Lipid–Inorganic Hybrid Particles with Non-Lamellar Structures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of the Precursors
2.3. Preparation of Nanostructured Particles
2.4. Characterization of Nanostructured Particles
3. Results
3.1. Formation of Structures and Their Evolution over Time
3.2. Drying and Rehydration
3.3. Stability upon Temperature Increase
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Amar-Yuli, I.; Azulay, D.; Mishraki, T.; Aserin, A.; Garti, N. The role of glycerol and phosphatidylcholine in solubilizing and enhancing insulin stability in reverse hexagonal mesophases. J. Colloid Interface Sci. 2011, 364, 379–387. [Google Scholar] [CrossRef] [PubMed]
- Bender, J.; Simonsson, C.; Smedh, M.; Engström, S.; Ericson, M.B. Lipid cubic phases in topical drug delivery: Visualization of skin distribution using two-photon microscopy. J. Control. Release 2008, 129, 163–169. [Google Scholar] [CrossRef] [PubMed]
- Boyd, B.J.; Khoo, S.M.; Whittaker, D.V.; Davey, G.; Porter, C.J.H. A lipid-based liquid crystalline matrix that provides sustained release and enhanced oral bioavailability for a model poorly water soluble drug in rats. Int. J. Pharm. 2007, 340, 52–60. [Google Scholar] [CrossRef] [PubMed]
- Libster, D.; Ishai, P.B.; Aserin, A.; Shoham, G.; Garti, N. Molecular interactions in reverse hexagonal mesophase in the presence of Cyclosporin A. Int. J. Pharm. 2009, 367, 115–126. [Google Scholar] [CrossRef]
- Lopes, L.B.; Speretta, F.F.F.; Bentley, M.V.L.B. Enhancement of skin penetration of vitamin K using monoolein-based liquid crystalline systems. Eur. J. Pharm. Sci. 2007, 32, 209–215. [Google Scholar] [CrossRef]
- Chemelli, A.; Maurer, M.; Geier, R.; Glatter, O. Optimized loading and sustained release of hydrophilic proteins from internally nanostructured particles. Langmuir 2012, 28, 16788–16797. [Google Scholar] [CrossRef]
- Milak, S.; Chemelli, A.; Glatter, O.; Zimmer, A. Vancomycin ocular delivery systems based on glycerol monooleate reversed hexagonal and reversed cubic liquid crystalline phases. Eur. J. Pharm. Biopharm. 2019, 139, 279–290. [Google Scholar] [CrossRef]
- Zabara, M.; Senturk, B.; Gontsarik, M.; Ren, Q.; Rottmar, M.; Maniura-Weber, K.; Mezzenga, R.; Bolisetty, S.; Salentinig, S. Multifunctional Nano-Biointerfaces: Cytocompatible Antimicrobial Nanocarriers from Stabilizer-Free Cubosomes. Adv. Funct. Mater. 2019, 29, 1904007. [Google Scholar] [CrossRef]
- Fraser, S.J.; Dawson, R.M.; Waddington, L.J.; Muir, B.W.; Mulet, X.; Hartley, P.G.; Separovic, F.; Polyzos, A. Development of cubosomes as a cell-free biosensing platform. Aust. J. Chem. 2011, 64, 46–53. [Google Scholar] [CrossRef]
- Duss, M.; Salvati Manni, L.; Moser, L.; Handschin, S.; Mezzenga, R.; Jessen, H.J.; Landau, E.M. Lipidic Mesophases as Novel Nanoreactor Scaffolds for Organocatalysts: Heterogeneously Catalyzed Asymmetric Aldol Reactions in Confined Water. ACS Appl. Mater. Interfaces 2018, 10, 5114–5124. [Google Scholar] [CrossRef]
- De Campo, L.; Yaghmur, A.; Sagalowicz, L.; Leser, M.E.; Watzke, H.; Glatter, O. Reversible phase transitions in emulsified nanostructured lipid systems. Langmuir 2004, 20, 5254–5261. [Google Scholar] [CrossRef]
