Electrodeposition of Copper-Silver Alloys from Aqueous Solutions: A Prospective Process for Miscellaneous Usages
Abstract
:1. Introduction
2. Physico-Chemical Properties of Cu, Ag, and Their Alloys
Substance | a | b | c |
---|---|---|---|
Ag | 4.147 | 4.147 | 8.295 |
Cu | 3.638 | 3.638 | 7.276 |
Cu0.125Ag0.875 | 4.094 | 4.094 | 8.188 |
Cu0.25Ag0.75 | 4.037 | 4.037 | 8.075 |
Cu0.5Ag0.5 | 3.948 | 3.909 | 7.782 |
3. Different Techniques Mentioned to Date for the Production of Cu–Ag Alloys
4. Electroplating of Cu–Ag Alloys
5. The Main Electrolytes Used in Electroplating of Cu–Ag Alloys
6. Various Applications of Electrodeposited Cu–Ag Alloys
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shao, W.; Sun, Y.; Xu, Y.; Zangari, G. Depolarization of Cu Electrodeposition in the Presence of Ag: A Cyclic-Voltammetry Study. Electrochim. Acta 2022, 405, 139796. [Google Scholar] [CrossRef]
- Torabinejad, V.; Aliofkhazraei, M.; Assareh, S.; Allahyarzadeh, M.H.; Rouhaghdam, A.S. Electrodeposition of Ni-Fe Alloys, Composites, and Nano Coatings—A Review. J. Alloys Compd. 2017, 691, 841–859. [Google Scholar] [CrossRef]
- Elkington, G.; Elkington, H. Improvements in Coating, Covering, or Plating Certain Metals. British Patent 8447, 25 March 1840. [Google Scholar]
- Costa, J.G.d.R.d.; Costa, J.M.; Almeida Neto, A.F.d. Progress on Electrodeposition of Metals and Alloys Using Ionic Liquids as Electrolytes. Metals 2022, 12, 2095. [Google Scholar] [CrossRef]
- Tench, D.M.; White, J.T. A New Periodic Displacement Method Applied to Electrodeposition of Cu-Ag Alloys. J. Electrochem. Soc. 1992, 139, 443–446. [Google Scholar] [CrossRef]
- Bernasconi, R.; Hart, J.L.; Lang, A.C.; Magagnin, L.; Nobili, L.; Taheri, M.L. Structural Properties of Electrodeposited Cu-Ag Alloys. Electrochim. Acta 2017, 251, 475–481. [Google Scholar] [CrossRef]
- Jeon, Y.; Choe, S.; Kim, H.C.; Kim, M.J.; Kim, J.J. Electrodeposition of Cu-Ag Films in Ammonia-Based Electrolyte. J. Alloys Compd. 2019, 775, 639–646. [Google Scholar] [CrossRef]
- Hamana, D.; Hachouf, M.; Boumaza, L.; Biskri, Z.E.A. Precipitation Kinetics and Mechanism in Cu-7 Wt% Ag Alloy. Mater. Sci. Appl. 2011, 2, 899–910. [Google Scholar] [CrossRef]
- Kawecki, A.; Knych, T.; Sieja-Smaga, E.; Mamala, A.; Kwasniewski, P.; Kiesiewicz, G.; Smyrak, B.; Pacewicz, A. Fabrication, Properties and Microstructures of High Strength and High Conductivity Copper-Silver Wires. Arch. Metall. Mater. 2012, 57, 1261–1270. [Google Scholar] [CrossRef]
- Benghalem, A.; Morris, D.G. Microstructure and Strength of Wire-Drawn Cu-Ag Filamentary Composites. Acta Mater. 1997, 45, 397–406. [Google Scholar] [CrossRef]
- Yang, H.Y.; Ma, Z.C.; Lei, C.H.; Meng, L.; Fang, Y.T.; Liu, J.B.; Wang, H.T. High Strength and High Conductivity Cu Alloys: A Review. Sci. China Technol. Sci. 2020, 63, 2505–2517. [Google Scholar] [CrossRef]
- Freudenberger, J.; Lyubimova, J.; Gaganov, A.; Witte, H.; Hickman, A.L.; Jones, H.; Nganbe, M. Non-Destructive Pulsed Field CuAg-Solenoids. Mater. Sci. Eng. A 2010, 527, 2004–2013. [Google Scholar] [CrossRef]
- Tian, Y.Z.; Zhang, Z.F. Stability of Interfaces in a Multilayered Ag-Cu Composite during Cold Rolling. Scr. Mater. 2013, 68, 542–545. [Google Scholar] [CrossRef]
- Barmak, K.; Lucadamo, G.A.; Cabral, C.; Lavoie, C.; Harper, J.M.E. Dissociation of Dilute Immiscible Copper Alloy Thin Films. J. Appl. Phys. 2000, 87, 2204–2214. [Google Scholar] [CrossRef]
- Shao, W.; Sun, Y.; Zangari, G. Electrodeposition of Cu-Ag Alloy Films at n-Si(001) and Polycrystalline Ru Substrates. Coatings 2021, 11, 1563. [Google Scholar] [CrossRef]
- Spassov, T.; Lyubenova, L.; Liu, Y.; Bliznakov, S.; Spassova, M.; Dimitrov, N. Mechanochemical Synthesis, Thermal Stability and Selective Electrochemical Dissolution of Cu-Ag Solid Solutions. J. Alloys Compd. 2009, 478, 232–236. [Google Scholar] [CrossRef]
- Li, A.; Szlufarska, I. Morphology and Mechanical Properties of Nanocrystalline Cu/Ag Alloy. J. Mater. Sci. 2017, 52, 4555–4567. [Google Scholar] [CrossRef]
- Cline, H.E.; Lee, D. Strengthening of Lamellar vs. Equiaxed Ag-Cu Eutectic. Acta Metall. 1970, 18, 315–323. [Google Scholar] [CrossRef]
- Jian, C.C.; Zhang, J.; Ma, X. Cu-Ag Alloy for Engineering Properties and Applications Based on the LSPR of Metal Nanoparticles. RSC Adv. 2020, 10, 13277–13285. [Google Scholar] [CrossRef]
- Ashcroft, N.W.; Mermin, N.D. Solid State Physics; Saunders College: Philadelphia, PA, USA, 1976; ISBN 0-03-049346-3. [Google Scholar]
- Antipas, A.; Dolphin, D.; Gouterman, M.; Johnson, E. Redox Potentials, Charge Transfer, and Emission of Copper, Silver, and Gold Complexes. J. Am. Chem. Soc. 1978, 100, 7705–7709. [Google Scholar] [CrossRef]
- European Copper Institute Basic Properties of Cu94Ag6 Alloy. Available online: http://conductivity-app.org/alloy-sheet/9 (accessed on 27 June 2024).
- Copper Wire Tables, Technical report. In Circular of the Bureau of Standards No. 31, 3rd ed.; United States Department of Commerce: Washington, WA, USA, 1 October 1914.
