, 81, 1705–1728. [Google Scholar] [CrossRef]
- Kaur, G.; Pandey, O.P.; Singh, K.; Homa, D.; Scott, B.; Pickrell, G. A review of bioactive glasses: Their structure, properties, fabrication, and apatite formation. J. Biomed. Mater. Res. Part A 2014, 102, 254–274. [Google Scholar] [CrossRef] [PubMed]
- Ferraris, S.; Yamaguchi, S.; Barbani, N.; Cazzola, M.; Cristallini, C.; Miola, M.; Vernè, E.; Spriano, S. Bioactive materials: In vitro investigation of different mechanisms of hydroxyapatite precipitation. Acta Biomater. 2020, 102, 468–480. [Google Scholar] [CrossRef]
- Shelby, J.E. Introduction to Glass Science and Technology; Royal Society of Chemistry: Cambridge, UK, 2005. [Google Scholar]
- Chen, Q.Z.; Xu, J.L.; Yu, L.G.; Fang, X.Y.; Khor, K.A. Spark plasma sintering of sol–gel derived 45S5 Bioglass®-ceramics: Mechanical properties and biocompatibility evaluation. Mater. Sci. Eng. C 2012, 32, 494–502. [Google Scholar] [CrossRef]
- Filho, O.P.; La Torre, G.P.; Hench, L.L. Effect of crystallization on apatite-layer formation of bioactive glass 45S5. J. Biomed. Mater. Res. 1996, 30, 509–514. [Google Scholar] [CrossRef]
- Skallevold, H.E.; Rokaya, D.; Khurshid, Z.; Zafar, M.S. Bioactive glass applications in Dentistry. Int. J. Mol. Sci. 2019, 20, 5960. [Google Scholar] [CrossRef]
- Fernandes, H.R.; Gaddam, A.; Rebelo, A.; Brazete, D.; Stan, G.E.; Ferreira, J.M.F. Bioactive glasses and glass-ceramics for healthcare applications in bone regeneration and tissue engineering. Materials 2018, 11, 2530. [Google Scholar] [CrossRef]
- Wu, C.; Fan, W.; Gelinsky, M.; Xiao, Y.; Simon, P.; Schulze, R.; Doert, T.; Luo, Y.; Cuniberti, G. Bioactive SrO-SiO2 glass with well-ordered mesopores: Characterization, physiochemistry and biological properties. Acta Biomater. 2011, 7, 1797–1806. [Google Scholar] [CrossRef] [PubMed]
- Dionysopoulos, D.; Tolidis, K.; Tsitrou, E.; Kouros, P.; Naka, O. Quantitative and qualitative evaluation of enamel erosion following air abrasion with bioactive glass 45S5. Oral Health Prev. Dent. 2020, 18, 529–536. [Google Scholar]
- Salma, R.S.; Eldardiry, N.K.; Elmaddah, H.A.; Ismail, H.A.; Salem, E.M. Comparative analysis of the effect of Bioactive Glass 45S5 on enamel erosion progression in human dentitions (in vitro study). Clin. Oral Investig. 2023, 27, 1707–1721. [Google Scholar] [CrossRef] [PubMed]
- Johnson King, O.; Milly, H.; Boyes, V.; Austin, R.; Festy, F.; Banerjee, A. The effect of air-abrasion on the susceptibility of sound enamel to acid challenge. J. Dent. 2016, 46, 36–41. [Google Scholar] [CrossRef] [PubMed]
- Viana, Í.E.L.; Borges, R.; Marchi, J.; Feitosa, S.; Marques, M.M.; Scaramucci, T. A 58S bioactive glass for dentin hypersensitivity and erosive tooth wear: An in vitro study. J. Dent. 2022, 127, 104343. [Google Scholar] [CrossRef] [PubMed]
- Abbassy, M.A.; Bakry, A.S.; Hill, R. The efficiency of fluoride bioactive glasses in protecting enamel surrounding orthodontic bracket. BioMed Res. Int. 2021, 2021, 5544196. [Google Scholar] [CrossRef] [PubMed]
- Suryani, H.; Gehlot, P.M.; Manjunath, M.K. Evaluation of the remineralisation potential of bioactive glass, nanohydroxyapatite and casein phosphopeptide-amorphous calcium phosphate fluoride-based toothpastes on enamel erosion lesion—An ex vivo study. Indian J. Dent. Res. 2020, 31, 670–677. [Google Scholar]
- Araujo, L.C.; Amorim, A.A.; Vivanco, R.G.; Arruda, C.N.F.; Bikker, F.J.; Pires-de-Souza, F.C.P. The effect of Phytosphingosine and bioactive glass-ceramics in preventing dental enamel erosion. Braz. Dent. J. 2023, 34, 88–96. [Google Scholar] [CrossRef] [PubMed]
- Nyland, B.P.; Pereira, C.P.; Soares, P.; da Luz Weiss, D.S.; Mikos, W.L.; Brancher, J.A.; Vieira, S.; Freire, A. Enamel erosion control by strontium-containing TiO2- and/or MgO-doped phosphate bioactive glass. Clin. Oral Investig. 2022, 26, 1915–1925. [Google Scholar] [CrossRef]
