Next Issue
Volume 5, June
Previous Issue
Volume 4, December
 
 

Nanomanufacturing, Volume 5, Issue 1 (March 2025) – 4 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
11 pages, 5257 KiB  
Article
Simple Manufacturing of Large Polypyrrole Free-Standing Films Made of Nanoplatelets
by Cesar A. Barbero, Petr Slobodian, Robert Olejnik and Jiri Matyas
Nanomanufacturing 2025, 5(1), 4; https://doi.org/10.3390/nanomanufacturing5010004 - 7 Mar 2025
Viewed by 481
Abstract
A simple method is developed to produce free-standing films of polypyrrole (PPy) in one step. It consists of the interfacial polymerization (without surfactants) of pyrrole (dissolved in chloroform) with an oxidant (ammonium persulfate, dissolved in water). It is observed that the area of [...] Read more.
A simple method is developed to produce free-standing films of polypyrrole (PPy) in one step. It consists of the interfacial polymerization (without surfactants) of pyrrole (dissolved in chloroform) with an oxidant (ammonium persulfate, dissolved in water). It is observed that the area of the formed film only depends on the size of the interface, achieving the manufacture of PPy films of up to 300 cm2, with a thickness of 200 microns. Transmission electron microscopy (TEM) images show the presence of superimposed nanoplatelets of ca. 100 nm main axis. These nanoparticles seem to aggregate in two dimensions to form the free-standing film. Scanning electron microscopy (SEM) shows a compact surface with nanowires decorating the surface. PPy films show an electrical conductivity of 63 (±3) S cm−1. PPy conductive films are then applied in the construction of an antenna that shows a response in two bands: at 1.52 GHz (−13.85 dB) and at 3.50 GHz (−33.55 dB). The values are comparable to those of other antennas built with different PPy films. The simple synthesis of large-area PPy films in a single step would allow the fabrication of large quantities of electronic elements (e.g., sensors) with uniform properties in a short time. Full article
Show Figures

Figure 1

22 pages, 2516 KiB  
Review
Microbial Fuel Cells and Microbial Electrolysis Cells for the Generation of Green Hydrogen and Bioenergy via Microorganisms and Agro-Waste Catalysts
by Xolile Fuku, Ilunga Kamika and Tshimangadzo S. Munonde
Nanomanufacturing 2025, 5(1), 3; https://doi.org/10.3390/nanomanufacturing5010003 - 10 Feb 2025
Viewed by 1057
Abstract
A national energy crisis has emerged in South Africa due to the country’s increasing energy needs in recent years. The reliance on fossil fuels, especially oil and gas, is unsustainable due to scarcity, emissions, and environmental repercussions. Researchers from all over the world [...] Read more.
A national energy crisis has emerged in South Africa due to the country’s increasing energy needs in recent years. The reliance on fossil fuels, especially oil and gas, is unsustainable due to scarcity, emissions, and environmental repercussions. Researchers from all over the world have recently concentrated their efforts on finding carbon-free, renewable, and alternative energy sources and have investigated microbiology and biotechnology as a potential remedy. The usage of microbial electrolytic cells (MECs) and microbial fuel cells (MFCs) is one method for resolving the problem. These technologies are evolving as viable options for hydrogen and bioenergy production. The renewable energy technologies initiative in South Africa, which is regarded as a model for other African countries, has developed in the allocation of over 6000 MW of generation capacity to bidders across several technologies, primarily wind and solar. With a total investment value of R33.7 billion, the Eastern Cape’s renewable energy initiatives have created 18,132 jobs, with the province awarded 16 wind farms and one solar energy farm. Utilizing wastewater as a source of energy in MFCs has been recommended as most treatments, such as activated sludge processes and trickling filter plants, require roughly 1322 kWh per million gallons, whereas MFCs only require a small amount of external power to operate. The cost of wastewater treatment using MFCs for an influent flow of 318 m3 h−1 has been estimated to be only 9% (USD 6.4 million) of the total cost of treatment by a conventional wastewater treatment plant (USD 68.2 million). Currently, approximately 500 billion cubic meters of hydrogen (H2) are generated worldwide each year, exhibiting a growth rate of 10%. This production primarily comes from natural gas (40%), heavy oils and naphtha (30%), coal (18%), electrolysis (4%), and biomass (1%). The hydrogen produced is utilized in the manufacturing of ammonia (49%), the refining of petroleum (37%), the production of methanol (8%), and in a variety of smaller applications (6%). Considering South Africa’s energy issue, this review article examines the production of wastewater and its impacts on society as a critical issue in the global scenario and as a source of green energy. Full article
Show Figures