- Taylor, S.L. An Investigation of the Mechanical and Physical Properties of Copper-Silver Alloys and the Use of These Alloys in Pre-Columbian America. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2017. [Google Scholar]
- Broniewski, W.; Koslacz, S. Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences; Académie des Sciences: Paris, France, 1932; p. 973. ISBN 07-052070-4. [Google Scholar]
- Hans, M.; Támara, J.C.; Mathews, S.; Bax, B.; Hegetschweiler, A.; Kautenburger, R.; Solioz, M.; Mücklich, F. Laser Cladding of Stainless Steel with a Copper-Silver Alloy to Generate Surfaces of High Antimicrobial Activity. Appl. Surf. Sci. 2014, 320, 195–199. [Google Scholar] [CrossRef]
- Zhang, E.; Zhao, X.; Hu, J.; Wang, R.; Fu, S.; Qin, G. Antibacterial Metals and Alloys for Potential Biomedical Implants. Bioact. Mater. 2021, 6, 2569–2612. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Alford, T.L. Microwave Assisted Low Temperature Encapsulation of Ag Films by Cu Reactions Using Ag-Cu Alloy Structures. Mater. Lett. 2012, 89, 163–165. [Google Scholar] [CrossRef]
- Ren, F.; Bellon, P.; Averback, R.S. Nanoscale Self-Organization Reaction in Cu–Ag Alloys Subjected to Dry Sliding and Its Impact on Wear Resistance. Tribol. Int. 2016, 100, 420–429. [Google Scholar] [CrossRef]
- Rao, S.V.; Podagatlapalli, G.K.; Hamad, S. Ultrafast Laser Ablation in Liquids for Nanomaterials and Applications. J. Nanosci. Nanotechnol. 2014, 14, 1364–1388. [Google Scholar] [CrossRef] [PubMed]
- Tsaur, B.Y.; Lau, S.S.; Mayer, J.W. Continuous Series of Metastable Ag-Cu Solid Solutions Formed by Ion-Beam Mixing. Appl. Phys. Lett. 1980, 36, 823–826. [Google Scholar] [CrossRef]
- Higgins, D.; Wette, M.; Gibbons, B.M.; Siahrostami, S.; Hahn, C.; Escudero-Escribano, M.; García-Melchor, M.; Ulissi, Z.; Davis, R.C.; Mehta, A.; et al. Copper Silver Thin Films with Metastable Miscibility for Oxygen Reduction Electrocatalysis in Alkaline Electrolytes. ACS Appl. Energy Mater. 2018, 1, 1990–1999. [Google Scholar] [CrossRef]
- Tan, K.S.; Cheong, K.Y. Advances of Ag, Cu, and Ag-Cu Alloy Nanoparticles Synthesized via Chemical Reduction Route. J. Nanoparticle Res. 2013, 15, 1–29. [Google Scholar] [CrossRef]
- Szymańska, I.B.; Piszczek, P.; Bała, W.; Bartkiewicz, K.; Szłyk, E. Ag/Cu Layers Grown on Si(111) Substrates by Thermal Inducted Chemical Vapor Deposition. Surf. Coat. Technol. 2007, 201, 9015–9020. [Google Scholar] [CrossRef]
- Chen, Q.; Jing, Y.; Yin, J.; Li, Z.; Xiong, W.; Gong, P.; Zhang, L.; Li, S.; Pan, R.; Zhao, X.; et al. High Reflectivity and Thermal Conductivity Ag–Cu Multi-Material Structures Fabricated via Laser Powder Bed Fusion: Formation Mechanisms, Interfacial Characteristics, and Molten Pool Behavior. Micromachines 2023, 14, 362. [Google Scholar] [CrossRef]
- Robinson, J.; Arjunan, A.; Stanford, M.; Lyall, I.; Williams, C. Effect of Silver Addition in Copper-Silver Alloys Fabricated by Laser Powder Bed Fusion in Situ Alloying. J. Alloys Compd. 2021, 857, 157561. [Google Scholar] [CrossRef]
- Lim, M.S.; Song, J.S.; Hong, S.I. Microstructural and Mechanical Stability of Cu-6 wt.% Ag Alloy. J. Mater. Sci. 2000, 35, 4557–4561. [Google Scholar] [CrossRef]
- Gohil, S.; Banerjee, R.; Bose, S.; Ayyub, P. Influence of Synthesis Conditions on the Nanostructure of Immiscible Copper-Silver Alloy Thin Films. Scr. Mater. 2008, 58, 842–845. [Google Scholar] [CrossRef]
- Coddet, P.; Verdy, C.; Coddet, C.; Debray, F. Effect of Cold Work, Second Phase Precipitation and Heat Treatments on the Mechanical Properties of Copper-Silver Alloys Manufactured by Cold Spray. Mater. Sci. Eng. A 2015, 637, 40–47. [Google Scholar] [CrossRef]
- Sakai, Y.; Schneider-Muntau, H.-J. Ultra-High Strength, High Conductivity Cu-Ag Alloy Wires. Acta Mater. 1997, 45, 1017–1023. [Google Scholar] [CrossRef]
- Freudenberger, J.; Klauß, H.J.; Heinze, K.; Gaganov, A.; Schaper, M.; Schultz, L. Fatigue of Highly Strengthened Cu-Ag Alloys. Int. J. Fatigue 2008, 30, 437–443. [Google Scholar] [CrossRef]
- Sakai, Y.; Inoue, K.; Maeda, H. New High-Strength, High-Conductivity Cu-Ag Alloy Sheets. Acta Metall. Mater. 1995, 43, 1517–1522. [Google Scholar] [CrossRef]
- Zhang, F.; Hu, H.; Hu, J.; Yang, X.; Li, M.; Chen, Y.; Ma, C.; Guo, N. Microstructure and Defects of Rectangular Cu-Ag Wires Fabricated by the Continuous Extrusion Forming Process. Can. Metall. Q. 2023, 63, 46–57. [Google Scholar] [CrossRef]
- Liu, J.B.; Zhang, L.; Meng, L. Relationships between Mechanical Strength and Electrical Conductivity for Cu-Ag Filamentary Microcomposites. Appl. Phys. A Mater. Sci. Process 2007, 86, 529–532. [Google Scholar] [CrossRef]
- Nestorović, S.; Marković, I.; Marković, D. Influence of Thermomechanical Treatment on the Hardening Mechanisms and Structural Changes of a Cast Cu-6.6 Wt.%Ag Alloy. Mater. Des. 2010, 31, 1644–1649. [Google Scholar] [CrossRef]
- Zhu, X.; Xiao, Z.; An, J.; Jiang, H.; Jiang, Y.; Li, Z. Microstructure and Properties of Cu-Ag Alloy Prepared by Continuously Directional Solidification. J. Alloys Compd. 2021, 883, 160769. [Google Scholar] [CrossRef]
- Tian, Y.Z.; Zhang, Z.F. Bulk Eutectic Cu-Ag Alloys with Abundant Twin Boundaries. Scr. Mater. 2012, 66, 65–68. [Google Scholar] [CrossRef]