- Guillot, S.; Moitzi, C.; Salentinig, S.; Sagalowicz, L.; Leser, M.E.; Glatter, O. Direct and indirect thermal transitions from hexosomes to emulsified micro-emulsions in oil-loaded monoglyceride-based particles. Colloids Surfaces A Physicochem. Eng. Asp. 2006, 291, 78–84. [Google Scholar] [CrossRef]
- Tilley, A.; Dong, Y.-D.; Amenitsch, H.; Rappolt, M.; Boyd, B.J. Transfer of lipid and phase reorganisation in self-assembled liquid crystal nanostructured particles based on phytantriol. Phys. Chem. Chem. Phys. 2011, 13, 3026–3032. [Google Scholar] [CrossRef]
- Yaghmur, A.; De Campo, L.; Sagalowicz, L.; Leser, M.E.; Glatter, O. Emulsified microemulsions and oil-containing liquid crystalline phases. Langmuir 2005, 21, 569–577. [Google Scholar] [CrossRef] [PubMed]
- Yaghmur, A.; De Campo, L.; Salentinig, S.; Sagalowicz, L.; Leser, M.E.; Glatter, O. Oil-loaded monolinolein-based particles with confined inverse discontinuous cubic structure (Fd3m). Langmuir 2006, 22, 517–521. [Google Scholar] [CrossRef]
- Angelov, B.; Angelova, A.; Mutafchieva, R.; Lesieur, S.; Vainio, U.; Garamus, V.M.; Jensen, G.V.; Pedersen, J.S. SAXS investigation of a cubic to a sponge (L3) phase transition in self-assembled lipid nanocarriers. Phys. Chem. Chem. Phys. 2011, 13, 3073–3081. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valldeperas, M.; Wiśniewska, M.; Ram-On, M.; Kesselman, E.; Danino, D.; Nylander, T.; Barauskas, J. Sponge Phases and Nanoparticle Dispersions in Aqueous Mixtures of Mono- and Diglycerides. Langmuir 2016, 32, 8650–8659. [Google Scholar] [CrossRef]
- Gilbert, J.; Ermilova, I.; Nagao, M.; Swenson, J.; Nylander, T. Effect of encapsulated protein on the dynamics of lipid sponge phase: A neutron spin echo and molecular dynamics simulation study. Nanoscale 2022, 14, 6990–7002. [Google Scholar] [CrossRef]
- Zhai, J.; Sarkar, S.; Conn, C.E.; Drummond, C.J. Molecular engineering of super-swollen inverse bicontinuous cubic and sponge lipid phases for biomedical applications. Mol. Syst. Des. Eng. 2020, 5, 1354–1375. [Google Scholar] [CrossRef]
- Valldeperas, M.; Talaikis, M.; Dhayal, S.K.; Velička, M.; Barauskas, J.; Niaura, G.; Nylander, T. Encapsulation of Aspartic Protease in Nonlamellar Lipid Liquid Crystalline Phases. Biophys. J. 2019, 117, 829–843. [Google Scholar] [CrossRef]
- Gustafsson, J.; Ljusberg-Wahren, H.; Almgren, M.; Larsson, K. Submicron Particles of Reversed Lipid Phases in Water Stabilized by a Nonionic Amphiphilic Polymer. Langmuir 1997, 13, 6964–6971. [Google Scholar] [CrossRef]
- Johnsson, M.; Lam, Y.; Barauskas, J.; Tiberg, F. Aqueous phase behavior and dispersed nanoparticles of diglycerol monooleate/glycerol dioleate mixtures. Langmuir 2005, 21, 5159–5165. [Google Scholar] [CrossRef]
- Yaghmur, A.; De Campo, L.; Sagalowicz, L.; Leser, M.E.; Glatter, O. Control of the internal structure of MLO-based isasomes by the addition of diglycerol monooleate and soybean phosphatidylcholine. Langmuir 2006, 22, 9919–9927. [Google Scholar] [CrossRef] [PubMed]