- Fan, Y.; Sun, Z.; Moradian-Oldak, J. Effect of fluoride on the morphology of calcium phosphate crystals grown on acid- etched human enamel. Caries Res. 2009, 43, 132–136. [Google Scholar] [CrossRef]
- Iijima, M.; Moradian-Oldak, J. Control of apatite crystal growth in a fluoride containing amelogenin-rich matrix. Biomaterials 2005, 26, 1595–1603. [Google Scholar] [CrossRef] [PubMed]
- Iijima, M. Formation of octacalcium phosphate in vitro. In: Chow LC, Eanes ED, editors. Octacalcium Phosphate. Monogr. Oral Sci. 2001, 18, 17–49. [Google Scholar] [PubMed]
- Ganss, C.; Lussi, A.; Scharmann, I.; Weigelt, T.; Hardt, M.; Klimek, J.; Schlueter, N. Comparison of calcium analysis, longitudinal microradiography and profilometry for the quantitative assessment of erosion in dentine. Caries Res. 2009, 43, 422–429. [Google Scholar] [CrossRef] [PubMed]
- Bakry, A.S.; Takahashi, H.; Otsuki, M.; Tagami, J. Evaluation of new treatment for incipient enamel demineralization using 45S5 bioglass. Dent. Mater. 2014, 30, 314–320. [Google Scholar] [CrossRef]
- Beletskii, B.I.; Sventskaya, N.V. Silicon in living organisms and new-generation biocomposite materials (review). Glass Ceram. 2009, 66, 104–108. [Google Scholar] [CrossRef]
45S5 | S53P4 | 58S | 70S30C | 13-93 |
---|---|---|---|---|
45 wt% SiO2 | 53 wt% SiO2 | 58 wt% SiO2 | 70 wt% SiO2 | 53 wt% SiO2 |
24.5 wt% CaO | 20 wt% CaO | 24.5 wt% CaO | 30 wt% CaO | 20 wt% CaO |
24.5 wt% Na2O | 23 wt% Na2O | 24.5 wt% Na2O | - | 6 wt% Na2O |
6 wt% P2O5 | 4 wt% P2O5 | 6 wt% P2O5 | - | 4 wt% P2O5 |
- | - | - | - | 12 wt% K2O |
- | - | - | - | 5 wt% MgO |
Authors and Year of Publication | Form of BAG | Type of BAG | Type of Tooth Tissues | Erosive Challenge | Methods | Effectiveness |
---|---|---|---|---|---|---|
Araujo et al., 2023 [64] | Slurry | Biosilicate | Bovine enamel | Erosive cycling (soft drink) | Rugosimeter, hardness tester | Yes |
Salma et al., 2023 [59] | Air-abrasion powder | 45S5 | Human enamel primary and permanent | Erosive cycling (citric acid) | Lining stylus profilometer, SEM-EDS | Yes |
Viana et al., 2022 [61] | Paste | 58S | Human dentin | Erosion-abrasion cycling (citric acid) | Optical Profilometer | No |
Karaoulani et al., 2022 [16] | Air-abrasion powder | 45S5, BioMinF | Human enamel | Erosive cycling (hydrochloric acid) | Confocal microscope, SEM-EDS | Yes |
Nyland et al., 2022 [65] | Slurry | 45S5 | Human enamel | Erosive cycling (citric acid) | Optical profilometer, hardness tester, SEM | Yes |
Abbassy et al., 2021 [62] | Paste | Four fluoride- containing BAGs | Human enamel | Erosive cycling (citric acid) | FTIR/ATR, SEM | Yes |
Suryani et al., 2020 [63] | Paste | 45S5 | Human enamel | Erosive cycling (citric acid) | Hardness tester, SEM | Yes |
Dionysopoulos et al., 2020 [58] | Air-abrasion powder | 45S5 | Bovine enamel | Erosion-abrasion cycling (soft drink) | Optical profilometer, hardness tester, SEM-EDS | Yes |
Dionysopoulos et al., 2019 [6] | Air-abrasion powder | 45S5 | Bovine enamel | Erosive cycling (soft drink) | Optical profilometry hardness tester, SEM-EDS | Yes |
Bakry et al., 2014 [15] | Paste | 45S5 | Human enamel | Erosive cycling (soft drink) | Hardness tester, SEM-EDS | Yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dionysopoulos, D. The Role of Bioactive Glasses in Dental Erosion―A Narrative Review. Compounds 2024, 4, 442-452. https://doi.org/10.3390/compounds4030027
Dionysopoulos D. The Role of Bioactive Glasses in Dental Erosion―A Narrative Review. Compounds. 2024; 4(3):442-452. https://doi.org/10.3390/compounds4030027
Chicago/Turabian StyleDionysopoulos, Dimitrios. 2024. "The Role of Bioactive Glasses in Dental Erosion―A Narrative Review" Compounds 4, no. 3: 442-452. https://doi.org/10.3390/compounds4030027
APA StyleDionysopoulos, D. (2024). The Role of Bioactive Glasses in Dental Erosion―A Narrative Review. Compounds, 4(3), 442-452. https://doi.org/10.3390/compounds4030027