- Chang, L.L.; Wen, S.; Li, S.L.; Zhu, X.D.; Shang, X.J. Strain Softening during Tension in Cold Drawn Cu-Ag Alloys. Mater. Charact. 2015, 108, 145–151. [Google Scholar] [CrossRef]
- Zhao, B.; Kim, H.; Shimogaki, Y. Effects of Ag Addition on the Resistivity, Texture and Surface Morphology of Cu Metallization. Jpn. J. Appl. Phys. Part 2 Lett. 2005, 44, L1278. [Google Scholar] [CrossRef]
- Zhao, B.; Momose, T.; Shimogaki, Y. Deposition of Cu-Ag Alloy Film by Supercritical Fluid Deposition. Jpn. J. Appl. Phys. Part 2 Lett. 2006, 45, L1296–L1299. [Google Scholar] [CrossRef]
- Lin, J.; Meng, L. Effect of Aging Treatment on Microstructure and Mechanical Properties of Cu-Ag Alloys. J. Alloys Compd. 2008, 454, 150–155. [Google Scholar] [CrossRef]
- Zheng, L.; Wang, C.; Cai, D.; Huang, Y.; Adi, K.; Hong, Y.; Chen, Y.; Zhou, G.; Armini, S.; De Gendt, S.; et al. Hydroquinone Oriented Growth Control to Achieve High-Quality Copper Coating at High Rate for Electronics Interconnection. J. Taiwan. Inst. Chem. Eng. 2020, 112, 130–136. [Google Scholar] [CrossRef]
- Kim, M.J.; Lee, H.J.; Yong, S.H.; Kwon, O.J.; Kim, S.-K.; Kim, J.J. Facile Formation of Cu-Ag Film by Electrodeposition for the Oxidation-Resistive Metal Interconnect. J. Electrochem. Soc. 2012, 159, D253–D259. [Google Scholar] [CrossRef]
- Huang, J.; Wang, W.; Xiang, Q.; Qin, S.; Wang, P.; Mitsuzaki, N.; Chen, Z. Effect of Deposition Potential on Electrodeposition of Sn-Ag-Cu Ternary Alloy Solderable Coating in Deep Eutectic Solvent. J. Electroanal. Chem. 2023, 943, 117613. [Google Scholar] [CrossRef]
- Reyna-González, J.M.; Reyes-López, J.C.; Aguilar-Martínez, M. Silver and Silver-Copper Electrodeposition from a Pyridinium-Based Ionic Liquid. Electrochim. Acta 2013, 94, 344–352. [Google Scholar] [CrossRef]
- Alhaji, A.; Alkarekshi, W.; Hammadi, F.; Tunsi, B. Electrodeposition of Cu-Ag Alloys Using Ionic Liquid (Ethaline) as Deep Eutectic Solvents. Libya J. Appl. Sci. Technol. 2018, 5, 7–16. [Google Scholar]
- Li, K.; Chen, W. Recent Progress in High-Entropy Alloys for Catalysts: Synthesis, Applications, and Prospects. Mater. Today Energy 2021, 20, 100638. [Google Scholar] [CrossRef]
- Bao, G.; Xu, Y.; Huang, L.; Lu, X.; Zhang, L.; Fang, Y.; Meng, L.; Liu, J. Strengthening Effect of Ag Precipitates in Cu–Ag Alloys: A Quantitative Approach. Mater. Res. Lett. 2016, 4, 37–42. [Google Scholar] [CrossRef]
- Lee, K.H.; Kong, W.; Han, M.; Park, D.J.; Ahn, J.H.; Han, S.Z.; Park, Y.B.; Lee, K.H.; Choe, S. Properties of Nanocrystalline CuAg Foil Prepared via Electrodeposition. J. Alloys Compd. 2021, 881, 160522. [Google Scholar] [CrossRef]
- Zhang, L.; Meng, L. Microstructure and Properties of Cu–Ag, Cu–Ag–Cr and Cu–Ag–Cr–RE Alloys. Mater. Sci. Technol. 2003, 19, 75–79. [Google Scholar] [CrossRef]
- Okonkwo, B.O.; Jeong, C.; Jang, C. Advances on Cr and Ni Electrodeposition for Industrial Applications—A Review. Coatings 2022, 12, 1555. [Google Scholar] [CrossRef]
- Strehle, S.; Menzel, S.; Wendrock, H.; Acker, J.; Gemming, T.; Wetzig, K. Thermo-Mechanical Behavior and Microstructural Evolution of Electrochemically Deposited Low-Alloyed Cu(Ag) Thin Films. Microelectron. Eng. 2004, 76, 205–211. [Google Scholar] [CrossRef]
- Chandrasekar, M.S.; Pushpavanam, M. Pulse and Pulse Reverse Plating-Conceptual, Advantages and Applications. Electrochim. Acta 2008, 53, 3313–3322. [Google Scholar] [CrossRef]
- Celante, V.G.; Freitas, M.B.J.G. Electrodeposition of Copper from Spent Li-Ion Batteries by Electrochemical Quartz Crystal Microbalance and Impedance Spectroscopy Techniques. J. Appl. Electrochem. 2010, 40, 233–239. [Google Scholar] [CrossRef]
- Pourbaix, M. Atlas D’équilibres Électrochimiques; Gauthier-Villars & Cie: Paris, France, 1963; pp. 384–398. ISBN 0915567989. [Google Scholar]
- Jie, S.; Ting-Yun, M.; Hui-Xuan, Q.; Qi-Song, L. Preparation of Copper–Silver Alloy with Different Morphologies by a Electrodeposition Method in 1-Butyl-3-Methylimidazolium Chloride Ionic Liquid. Bull. Mater. Sci. 2019, 42, 227. [Google Scholar] [CrossRef]
- Ebrahimi, F.; Zhai, Q.; Kong, D. Mechanical Properties of Cu/Ag Multilayered Composites. Mater. Sci. Eng. 1998, 255, 20–32. [Google Scholar] [CrossRef]
- Satpathy, B.; Kayal, N.; Jena, S.; Das, S.; Das, K. Structural and Mechanical Characterization of Nano-Structured Cu–Ag Bimetallic Coatings Developed from a Novel Thiourea-Based Electroplating Bath. Mater. Charact. 2022, 189, 112011. [Google Scholar] [CrossRef]
- Lee, H.J.; Kim, M.J.; Lim, T.; Park, K.J.; Kim, J.J.; Kwon, O.J. Electrodeposition of Cu-Ag Film in Cyanide-Based Electrolyte. ECS Trans. 2011, 33, 5–10. [Google Scholar] [CrossRef]
- El Sayed, M.A.; Ibrahim, M.A.M.; Elazab, T.N.; Gassoumi, M. Electrochemical Synthesis of Nanocrystalline CuAg Coatings on Stainless Steel from Cyanide-Free Electrolyte. Processes 2022, 10, 2134. [Google Scholar] [CrossRef]
- Michailova, E.; Vitanova, I.; Stoychev, D.; Milchev, A. Initial Stages of Copper Electrodeposition in the Presence of Organic Additives. Electrochim. Acta 1993, 38, 2455–2458. [Google Scholar] [CrossRef]
- Liang, D.; Shao, W.; Zangari, G. Selection of Phase Formation in Electroplated Ag-Cu Alloys. J. Electrochem. Soc. 2016, 163, D40–D48. [Google Scholar] [CrossRef]