- Salonen, A.; Guillot, S.; Glatter, O. Determination of water content in internally self-assembled monoglyceride-based dispersions from the bulk phase. Langmuir 2007, 23, 9151–9154. [Google Scholar] [CrossRef]
- Garti, N.; Spernath, A.; Aserin, A.; Lutz, R. Nano-sized self-assemblies of nonionic surfactants as solubilization reservoirs and microreactors for food systems. Soft Matter 2005, 1, 206–218. [Google Scholar] [CrossRef]
- Chemelli, A.; Conde-Valentín, B.; Uhlig, F.; Glatter, O. Amino Acid Induced Modification of Self-Assembled Monoglyceride-Based Nanostructures. Langmuir 2015, 31, 10377–10381. [Google Scholar] [CrossRef]
- Guillot, S.; Salentinig, S.; Chemelli, A.; Sagalowicz, L.; Leser, M.E.; Glatter, O. Influence of the stabilizer concentration on the internal liquid crystalline order and the size of oil-loaded monolinolein-based dispersions. Langmuir 2010, 26, 6222–6229. [Google Scholar] [CrossRef]
- Salentinig, S.; Sagalowicz, L.; Glatter, O. Self-assembled structures and pK a value of oleic acid in systems of biological levance. Langmuir 2010, 26, 11670–11679. [Google Scholar] [CrossRef]
- Mezzenga, R.; Meyer, C.; Servais, C.; Romoscanu, I.; Sagalowicz, L.; Hayward, R.C.; Romoscanu, A.I. Shear Rheology of Lyotropic Liquid Crystals: A Case Study Shear Rheology of Lyotropic Liquid Crystals: A Case Study. Liq. Cryst. 2005, 21, 3322–3333. [Google Scholar] [CrossRef]
- Kulkarni, C.V.; Mezzenga, R.; Glatter, O. Water-in-oil nanostructured emulsions: Towards the structural hierarchy of liquid crystalline materials. Soft Matter 2010, 6, 5615–5624. [Google Scholar] [CrossRef]
- Phan, S.; Fong, W.K.; Kirby, N.; Hanley, T.; Boyd, B.J. Evaluating the link between self-assembled mesophase structure and drug release. Int. J. Pharm. 2011, 421, 176–182. [Google Scholar] [CrossRef]
- Negrini, R.; Mezzenga, R. pH-responsive lyotropic liquid crystals for controlled drug delivery. Langmuir 2011, 27, 5296–5303. [Google Scholar] [CrossRef] [PubMed]
- Prajapati, R.; Gontsarik, M.; Yaghmur, A.; Salentinig, S. PH-Responsive Nano-Self-Assemblies of the Anticancer Drug 2-Hydroxyoleic Acid. Langmuir 2019, 35, 7954–7961. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fong, W.K.; Hanley, T.; Boyd, B.J. Stimuli responsive liquid crystals provide “on-demand” drug delivery in vitro and in vivo. J. Control. Release 2009, 135, 218–226. [Google Scholar] [CrossRef]
- Barauskas, J.; Cervin, C.; Jankunec, M.; Špandyreva, M.; Ribokaite, K.; Tiberg, F.; Johnsson, M. Interactions of lipid-based liquid crystalline nanoparticles with model and cell membranes. Int. J. Pharm. 2010, 391, 284–291. [Google Scholar] [CrossRef]
- Kuroda, K.; Shimojima, A.; Kawahara, K.; Wakabayashi, R.; Tamura, Y.; Asakura, Y.; Kitahara, M. Utilization of alkoxysilyl groups for the creation of structurally controlled siloxane-based nanomaterials. Chem. Mater. 2014, 26, 211–220. [Google Scholar] [CrossRef]
- Yue, X.; Dai, Z. Recent advances in liposomal nanohybrid cerasomes as promising drug nanocarriers. Adv. Colloid Interface Sci. 2014, 207, 32–42. [Google Scholar] [CrossRef]
- Kikuchi, J.; Yasuhar, K. Cerasomes: A New Family of Artificial Cell Membranes with Ceramic Surface. In Advances in Biomimetics; InTech: Rijeka, Croatia, 2011. [Google Scholar] [CrossRef] [Green Version]