Figure 1

12 pages, 3107 KiB  
Article
High-Aspect-Ratio Shape Replica Mold Fabrication Using Nanoimprinting and Silver Ink as Etching Mask
by Keisuke Enomoto and Jun Taniguchi
Nanomanufacturing 2025, 5(1), 2; https://doi.org/10.3390/nanomanufacturing5010002 - 15 Jan 2025
Viewed by 706
Abstract
Effective high-aspect-ratio molds that minimize vacuum processes are becoming increasingly important for producing metalenses and other devices. To fabricate a high-aspect-ratio structure, a metal film must be used as a mask for dry etching, typically achieved via vacuum deposition. To avoid this vacuum [...] Read more.
Effective high-aspect-ratio molds that minimize vacuum processes are becoming increasingly important for producing metalenses and other devices. To fabricate a high-aspect-ratio structure, a metal film must be used as a mask for dry etching, typically achieved via vacuum deposition. To avoid this vacuum process, we devised a method to develop an etching mask in the air using silver ink. The manufacturing method involved filling the mold with silver ink, baking it, removing silver from the convex parts of the mold with a polyethylene terephthalate film, and placing silver from the concave parts of the mold on top of the ultraviolet (UV)-cured resin using ultraviolet-nanoimprint lithography. The transferred pattern had silver on the convex parts, which was used as a mask for the oxygen dry etching of the UV-curable resin. Consequently, high-aspect-ratio resin shapes were obtained from three types of nano- and micromolds. Additionally, a high-aspect-ratio resin with silver was used as a replica mold to form a silver pattern. This process is effective and allows high-aspect-ratio patterns to be obtained from master molds. Full article
(This article belongs to the Special Issue Nanoimprinting and Sustainability)
Show Figures

Figure 1

21 pages, 37634 KiB  
Article
Processing and Characterization of Nickel Matrix Nanocomposites Reinforced with Layered Nickel Aluminide Intermetallics Using Mechanical Alloying and Spark Plasma Sintering
by Zary Adabavazeh, Amir Hossein Shiranibidabadi, Mohammad Hossein Enayati and Fathallah Karimzadeh
Nanomanufacturing 2025, 5(1), 1; https://doi.org/10.3390/nanomanufacturing5010001 - 10 Jan 2025
Viewed by 772
Abstract
This research discusses the fabrication of a nickel matrix nanocomposite reinforced with in situ synthesized layered Ni3Al intermetallics using mechanical alloying (MA) and spark plasma sintering (SPS). In contrast to ex situ methods that frequently produce weak interfaces, the in situ [...] Read more.
This research discusses the fabrication of a nickel matrix nanocomposite reinforced with in situ synthesized layered Ni3Al intermetallics using mechanical alloying (MA) and spark plasma sintering (SPS). In contrast to ex situ methods that frequently produce weak interfaces, the in situ approach enhances bonding and mechanical performance by using layered Ni3Al reinforcements with excellent deformation resistance and load-bearing potential. Twenty-hour milled Ni-Al powders were annealed at 700 °C and consolidated using SPS, achieving approximately 96% theoretical density. The nanocomposite showed exceptional mechanical properties, with a hardness of 350 ± 15 HV in contrast to 200 ± 5 HV for pure Ni, along with higher wear resistance and reduced wear track depth. These improvements resulted from microstructural refinement and the development of hard intermetallic phases. X-ray diffraction (XRD) and transmission electron microscopy (TEM) confirmed the formation of a homogeneous layered Ni3Al structure inside the matrix, showing a crystallite size of around 40 nm post-milling. Layered reinforcements enhanced matrix–reinforcement interactions, thereby minimizing common challenges in traditional composites. This innovative production technique highlights the future potential of Ni3Al-reinforced nanocomposites as high-performance materials for advanced engineering applications, combining outstanding mechanical and tribological properties with strong structural integrity. Full article
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop