Simple Manufacturing of Large Polypyrrole Free-Standing Films Made of Nanoplatelets
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fabrication of the Free-Staing Films
2.3. Characterization
2.4. Building the Antenna
2.5. Characterization of Antenna Properties
3. Results and Discussion
3.1. Free-Standing Film Fabrication
3.2. Film Characterization
3.3. Measuring Antenna Properties
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abel, S.B.; Olejnik, R.; Rivarola, C.R.; Slobodian, P.; Saha, P.; Acevedo, D.F.; Barbero, C.A. Resistive Sensors for Organic Vapors Based on Nanostructured and Chemically Modified Polyanilines. IEEE Sens. J. 2018, 18, 6510–6516. [Google Scholar] [CrossRef]
- Li, P.; Du, D.; Guo, L.; Guo, Y.; Ouyang, J. Stretchable and Conductive Polymer Films for High-Performance Electromagnetic Interference Shielding. J. Mater. Chem. C 2016, 4, 6525–6532. [Google Scholar] [CrossRef]
- Song, E.; Liu, P.; Yifan, L.; Wang, E.; Guo, C.-Y. Conductive Polymer-Based Thermoelectric Composites: Preparation, Properties, and Applications. J. Compos. Sci. 2024, 8, 308. [Google Scholar] [CrossRef]
- Goyal, M.; Singh, K.; Bhatnagar, N. Conductive Polymers: A Multipurpose Material for Protecting Coating. Prog. Org. Coat. 2024, 187, 108083. [Google Scholar] [CrossRef]
- Otero, T.F.; Beaumont, S. The Cooperative Actuation of Polypyrrole Electrochemical Machines Senses the Chemical Conditions as Muscles Sense Their Fatigue State. Sens. Actuators B Chem. 2018, 263, 493–501. [Google Scholar] [CrossRef]
- Kim, J.-Y.; Sohn, D.; Kim, E.-R. Polymer-Based Multi-Layer Conductive Electrode Film for Plastic LCD Applications. Appl. Phys. A 2001, 72, 699–704. [Google Scholar] [CrossRef]
- Koncar, V.; Cochrane, C.; Lewandowski, M.; Boussu, F.; Dufour, C. Electro-Conductive Sensors and Heating Elements Based on Conductive Polymer Composites. Int. J. Cloth. Sci. Technol. 2009, 21, 82–92. [Google Scholar] [CrossRef]
- Yin, Y.; Prabhakar, M.; Ebbinghaus, P.; da Silva, C.; Rohwerder, M. Neutral inhibitor molecules entrapped into polypyrrole network for corrosion protection. Chem. Eng. J. 2022, 440, 135739–135753. [Google Scholar] [CrossRef]
- Ismael, A.; Guessasma, S.; Bozek, A.; Durand, S.; Papineau, P.; Le Duigou, A.; Castro, M.; Beaugrand, J.; Villares, A. Conductive and Thermoactivated Flax Yarns Developed by in Situ Polypyrrole Polymerizations: Interactions with Carbohydrate Polymers. Prog. Org. Coat. 2024, 198, 108894. [Google Scholar] [CrossRef]
- Chen, Y.; Kang, G.; Xu, H.; Kang, L. PPy doped with different metal sulphate as electrode materials for supercapacitors. Russ. J. Electrochem. 2017, 53, 359–365. [Google Scholar] [CrossRef]
- El Guerraf, A.; Ben Jadi, S.; Karadas Bakirhan, N.; Eylul Kiymaci, M.; Bazzaoui, M.; Aysil Ozkan, S.; Arbi Bazzaoui, E. Antibacterial activity and volatile organic compounds sensing property of polypyrrole-coated cellulosic paper for food packaging purpose. Polym. Bull. 2022, 79, 11543–11566. [Google Scholar] [CrossRef]
- Krukiewicz, K.; Gniazdowska, B.; Jarosz, T.; Herman, A.P.; Boncel, S.; Turczyn, R. Effect of immobilization and release of ciprofloxacin and quercetin on electrochemical properties of poly(3,4-ethylenedioxypyrrole) matrix. Synt. Met. 2019, 249, 52–62. [Google Scholar] [CrossRef]
- Ashu Tufa, R.; Piallat, T.; Hnát, J.; Fontananova, E.; Paidar, M.; Chanda, D.; Curcio, E.; di Profio, G.; Bouzek, K. Salinity gradient power reverse electrodialysis: Cation exchange membrane design based on polypyrrole-chitosan composites for enhanced monovalent selectivity. Chem. Eng. J. 2020, 380, 122461. [Google Scholar] [CrossRef]
- Ma, Y.; Zhou, J.; Miao, Z.; Qian, H.; Zha, Z. dl-Menthol Loaded Polypyrrole Nanoparticles as a Controlled Diclofenac Delivery Platform for Sensitizing Cancer Cells to Photothermal Therapy. ACS Appl. Bio Mater. 2019, 2, 848–855. [Google Scholar] [CrossRef]
- Kahvazi Zadeh, M.; Yeganeh, M.; Tavakoli Shoushtari, M.; Esmaeilkhanian, A. Corrosion performance of polypyrrole-coated metals: A review of perspectives and recent advances. Synt. Met. 2021, 274, 116723. [Google Scholar] [CrossRef]