- Bernasconi, R.L.; Nobili, L. Magagnin Electrodeposition of Supersaturated CuAg Alloys in Pyrophosphate-Iodide Electrolytes. ECS Trans. 2014, 58, 53–60. [Google Scholar] [CrossRef]
- Akben, H.K.; Timur, S.I. A Comparative Study of Silver Electrodeposition from Pyrophosphate-Cyanide and High Concentration Cyanide Electrolytes in the Presence of Brighteners. Turk. J. Chem. 2020, 44, 378–392. [Google Scholar] [CrossRef] [PubMed]
- Kuhn, A.T.; Neufeld, P.; Young, K. The Electrodeposition of Copper-Silver and Copper-Nickel Alloy Powders from Aqueous Ammoniacal Solutions. J. Appl. Electrochem. 1984, 14, 605–613. [Google Scholar] [CrossRef]
- Abdul Salam, A.; Singaravelan, R.; Vasanthi, P.; Bangarusudarsan Alwar, S. Electrochemical Fabrication of Ag–Cu Nano Alloy and Its Characterization: An Investigation. J. Nanostruct. Chem. 2015, 5, 383–392. [Google Scholar] [CrossRef]
- Chiang, C.-H.; Lin, C.-C.; Hu, C.-C. Electrodeposition and Microstructure Characterization of Bimetallic Copper-Silver Films from the Methanesulfonic Acid Baths. J. Electrochem. Soc. 2018, 165, D550–D556. [Google Scholar] [CrossRef]
- Plaza-Mayoral, E.; Sebastián-Pascual, P.; Dalby, K.N.; Jensen, K.D.; Chorkendorff, I.; Falsig, H.; Escudero-Escribano, M. Preparation of High Surface Area Cu-Au Bimetallic Nanostructured Materials by Co-Electrodeposition in a Deep Eutectic Solvent. Electrochim. Acta 2021, 398, 139309. [Google Scholar] [CrossRef]
- Abbott, A.P.; McKenzie, K.J. Application of Ionic Liquids to the Electrodeposition of Metals. Phys. Chem. Chem. Phys. 2006, 8, 4265–4279. [Google Scholar] [CrossRef] [PubMed]
- Abbott, A.P.; Frisch, G.; Ryder, K.S. Electroplating Using Ionic Liquids. Annu. Rev. Mater. Res. 2013, 43, 335–358. [Google Scholar] [CrossRef]
- Hansen, B.B.; Spittle, S.; Chen, B.; Poe, D.; Zhang, Y.; Klein, J.M.; Horton, A.; Adhikari, L.; Zelovich, T.; Doherty, B.W.; et al. Deep Eutectic Solvents: A Review of Fundamentals and Applications. Chem. Rev. 2021, 121, 1232–1285. [Google Scholar] [CrossRef] [PubMed]
- Abbott, A.P. Model for the Conductivity of Ionic Liquids Based on an Infinite Dilution of Holes. ChemPhysChem 2005, 6, 2502–2505. [Google Scholar] [CrossRef]
- Al-Murshedi, A.Y.M.; Hartley, J.M.; Abbott, A.P.; Ryder, K.S. Effect of Water on the Electrodeposition of Copper on Nickel in Deep Eutectic Solvents. Trans. Inst. Metal. Finish. 2019, 97, 321–329. [Google Scholar] [CrossRef]
- Zhang, Q.; De Oliveira Vigier, K.; Royer, S.; Jérôme, F. Deep Eutectic Solvents: Syntheses, Properties and Applications. Chem. Soc. Rev. 2012, 41, 7108–7146. [Google Scholar] [CrossRef] [PubMed]
- Abbott, A.P. Deep Eutectic Solvents and Their Application in Electrochemistry. Curr. Opin. Green. Sustain. Chem. 2022, 36, 100649. [Google Scholar] [CrossRef]
- Liu, A.; Shi, Z.; Reddy, R.G. Mechanism Study of Cu-Zn Alloys Electrodeposition in Deep Eutectic Solvents. Ionics 2020, 26, 3161–3172. [Google Scholar] [CrossRef]
- Tomé, L.I.N.; Baião, V.; da Silva, W.; Brett, C.M.A. Deep Eutectic Solvents for the Production and Application of New Materials. Appl. Mater. Today 2018, 10, 30–50. [Google Scholar] [CrossRef]
- Abbott, A.P.; Alhaji, A.I.; Ryder, K.S.; Horne, M.; Rodopoulos, T. Electrodeposition of Copper-Tin Alloys Using Deep Eutectic Solvents. Trans. Inst. Metal. Finish. 2016, 94, 104–113. [Google Scholar] [CrossRef]
- Smith, E.L.; Abbott, A.P.; Ryder, K.S. Deep Eutectic Solvents (DESs) and Their Applications. Chem. Rev. 2014, 114, 11060–11082. [Google Scholar] [CrossRef] [PubMed]
- Sebastián, P.; Vallés, E.; Gómez, E. First Stages of Silver Electrodeposition in a Deep Eutectic Solvent. Comparative Behavior in Aqueous Medium. Electrochim. Acta 2013, 112, 149–158. [Google Scholar] [CrossRef]
- Sebastián, P.; Vallés, E.; Gómez, E. Copper Electrodeposition in a Deep Eutectic Solvent. First Stages Analysis Considering Cu(I) Stabilization in Chloride Media. Electrochim. Acta 2014, 123, 285–295. [Google Scholar] [CrossRef]
- Kong, W.; Park, T.; Kim, K.-T.; Kim, Y.-D.; Lee, K.H.; Park, I.; Choe, S. High Strength CuAg Foil with a Nano-Lamellar Structure Prepared via Pulse Electrodeposition in an Environmental-Friendly Methanesulfonic Acid-Based Bath. J. Alloys Compd. 2023, 934, 167893. [Google Scholar] [CrossRef]
- Shao, W.; Sun, Y.; Giurlani, W.; Innocenti, M.; Zangari, G. Estimating Electrodeposition Properties and Processes: Cu-Ag Alloy at n-Si(001) and Ru Substrates from Acidic Sulfate Bath. Electrochim. Acta 2022, 403, 139695. [Google Scholar] [CrossRef]
- Li, D.; Liu, J.; Wang, H.; Barrow, C.J.; Yang, W. Electrochemical Synthesis of Fractal Bimetallic Cu/Ag Nanodendrites for Efficient Surface Enhanced Raman Spectroscopy. Chem. Commun. 2016, 52, 10968–10971. [Google Scholar] [CrossRef]
- Choi, J.; Kim, M.J.; Ahn, S.H.; Choi, I.; Jang, J.H.; Ham, Y.S.; Kim, J.J.; Kim, S.K. Electrochemical CO2 Reduction to CO on Dendritic Ag-Cu Electrocatalysts Prepared by Electrodeposition. Chem. Eng. J. 2016, 299, 37–44. [Google Scholar] [CrossRef]
- Rajashekhar, B.; Pandey, G.; Sekar, R.; Veerapandian, M. Electro Co-Deposition of Copper-Silver Nanocrystallite Alloy Cluster: A Way for Tunable SERS Substrate Development. Mater. Lett. X 2022, 15, 100157. [Google Scholar] [CrossRef]