- Golba, S.; Loskot, J. The Alphabet of Nanostructured Polypyrrole. Materials 2023, 16, 7069. [Google Scholar] [CrossRef]
- Kausaite-Minkstimiene, A.; Mazeiko, V.; Ramanaviciene, A.; Ramanavicius, A. Evaluation of Chemical Synthesis of Polypyrrole Particles. Colloids Surf. A Physicochem. Eng. Asp. 2015, 483, 224–231. [Google Scholar] [CrossRef]
- Xiao, H.-M.; Fu, S.-Y. Synthesis and Physical Properties of Electromagnetic Polypyrrole Composites via Addition of Magnetic Crystals. CrystEngComm 2013, 16, 2097–2112. [Google Scholar] [CrossRef]
- Zotti, G.; Schiavon, G. Spin and Spinless Conductivity in Polypyrrole. Evidence for Mixed-Valence Conduction. Synth. Met. 1991, 41, 445–448. [Google Scholar] [CrossRef]
- Vernitskaya, T.V.; Efimov, O.N. Polypyrrole: A conducting polymer; its synthesis, properties and applications. Russ. Chem. Rev. 1997, 66, 443–457. [Google Scholar] [CrossRef]
- Ouyang, J.; Li, Y. Effect of Electrolyte Solvent on the Conductivity and Structure of As-Prepared Polypyrrole Films. Polymer 1997, 38, 1971–1976. [Google Scholar] [CrossRef]
- Thombare, J.V.; Shinde, S.K.; Lohar, G.M.; Chougale, U.M.; Dhasade, S.S.; Dhaygude, H.D.; Relekar, B.P.; Fulari, V.J. Optical Properties of Electrochemically Synthesized Polypyrrole Thin Films: The Electrolyte Effect. J. Semicond. 2014, 35, 063001. [Google Scholar] [CrossRef]
- Baek, S.; Green, R.A.; Poole-Warren, L.A. Effects of dopants on the biomechanical properties of conducting polymer films on platinum electrodes. J. Biomed. Mater. Res. Part. A 2014, 102A, 2743–2754. [Google Scholar] [CrossRef] [PubMed]
- Stejskal, J.; Sapurina, I. Polyaniline: Thin Films and Colloidal Dispersions (IUPAC Technical Report). Pure Appl. Chem. 2005, 77, 815–826. [Google Scholar] [CrossRef]
- Yang, Q.; Hou, Z.; Huang, T. Self-Assembled Polypyrrole Film by Interfacial Polymerization for Supercapacitor Applications. J. Appl. Polym. Sci. 2014, 132, 41615. [Google Scholar] [CrossRef]
- Hou, Z.; Lu, H.; Yang, Q.; Zhao, Q.; Liu, J. Micromorphology-Controlled Synthesis of Polypyrrole Films by Using Binary Surfactant of Span80/OP10 via Interfacial Polymerization and Their Enhanced Electrochemical Capacitance. Electrochim. Acta 2018, 265, 601–608. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, F. Synthesis and Application of Polypyrrole Nanofibers: A Review. Nanoscale Adv. 2023, 5, 3606–3618. [Google Scholar] [CrossRef]
- Kim, J.-Y.; Kim, J.-T.; Song, E.-A.; Min, Y.-K.; Hamaguchi, H. Polypyrrole Nanostructures Self-Assembled in Magnetic Ionic Liquid as a Template. Macromolecules 2008, 41, 2886–2889. [Google Scholar] [CrossRef]
- Newman, M.; Doan-Nguyen, V. Electrochemical Delamination for Free-Standing Polypyrrole Doped with Dodecylbenzenesulfonate Films and the Effect of Substrate. J. Electrochem. Soc. 2024, 171, 055503. [Google Scholar] [CrossRef]
- Rani, P.; Malik, R.S. Electromagnetic Interference Shielding Behavior of Polypyrrole-Impregnated Poly (Ether Imide)/Sulfonated Poly (Ether Ether Ketone) Composites. Mater. Chem. Phys. 2023, 307, 128187. [Google Scholar] [CrossRef]
- Huang, J.; Virji, S.; Weiller, B.H.; Kaner, R.B. Polyaniline Nanofibers: Facile Synthesis and Chemical Sensors. J. Am. Chem. Soc. 2002, 125, 314–315. [Google Scholar] [CrossRef] [PubMed]
- Yussuf, A.; Al-Saleh, M.; Al-Enezi, S.; Abraham, G. Synthesis and Characterization of Conductive Polypyrrole: The Influence of the Oxidants and Monomer on the Electrical, Thermal, and Morphological Properties. Int. J. Polym. Sci. 2018, 2018, 4191747. [Google Scholar] [CrossRef]
- Matyas, J.; Munster, L.; Olejnik, R.; Vlcek, K.; Slobodian, P.; Krcmar, P.; Urbanek, P.; Kuritka, I. Antenna of Silver Nanoparticles Mounted on a Flexible Polymer Substrate Constructed Using Inkjet Print Technology. Jpn. J. Appl. Phys. 2016, 55, 02BB13. [Google Scholar] [CrossRef]
- Olejnik, R.; Matyas, J.; Slobodian, P.; Vlcek, K. The Multifunctional Composite on the Base of Carbon Nanotubes Network and Its Use as a Passive Antenna and Gas Sensing Element. Key Eng. Mater. 2014, 605, 322–325. [Google Scholar] [CrossRef]
- Available online: https://imagej.net/ij/ (accessed on 16 February 2025).
- Pang, A.L.; Arsad, A.; Ahmadipour, M. Synthesis and Factor Affecting on the Conductivity of Polypyrrole: A Short Review. Polym. Adv. Technol. 2020, 32, 1428–1454. [Google Scholar] [CrossRef]
- Singh, S.; Dahima, V.; Mishra, R. Exploring the Dynamics of Microstrip Antenna and Radiation Mechanism of Dipole Antennas; CRC Press: Boca Raton, FL, USA, 2024; pp. 102–133. [Google Scholar] [CrossRef]
- Verma, A.; Weng, B.; Shepherd, R.; Christophe, F.; Truong, V.-T.; Wallace, G.G.; Bates, B.D. 6 GHz Microstrip Patch Antennas with PEDOT and Polypyrrole Conducting Polymers. In Proceedings of the 2010 International Conference on Electromagnetics in Advanced Applications, Sydney, Australia, 20–24 September 2010; pp. 329–332. [Google Scholar] [CrossRef]
- Verma, A.; Fumeaux, C.; Truong, V.-T.; Bates, B.D. A 2 GHz Polypyrrole Microstrip Patch Antenna on PlexiglasTM Substrate. In Proceedings of the 2009 Asia Pacific Microwave Conference. In Proceedings of the 2009 Asia Pacific Microwave Conference, Singapore, 7–10 December 2009; pp. 36–39. [Google Scholar] [CrossRef]
- Varghese, L.; Choudhury, B. Conducting Polymer-Based Antennas. In Multiscale Modelling of Advanced Materials; Kumari, R., Choudhury, B., Eds.; Springer Nature: Berlin/Heidelberg, Germany, 2020; ISBN 9789811522673. [Google Scholar]
- Verma, A.; Fumeaux, C.; Truong, V.-T.; Bates, B.D. Effect of Film Thickness on the Radiation Efficiency of a 4.5 GHz Polypyrrole Conducting Polymer Patch Antenna. In Proceedings of the 2010 Asia-Pacific Microwave Conference, Yokohama, Japan, 7–10 December 2010; pp. 95–98. [Google Scholar]
- Navale, S.T.; Mane, A.T.; Chougule, M.A.; Sakhare, R.D.; Nalage, S.R.; Patil, V.B. Highly Selective and Sensitive Room Temperature NO2 Gas Sensor Based on Polypyrrole Thin Films. Synth. Met. 2014, 189, 94–99. [Google Scholar] [CrossRef]
Thickness (mm) | DC Conductivity (S/cm) | Frequency (GHz) | Return Loss (dB) | Frequency (GHz) | Return Loss (dB) | Ref. |
---|---|---|---|---|---|---|
90 | 20 | 6 | 3.8 | - | - | [38] |
120 | 20 | 2.18 | 10 | - | - | [39] |
18 | 20 | 6.67 | 5.310 | - | - | [40] |
40 | 20 | 4.5 | 2.42 | - | - | [41] |
50 | 20 | 4.5 | 3.4 | - | - | [41] |
90 | 20 | 4.5 | 2.8 | - | - | [41] |
140 | 20 | 4.5 | 4.63 | [41] | ||
200 | 63 (±3) | 1.52 | 13.85 | 3.50 | 33.55 | this work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barbero, C.A.; Slobodian, P.; Olejnik, R.; Matyas, J. Simple Manufacturing of Large Polypyrrole Free-Standing Films Made of Nanoplatelets. Nanomanufacturing 2025, 5, 4. https://doi.org/10.3390/nanomanufacturing5010004
Barbero CA, Slobodian P, Olejnik R, Matyas J. Simple Manufacturing of Large Polypyrrole Free-Standing Films Made of Nanoplatelets. Nanomanufacturing. 2025; 5(1):4. https://doi.org/10.3390/nanomanufacturing5010004
Chicago/Turabian StyleBarbero, Cesar A., Petr Slobodian, Robert Olejnik, and Jiri Matyas. 2025. "Simple Manufacturing of Large Polypyrrole Free-Standing Films Made of Nanoplatelets" Nanomanufacturing 5, no. 1: 4. https://doi.org/10.3390/nanomanufacturing5010004
APA StyleBarbero, C. A., Slobodian, P., Olejnik, R., & Matyas, J. (2025). Simple Manufacturing of Large Polypyrrole Free-Standing Films Made of Nanoplatelets. Nanomanufacturing, 5(1), 4. https://doi.org/10.3390/nanomanufacturing5010004