- Włodarczyk, B.; Włodarczyk, P.P. Electricity Production from Yeast Wastewater in Membrane-Less Microbial Fuel Cell with Cu-Ag Cathode. Energies 2023, 16, 2734. [Google Scholar] [CrossRef]
- Kim, K.O.; Kim, S. Surface Morphology Control of Cu-Ag Alloy Thin Film on W Diffusion Barrier by Seedless Electrodeposition. J. Nanosci. Nanotechnol. 2016, 16, 11701–11706. [Google Scholar] [CrossRef]
- Singh, M.; Sinha, I.; Mandal, R.K. Synthesis of Nanostructured Ag-Cu Alloy Ultra-Fine Particles. Mater. Lett. 2009, 63, 2243–2245. [Google Scholar] [CrossRef]
- Ye, W.; Guo, X.; Ma, T. A Review on Electrochemical Synthesized Copper-Based Catalysts for Electrochemical Reduction of CO2 to C2+ Products. Chem. Eng. J. 2021, 414, 128825. [Google Scholar] [CrossRef]
- Hoang, T.T.H.; Verma, S.; Ma, S.; Fister, T.T.; Timoshenko, J.; Frenkel, A.I.; Kenis, P.J.A.; Gewirth, A.A. Nanoporous Copper-Silver Alloys by Additive-Controlled Electrodeposition for the Selective Electroreduction of CO2 to Ethylene and Ethanol. J. Am. Chem. Soc. 2018, 140, 5791–5797. [Google Scholar] [CrossRef]
- Verma, S.; Lu, X.; Ma, S.; Masel, R.I.; Kenis, P.J.A. The Effect of Electrolyte Composition on the Electroreduction of CO2 to CO on Ag Based Gas Diffusion Electrodes. Phys. Chem. Chem. Phys. 2016, 18, 7075–7084. [Google Scholar] [CrossRef]
- Chen, X.; Henckel, D.A.; Nwabara, U.O.; Li, Y.; Frenkel, A.I.; Fister, T.T.; Kenis, P.J.A.; Gewirth, A.A. Controlling Speciation during CO2 Reduction on Cu-Alloy Electrodes. ACS Catal. 2020, 10, 672–682. [Google Scholar] [CrossRef]
- Ma, S.; Sadakiyo, M.; Luo, R.; Heima, M.; Yamauchi, M.; Kenis, P.J.A. One-Step Electrosynthesis of Ethylene and Ethanol from CO2 in an Alkaline Electrolyzer. J. Power Sources 2016, 301, 219–228. [Google Scholar] [CrossRef]
- Volov, I.; Swanson, E.; O’Brien, B.; Novak, S.W.; van den Boom, R.; Dunn, K.; West, A.C. Pulse-Plating of Copper-Silver Alloys for Interconnect Applications. J. Electrochem. Soc. 2012, 159, D677–D683. [Google Scholar] [CrossRef]
- Strehle, S.; Bartha, J.W.; Wetzig, K. Electrical Properties of Electroplated Cu(Ag) Thin Films. Thin Solid. Film. 2009, 517, 3320–3325. [Google Scholar] [CrossRef]
- Wei, M.Z.; Xu, L.J.; Shi, J.; Pan, G.J.; Cao, Z.H.; Meng, X.K. Achieving High Strength and High Electrical Conductivity in Ag/Cu Multilayers. Appl. Phys. Lett. 2015, 106, 011604. [Google Scholar] [CrossRef]
- Hsieh, J.; Hung, S. The Effect of Cu: Ag Atomic Ratio on the Properties of Sputtered Cu-Ag Alloy Thin Films. Materials 2016, 9, 914. [Google Scholar] [CrossRef]
- Lee, K.P.; Tran, D.P.; Chen, F.C.; Hsu, W.Y.; Lin, Y.Q.; Liu, H.C.; Chen, C. Mechanical Strengthening of Nanotwinned Cu Films with Ag Solid Solution. Mater. Lett. 2022, 313, 131775. [Google Scholar] [CrossRef]
- Strehle, S.; Menzel, S.; Wetzig, K.; Bartha, J.W. Microstructure of Electroplated Cu(Ag) Alloy Thin Films. Thin Solid. Film. 2011, 519, 3522–3529. [Google Scholar] [CrossRef]
- Spolenak, R.; Kraft, O.; Arzt, E. Effects of Alloying Elements on Electromigration. Microelectron. Reliab. 1998, 38, 1015–1020. [Google Scholar] [CrossRef]
- Ciacotich, N.; Din, R.U.; Sloth, J.J.; Møller, P.; Gram, L. An Electroplated Copper–Silver Alloy as Antibacterial Coating on Stainless Steel. Surf. Coat. Technol. 2018, 345, 96–104. [Google Scholar] [CrossRef]
- Valodkar, M.; Modi, S.; Pal, A.; Thakore, S. Synthesis and Anti-Bacterial Activity of Cu, Ag and Cu-Ag Alloy Nanoparticles: A Green Approach. Mater. Res. Bull. 2011, 46, 384–389. [Google Scholar] [CrossRef]
- Giurlani, W.; Zangari, G.; Gambinossi, F.; Passaponti, M.; Salvietti, E.; Di Benedetto, F.; Caporali, S.; Innocenti, M. Electroplating for Decorative Applications: Recent Trends in Research and Development. Coatings 2018, 8, 260. [Google Scholar] [CrossRef]
- Kang, Y.; Chen, F. Preparation of Ag-Cu Bimetallic Dendritic Nanostructures and Their Hydrogen Peroxide Electroreduction Property. J. Appl. Electrochem. 2013, 43, 667–677. [Google Scholar] [CrossRef]
- Gang, L.; Anderson, B.G.; van Grondelle, J.; van Santen, R.A.; van Gennip, W.J.H.; Niemantsverdriet, J.W.; Kooyman, P.J.; Knoester, A.; Brongersma, H.H. Alumina-Supported Cu-Ag Catalysts for Ammonia Oxidation to Nitrogen at Low Temperature. J. Catal. 2002, 206, 60–70. [Google Scholar] [CrossRef]
- Wei, Y.; Chen, S.; Lin, Y.; Yang, Z.; Liu, L. Cu-Ag Core-Shell Nanowires for Electronic Skin with a Petal Molded Microstructure. J. Mater. Chem. C Mater. 2015, 3, 9594–9602. [Google Scholar] [CrossRef]
- Lee, C.; Kim, N.R.; Koo, J.; Lee, Y.J.; Lee, H.M. Cu-Ag Core-Shell Nanoparticles with Enhanced Oxidation Stability for Printed Electronics. Nanotechnology 2015, 26, 455601. [Google Scholar] [CrossRef] [PubMed]
- Easow, J.S.; Selvaraju, T. Unzipped Catalytic Activity of Copper in Realizing Bimetallic Ag@Cu Nanowires as a Better Amperometric H2O2 Sensor. Electrochim. Acta 2013, 112, 648–654. [Google Scholar] [CrossRef]
- Kim, M.J.; Park, K.J.; Lim, T.; Kwon, O.J.; Kim, J.J. Fabrication of Cu-Ag Interconnection Using Electrodeposition: The Mechanism of Superfilling and the Properties of Cu-Ag Film. J. Electrochem. Soc. 2013, 160, D3126–D3133. [Google Scholar] [CrossRef]
- Strehle, S.; Menzel, S.; Bartha, J.W.; Wetzig, K. Electroplating of Cu(Ag) Thin Films for Interconnect Applications. Microelectron. Eng. 2010, 87, 180–186. [Google Scholar] [CrossRef]
- Kim, K.O.; Kim, S. Nano-Nucleation Characteristic of Cu-Ag Alloy Directly Electrodeposited on w Diffusion Barrier for Microelectronic Device Interconnect. J. Nanosci. Nanotechnol. 2016, 16, 5173–5178. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Chen, F.; Lei, Y.; Wu, X. A Silver-Copper Alloy as an Oxygen Reduction Electrocatalyst for an Advanced Zinc-Air Battery. ChemCatChem 2015, 7, 2377–2383. [Google Scholar] [CrossRef]
- Dutta, A.; Montiel, I.Z.; Erni, R.; Kiran, K.; Rahaman, M.; Drnec, J.; Broekmann, P. Activation of Bimetallic AgCu Foam Electrocatalysts for Ethanol Formation from CO2 by Selective Cu Oxidation/Reduction. Nano Energy 2020, 68, 104331. [Google Scholar] [CrossRef]
- Kottakkat, T.; Klingan, K.; Jiang, S.; Jovanov, Z.P.; Davies, V.H.; El-Nagar, G.A.M.; Dau, H.; Roth, C. Electrodeposited AgCu Foam Catalysts for Enhanced Reduction of CO2 to CO. ACS Appl. Mater. Interfaces 2019, 11, 14734–14744. [Google Scholar] [CrossRef]
- Clarke, O.J.R.; St. Marie, G.J.H.; Brosseau, C.L. Evaluation of an Electrodeposited Bimetallic Cu/Ag Nanostructured Screen Printed Electrode for Electrochemical Surface-Enhanced Raman Spectroscopy (EC-SERS) Investigations. J. Electrochem. Soc. 2017, 164, B3091–B3095. [Google Scholar] [CrossRef]
- Scott, K. Process Intensification: An Electrochemical Perspective. Renew. Sustain. Energy Rev. 2018, 81, 1406–1426. [Google Scholar] [CrossRef]
Substance | Density | Electrical Conductivity | Thermal Conductivity | Ultimate Tensile Strength | Young’s Modulus |
---|---|---|---|---|---|
Cu—6 wt.% Ag | 9.2 g·cm−3 | 60–87 (% IACS) | 270–380 W·m−1·K−1 | 230–1200 MPa | 120 GPa |
Cu | 8.96 g·cm−3 | 100–102 (% IACS) | 386 W·m−1·K−1 | 210 MPa | 117 GPa |
Ag | 10.5 g·cm−3 | 105 (% IACS) | 407 W·m−1·K−1 | 140 MPa | 83 GPa |
Electrolyte for Cu–Ag Electrodeposition + Additives | Substrate | Synthesis Conditions | Ag Content | Thickness | Properties | References |
---|---|---|---|---|---|---|
0.78 M CuCN, 0.37–2.25 mM AgCN, 2.08 M KCN, 79 mM Rochelle salt, 0.27 M KOH, 0.36 M K2CO3 + 0.5 mM saccharin, 75 µM potassium antimonyl tartrate hydrate, 3.0 mM polyethyleneimine, 5.0 mM Triton-X | Ni strike—chromate layer | DC at I = 7.5 mA/cm2 for 142 min and PC at I = 15 mA/cm2, tON/tOFF: 12 s/12 s for 142 min. + Annealing (N2) at 100–300 °C for 1 h. | 1.5–5.0 wt.% | 40 µm | The as-deposited Cu–Ag foil exhibited high ultimate tensile strength (993 MPa), high electrical conductivity (66.7% IACS), and moderate ductility. With mild annealing, both the strength and the conductivity were improved further (1043 MPa and 68% IACS, respectively). | Lee et al. [59] |
50 g/L CuSO4·5H2O, 150 g/L K4P2O7, 150 g/L KI, 75 mL/L 0.1 M AgNO3, 10 g/L KNO3 | Glassy carbon | The pH = 8.9. Electroplating was done in non-stirred conditions at 50 °C. Current densities between 2 mA/cm2 and 30 mA/cm2 were used. + Annealing (N2) at 400 °C for 2 h. | 3.2–15.4 at.% | nm-sized | As-deposited alloys exhibited high hardness values (628 VHN) and the contribution of solid-solution hardening. | Bernasconi et al. [6] |
0.5 M H2SO4, 0.3 M CuSO4, 0–2 mM AgNO3 | Cu, Cu–Ag, Au, Ru | The scanning rate of 10 mV/s. | 3.2–9.6 at.% | 4.7–6.4 nm | The addition of AgNO3 to the copper solution enhanced Cu reduction and introduced an additional reduction peak, regardless of the property of the metallic substrate. | Shao et al. [1] |
Electrolyte + Additives | Substrate | Synthesis Conditions | Ag Content | Thickness | Properties and Applications | References |
---|---|---|---|---|---|---|
0.5 M Cu(MSA)2, x mM Ag(MSA) (x = 0 or 5), 1.0 M MSA | Stainless steel plate | DC at I = 60 mA/cm2 for 20 min and PC at I = 60 mA/cm2 with varying frequencies from 0.1 to 1 Hz at a fixed duty cycle of 50%. The total amount of deposition was set at 72 C/cm2. | 3–7 wt.% | 16 µm | High-quality Cu–Ag foil was formed in an additive-free system due to the double function of Ag(I) ion in an MSA-based bath: as a brightening agent and precursor for solute atoms. The as-deposited foil exhibited an UTS of 927 MPa even at low Ag content (2.37 wt.%). After annealing at 250 °C for 1 h, the nanostructure was stable despite a high fraction of the phase boundary. | Kong et al. [92] |
160 g/L Cu(SO3CH3)2, 0–0.37 g/L AgSO3CH3, 100 g/L HSO3CH3, 40 ppm Cl− + 20 mL/L leveling agent, 0–1.4 g/L TU (CH4N2S) | Si wafer + 100 nm Ta and 200 nm Cu | The linear sweep voltammetry (LSV) measurement was set from −0.2 to −1.2 V (vs. Hg/Hg2SO4 (0.658 V vs. SHE)) at a scan rate of 5 mV s−1. + Annealing (Ar) at 350 °C for 1 h. | 0.7–43 wt.% | 1 µm | For expected usage as interconnects in microelectronics, the microstructures of Cu–Ag deposits—Ag content, grain size, crystalline preferential orientation, and roughness—were properly compared. | Chiang et al. [77] |
10 mM CuSO4, 0–1 mM AgNO3, 0.5 M H2SO4 | Ru(100 nm)/Ta(5 nm)/Si wafer | The deposition rate was ∼0.212 nm/s with a steady state deposition current of 0.56 mA/cm2, and the deposition potential of −0.85 V (vs. SMSE—saturated mercurous sulfate (0.64 V vs. SHE)). | 0.4–11 at.% | ∼180 nm | No application for the deposit was mentioned. The presented estimation methods showed good agreement with experimental values, which can be applied in designing and implementing procedures for alloy electrodeposition. | Shao et al. [93] |
0.1 M CuCN, 5 mM KAgCN, 0.2 M KCN, 0.1 M NaOH | Cu seed layer (60 nm, PVD)/Ta (7.5 nm, PVD)/TaN (7.5 nm, PVD)/Si | The potential range for LSV was from 0.0 V to −2.0 V (vs. Ag/AgCl), and a scan rate was fixed at 1 mV/s. The reduction of Cu and Ag took place from −1.2 V to −2.0 V, and the electrodeposition was carried out at −1.2, −1.4, −1.6, and −1.8 V. pH = 6.6–13.2, and various concentrations of KAgCN were used. | 10 at.% | nm-sized | A porous and rough surface was obtained with a KAgCN concentration >0.02 M. The Cu–Ag film had a resistivity of 5.0 µΩcm and was made with −1.6 V at pH = 6.6. It can be used to overcome electromigration—one of the problems in Cu interconnections. | Lee et al. [69] |
50 g/L CuSO4·5H2O complexed by 150 g/L K4P2O7, 75 mL/L 0.1 M AgNO3 complexed by 150 g/L KI | Plated Ni on steel samples | Electroplating at 50 °C in non-stirred conditions, deposition time was in the range of 10–150 min. I = 2–30 mA/cm2 at the different current densities. | 3–16 at.% | 5–7 µm | Innovative opportunities in the electrodeposition of electromigration-resistant coatings with high mechanical qualities for application in the electronic industry. | Bernasconi et al. [73] |
50–125 mM Cu(NO3)2, 1–7 mM AgNO3, 0–1 M NaNO3, 0.5 M NH4OH | Cu seed layer (PVD, 60 nm)/Ta (PVD, 35 nm)/SiO2 wafer | The pH = ~10.9. During electrochemical analyses and electrodeposition, the temperature of the electrolyte was maintained at 30 °C. The Cu–Ag films were obtained by applying potentials from −0.5 V to −1.5 V (vs. Ag/AgCl). | 3.4–12.8 at.% | 110 nm | Compared to pure Cu, an increase in mechanical hardness and oxidation resistance, a less toxic electrolyte. The films can be utilized for formation of protective coatings, electrocatalysts, and fabrication of interconnects. | Jeon et al. [7] |
0.02 M Cu(NO3)2·3H2O, 0.02 M AgNO3 + 0.2 M TU as a complexing agent | The Ni-coated copper strips | The LSV from the open circuit potential to −1.5 V (vs. Ag/AgCl) in 3.0 M KCl reference electrode with a scan rate of 10 mV/s. Samples were deposited with TON current densities of 1, 5, and 10 mA/cm2. The TOFF current was fixed at 0.1 mA/cm2 in each case. | 40–80 wt.% | 10 ± 1 μm, 14 ± 2 μm | The Cu–Ag coatings deposited at 1 and 5 mA/cm2 demonstrated a hardness of 382 ± 7.5 and 174 ± 5.0 VHN, respectively. These coatings have high electrical resistivity and can be promising candidates for electrical contact materials. | Satpathy et al. [68] |
Electrolyte | Additives | Substrate | Synthesis Conditions | Ag Content | Thickness | Properties and Applications | References |
---|---|---|---|---|---|---|---|
0.3 M CuCN, 5.0 mM KAg(CN)2, 0.6 M KCN | 5 µM KSeCN and 0.1625 mM TU are the adsorbates used for Ag super-filling | Cu (PVD, 40 nm)/Ta(PVD, 7 nm)/Si | The deposition potential was fixed at −1.3 V (vs. Ag/AgCl). + Annealing (N2) at 350 °C for 1 h. | 7.73–9.28 at.% | 240 nm | The Cu–Ag exhibited superior oxidation resistance and mechanical hardness without severe reduction in the electrical conductivity compared to pure Cu. The super-filling of Cu–Ag can be used for the fabrication of metal interconnections. | Kim et al. [120] |
67 g/L CuSO4·5H2O (0.24 M), 0–30 mL/L AgNO3 (0.1 M), 170 g/L H2SO4 (1.8 M) | 8 mL/L Cubath SC MD, 2 mL/L Cubath LO 70/30 (Enthone GmbH, Langenfeld, Germany) | Single crystalline Si wafers | An applied deposition voltage of 1 V and a substrate with d = 100 mm. The deposition was realized in the constant current density mode with 5 mA/cm2 and 15 mA/cm2. | 2 at.% | 1 µm | The deposited Cu–Ag films fulfilled the electrical resistivity of ƍƒ < 2.2 µΩcm ITRS (International Technology Roadmap for Semiconductors) after heat treatment up to 500 °C. The electrical resistivity of films was low enough for interconnect applications. | Strehle et al. [121] |
CuCN, 1.25–10.0 mM KAg(CN)2 | 0.2 M KCN as a complexing agent | Cu blanket wafers (PVD, 40 nm)/Ta (PVD, 7 nm)/Si | The LSV was carried out with a 10 mV/s scan rate, and the applied potential ranged from −0.6 to −2.0 V (vs. Ag/AgCl). Annealing (N2) at 350 °C for 1 h to decrease the electrical resistivity of the films, and the atomic distribution of metals. A corrosion test was performed in the air at 250 °C for 30 min. | 3–11 at.% | 130 nm | During annealing, Ag atoms appeared to be segregated at the surface through the grain boundaries, which decreased the surface roughness and enhanced the oxidation resistance. After annealing, Cu–Ag film had a resistivity comparable to that of pure Cu. | Kim et al. [53] |
50 mM CuSO4·5H2O, 2 mM AgNO3, NaOH (pH = 6–10) | 250 mM (NH4)2HC6H5O7 | Si wafers/100-nm thick SiO2 layer/10-nm thick W diffusion barrier layer | Cathodic voltammetry was performed up to −1.2 V (vs. Ag/AgCl) at a potential scan rate of 10 mV/s. The Cu–Ag alloy was electrodeposited for 20 s at a constant potential of −0.7 V (vs. Ag/AgCl). | 3–5 wt.% | nm-sized | This seedless Cu–Ag electrodeposition can be used in fabricating defect-free interconnect lines for microelectronic systems. | Kim et al. [122] |
Electrolyte | Additives | Substrate | Synthesis Conditions | Ag Content | Thickness | Properties and Applications | References |
---|---|---|---|---|---|---|---|
Cu(NO3)2·3H2O, AgNO3 | 3 mM Sodium citrate | Ni foams | The open circuit voltage was 1.49 V and the maximum power density was 86.5 mW/cm2 at a constant current density of 100 mA/cm2 for the primary zinc-air battery. The electrodeposition time—50 s. | 5–10 at.% | 40–50 nm | The round-trip efficiency of the rechargeable zinc-air battery at 20 mA/cm2 was 56.4%. The Cu–Ag electrocatalyst showed high catalytic activity in the oxygen evolution reaction in an alkaline battery and excellent tolerance of carbonate ions on the cathode side. The innovative air cathode modified by the Cu–Ag catalyst exhibited good durability during the charge and discharge processes. The Cu–Ag catalysts are the candidates for applications in metal-air batteries and alkaline fuel cells. | Jin et al. [123] |
0.2 M CuCN, 10–30 mM KAg(CN)2 | 0.4 M KCN | Cu foil | The LSV for selecting the deposition potential was conducted in the electrolytes across a potential range from −0.4 V to −2.0 V (vs. Ag/AgCl) at a sweep rate of 20 mV/s. The electrodes were deposited at −1.3 V (vs. Ag/AgCl), and the amount of charge was set at 400 mC/cm2. | 57 at.% | 1–2 µm | The catalytic activity of the Cu–Ag dendritic catalyst was 2.2 times higher than that of the Ag dendrite catalyst, in terms of Ag mass activity. These Cu–Ag catalysts can be effectively used for the production of CO by electrochemical reduction of CO2. They also offer significant benefits in terms of process expenses. | Choi et al. [95] |
20 mM CuSO4, 2 mM Ag2SO4, 1.5 M H2SO4 | 0.1 M Na3C6H5O7·2H2O | Cu foil | I = −3 A/cm2 for 20 s. A mild thermal annealing treatment in air at 200 °C was applied to the deposited Cu–Ag foam for 12 h. | 15 at.% | nm-sized | The as-deposited catalyst was selective towards CO at particularly low overpotentials (FECO = 81.45%, ICO = −0.24 mA/cm2 at −0.3 V vs. RHE) and towards C2H4 at higher overpotentials (FEC2H4 = 36.56%, IC2H4 = −11.32 mA/cm2 at −1.1 V vs. RHE). | Dutta et al. [124] |
0.2 M CuSO4, 10–50 mM AgNO3, 1.5 M H2SO4 | – | Cu foil | Cu–Ag foams were electrodeposited at a constant current of 1 A/cm2 for 10 s. | ∼11–33 wt.% | 1–5 µm | Increased selectivity and activity for CO production from CO2 for Cu–Ag catalysts. Compared to pure Ag catalyst, the nanostructuring of Ag with low-cost and CO2RR active Cu highlights a synergy between the metal components in efficiently catalyzing CO2 reduction to CO at low overpotentials and with better stability. | Kottakkat et al. [125] |
0.1 M CuSO4·5H2O, 1 mM Ag2SO4, H2SO4 | 10 mM 3,5-diamino-1,2,4-triazole as an inhibitor | The carbon paper coated with Cu | Up to a final deposition charge of 2 C/cm2, alloys were electrodeposited galvanostatically at a constant current density of 4 mA/cm2. | 6 at.% | nm-sized | For the electroreduction of CO2 in an alkaline flow electrolyzer, the Cu–Ag catalyst shows good selectivity towards C2H4 (∼60%) and C2H5OH (∼25%) production at a relatively low applied potential −0.7 V vs. RHE and a high current density of −300 mA/cm2. | Hoang et al. [101] |
Electrolyte | Additives | Substrate | Synthesis Conditions | Ag Content | Thickness | Properties and Applications | References |
---|---|---|---|---|---|---|---|
CuSO4, AgNO3 | Reducing agent, tri-sodium citrate dissolved in H2O | Pre-activated Si wafer | The electrodeposition of bimetallic coatings was achieved using the chronoamperometry technique at ambient temperature. | 5.3 at.%, 6.2 at.% | 2.9 µm, 11 µm | Optical reflectance, high surface chemistry and topography, nanocrystallite cluster orientation. Applicable in SERS. | Rajashekhar et al. [96] |
0.1 M Cu(NO3)2·H2O, 10−4 M AgNO3 | – | Carbon-based screen-printed electrode | The potential was at −0.3 V (vs. Ag/AgCl) for 180 s. | – | µm-sized | High-performance, low-cost SERS-active electrodes were made with a minimal concentration of Ag. The superior performance of this bimetallic Cu–Ag electrode over a monometallic Ag screen-printed electrode represents an eco-friendly solution for EC-SERS investigations in the future. | Clarke et al. [126] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Efimova, S.; Lazar, F.S.; Chopart, J.-P.; Debray, F.; Daltin, A.-L. Electrodeposition of Copper-Silver Alloys from Aqueous Solutions: A Prospective Process for Miscellaneous Usages. Compounds 2024, 4, 453-478. https://doi.org/10.3390/compounds4030028
Efimova S, Lazar FS, Chopart J-P, Debray F, Daltin A-L. Electrodeposition of Copper-Silver Alloys from Aqueous Solutions: A Prospective Process for Miscellaneous Usages. Compounds. 2024; 4(3):453-478. https://doi.org/10.3390/compounds4030028
Chicago/Turabian StyleEfimova, Sofya, Florica Simescu Lazar, Jean-Paul Chopart, François Debray, and Anne-Lise Daltin. 2024. "Electrodeposition of Copper-Silver Alloys from Aqueous Solutions: A Prospective Process for Miscellaneous Usages" Compounds 4, no. 3: 453-478. https://doi.org/10.3390/compounds4030028
APA StyleEfimova, S., Lazar, F. S., Chopart, J. -P., Debray, F., & Daltin, A. -L. (2024). Electrodeposition of Copper-Silver Alloys from Aqueous Solutions: A Prospective Process for Miscellaneous Usages. Compounds, 4(3), 453-478. https://doi.org/10.3390/compounds4030028