- Fan, H.T.; Liu, X.G.; Xing, X.J.; Li, B.; Wang, K.; Chen, S.T.; Wu, Z.; Qiu, D.F. Ordered mesoporous silica cubic particles decorated with silver nanoparticles: A highly active and recyclable heterogeneous catalyst for the reduction of 4-nitrophenol. Dalton Trans. 2019, 48, 2692–2700. [Google Scholar] [CrossRef]
- Zeng, J.; Zhou, Y.; Li, L.; Jiang, S.P. Phosphotungstic acid functionalized silica nanocomposites with tunable bicontinuous mesoporous structure and superior proton conductivity and stability for fuel cells. Phys. Chem. Chem. Phys. 2011, 13, 10249–10257. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Y.; Zhang, M.; Qu, H.; Zheng, J.; Pang, Q.; Yan, X. Safety evaluation of liposomal nanohybrid cerasomes and their application in the release of 10-hydroxycamptothecin. RSC Adv. 2016, 6, 16292–16300. [Google Scholar] [CrossRef]
- Markhulia, J.; Kekutia, S.; Mitskevich, N.; Mikelashvili, V.; Saneblidze, L.; Leladze, N.; Jabua, Z.; Sacarescu, L.; Kriechbaum, M.; Almásy, L. Synthesis and in vivo investigation of therapeutic effect of magnetite nanofluids in mouse prostate cancer model. Dig. J. Nanomater. Biostruct. 2018, 13, 1081–1090. [Google Scholar]
- Qiao, Y.; Tahara, K.; Zhang, Q.; Song, X.M.; Kikuchi, J.I. Cerasomes: Soft Interface for Redox Enzyme Electrochemical Signal Transmission. Chem.—A Eur. J. 2016, 22, 1340–1348. [Google Scholar] [CrossRef] [PubMed]
- Claesson, M.; Frost, R.; Svedhem, S.; Andersson, M. Pore spanning lipid bilayers on mesoporous silica having varying pore size. Langmuir 2011, 27, 8974–8982. [Google Scholar] [CrossRef] [PubMed]
- Queisser, H.J.; Michl, J.; Jadhav, P.; Baldo, M.A.; Reilly, T.H.; Kanarr, A.C.; Mohanty, A.; Sussman, J.; Lee, J.; Baldo, M.A.; et al. Multicompartment Mesoporous Silica Nanoparticles with Branched Shapes: An Epitaxial Growth Mechanism. Science 2013, 340, 337–342. [Google Scholar] [CrossRef] [Green Version]
- Alberius, P.C.A.; Frindell, K.L.; Hayward, R.C.; Kramer, E.J.; Stucky, G.D.; Chmelka, B.F. General predictive syntheses of cubic, hexagonal, and lamellar silica and titania mesostructured thin films. Chem. Mater. 2002, 14, 3284–3294. [Google Scholar] [CrossRef]
- Shimojima, A.; Kuroda, K. Designed synthesis of nanostructured siloxane-organic hybrids from amphiphilic silicon-based precursors. Chem. Rec. 2006, 6, 53–63. [Google Scholar] [CrossRef]
- Shimojima, A.; Liu, Z.; Ohsuna, T.; Terasaki, O.; Kuroda, K. Self-assembly of designed oligomeric siloxanes with alkyl chains into silica-based hybrid mesostructures. J. Am. Chem. Soc. 2005, 127, 14108–14116. [Google Scholar] [CrossRef]
- Shimojima, A.; Kuroda, K. Direct formation of mesostructured silica-based hybrids from novel siloxane oligomers with long alkyl chains. Angew. Chem. Int. Ed. 2003, 42, 4057–4060. [Google Scholar] [CrossRef]
- Nunes, S.C.; Toquer, G.; Cardoso, M.A.; Mayoral, A.; Ferreira, R.A.S.; Carlos, L.D.; Ferreira, P.; Almeida, P.; Cattoën, X.; Wong Chi Man, M.; et al. Structuring of Alkyl-Triazole Bridged Silsesquioxanes. ChemistrySelect 2017, 2, 432–442. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, J.; Shimojima, A.; Fujimoto, Y.; Kuroda, K. Stable silanetriols that contain tert-alkoxy groups: Versatile precursors of siloxane-based nanomaterials. Chem.—A Eur. J. 2008, 14, 973–980. [Google Scholar] [CrossRef]
- Besnard, R.; Arrachart, G.; Cambedouzou, J.; Pellet-Rostaing, S. Structural study of hybrid silica bilayers from “bola-amphiphile” organosilane precursors: Catalytic and thermal effects. RSC Adv. 2015, 5, 57521–57531. [Google Scholar] [CrossRef]
- Katagiri, K.; Hashizume, M.; Ariga, K.; Terashima, T.; Kikuchi, J.I. Preparation and characterization of a novel organic-inorganic nanohybrid “cerasome” formed with a liposomal membrane and silicate surface. Chem.—A Eur. J. 2007, 13, 5272–5281. [Google Scholar] [CrossRef] [PubMed]
- Carlos, L.D.; De Zea Bermudez, V.; Amaral, V.S.; Nunes, S.C.; Silva, N.J.O.; Sá Ferreira, R.A.; Rocha, J.; Santilli, C.V.; Ostrovskii, D. Nanoscopic photoluminescence memory as a fingerprint of complexity in self-assembled alkyl/siloxane hybrids. Adv. Mater. 2007, 19, 341–348. [Google Scholar] [CrossRef]
- Nunes, S.C.; Hümmer, J.; Freitas, V.T.; Ferreira, R.A.S.; Carlos, L.D.; Almeida, P.; De Zea Bermudez, V. Di-amidosils with tunable structure, morphology and emission quantum yield: The role of hydrogen bonding. J. Mater. Chem. C 2015, 3, 6844–6861. [Google Scholar] [CrossRef]
- Nunes, S.C.; de Zea Bermudez, V. Structuring of Amide Cross-Linked Non-Bridged and Bridged Alkyl-Based Silsesquioxanes. Chem. Rec. 2018, 18, 724–736. [Google Scholar] [CrossRef] [PubMed]
- Pereira, R.F.P.; Nunes, S.C.; Toquer, G.; Cardoso, M.A.; Valente, A.J.M.; Ferro, M.C.; Silva, M.M.; Carlos, L.D.; Ferreira, R.A.S.; de Zea Bermudez, V. Novel Highly Luminescent Amine-Functionalized Bridged Silsesquioxanes. Front. Chem. 2018, 5, 131. [Google Scholar] [CrossRef] [Green Version]
- Gonçalves, M.C.; Pereira, R.F.P.; Ferreira, P.; Carbó-Argibay, E.; Catita, J.; Toquer, G.; Nunes, S.C.; De Zea Bermudez, V. Structuring of di-alkyl-urethanesils. J. Sol-Gel Sci. Technol. 2019, 89, 205–215. [Google Scholar] [CrossRef]
- Nunes, S.C.; Ferreira, C.B.; Ferreira, R.A.S.; Carlos, L.D.; Ferro, M.C.; Mano, J.F.; Almeida, P.; De Zea Bermudez, V. Fractality and metastability of a complex amide cross-linked dipodal alkyl/siloxane hybrid. RSC Adv. 2014, 4, 59664–59675. [Google Scholar] [CrossRef]
- Nagarajan, R. Molecular packing parameter and surfactant self-assembly: The neglected role of the surfactant tail. Langmuir 2002, 18, 31–38. [Google Scholar] [CrossRef]
- Sagnella, S.M.; Conn, C.E.; Krodkiewska, I.; Drummond, C.J. Nonionic diethanolamide amphiphiles with unsaturated C18 hydrocarbon chains: Thermotropic and lyotropic liquid crystalline phase behavior. Phys. Chem. Chem. Phys. 2011, 13, 13370–13381. [Google Scholar] [CrossRef]
- Angelova, A.; Angelov, B.; Mutafchieva, R.; Garamus, V.M.; Lesieur, S.; Funari, S.S.; Willumeit, R.; Couvreur, P. Swelling of a Sponge Lipid Phase via Incorporation of a Nonionic Amphiphile: SANS and SAXS Studies BT. In Trends in Colloid and Interface Science XXIV; Starov, V., Procházka, K., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 1–6. [Google Scholar]
- Milner, S.T.; Safran, S.A.; Andelman, D.; Cates, M.E.; Roux, D. Correlations and structure factor of bicontinuous microemulsions. J. Phys. 1988, 49, 1065–1075. [Google Scholar] [CrossRef]
- Porte, G.; Marignan, J.; Bassereau, P.; May, R. Shape transformations of the aggregates in dilute surfactant solutions: A small-angle neutron scattering study. J. Phys. 1988, 49, 511–519. [Google Scholar] [CrossRef]
- Boyd, B.J.; Rizwan, S.B.; Dong, Y.D.; Hook, S.; Rades, T. Self-assembled geometric liquid-crystalline nanoparticles imaged in three dimensions: Hexosomes are not necessarily flat hexagonal prisms. Langmuir 2007, 23, 12461–12464. [Google Scholar] [CrossRef] [PubMed]
- Berktas, I.; Ghafar, A.N.; Fontana, P.; Caputcu, A.; Menceloglu, Y.; Okan, B.S. Facile synthesis of graphene from waste tire/silica hybrid additives and optimization study for the fabrication of thermally enhanced cement grouts. Molecules 2020, 25, 886. [Google Scholar] [CrossRef] [Green Version]
- Issa, A.A.; Luyt, A.S. Kinetics of alkoxysilanes and organoalkoxysilanes polymerization: A review. Polymers 2019, 11, 537. [Google Scholar] [CrossRef] [Green Version]
- Israelachvili, J.N.; Mitchell, D.J.; Ninham, B.W. Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. J. Chem. Soc. Faraday Trans. 2 Mol. Chem. Phys. 1976, 72, 1525–1568. [Google Scholar] [CrossRef]
- Van’T Hag, L.; Gras, S.L.; Conn, C.E.; Drummond, C.J. Lyotropic liquid crystal engineering moving beyond binary compositional space-ordered nanostructured amphiphile self-assembly materials by design. Chem. Soc. Rev. 2017, 46, 2705–2731. [Google Scholar] [CrossRef]
- Besnard, R.; Arrachart, G.; Cambedouzou, J.; Pellet-Rostaing, S. Tuning the nanostructure of highly functionalized silica using amphiphilic organosilanes: Curvature agent effects. Langmuir 2016, 32, 4624–4634. [Google Scholar] [CrossRef]
- Kaneko, Y.; Iyi, N.; Kurashima, K.; Matsumoto, T. Hexagonal-Structured Polysiloxane Material Prepared by Sol-Gel Reaction of Aminoalkyltrialkoxysilane without Using Surfactants. Chem. Mater. 2004, 16, 3417–3423. [Google Scholar] [CrossRef]
- Qiu, H.; Caffrey, M. The phase diagram of the monoolein/water system: Metastability and equilibrium aspects. Biomaterials 2000, 21, 223–234. [Google Scholar] [CrossRef]
Nanostructure | Covalent Connection between Monomers | Water Content | Temperature Range | References |
---|---|---|---|---|
inverse hexagonal | no | 16–26% | 82 °C–100 °C | [72] |
inverse hexagonal | yes | 0%-saturated 1 | <25 °C–>180 °C | this study (precursor A) |
sponge phase | no | 60%-saturated 1 | not determined | [17] |
sponge phase | yes | 0%-saturated 1 | <25 °C–>180 °C | this study (precursor B) |
Nanostructure | Structure Parameter 2 | Acyl Residue | Number of Acyl Residues Per Precursor Molecule | References |
---|---|---|---|---|
lamellar | 5.42 nm | palmitoyl | 1 | [54] |
sponge | 4.0 nm | oleoyl | 1 | this study (precursor A) |
lamellar | 4.72 nm and 3.15 nm | myristoyl | 2 | [59] |
inverse hexagonal | 3.9 nm | oleoyl | 2 | this study (precursor B) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schmidbauer, B.; Uhlig, F.; Chemelli, A. Lipid–Inorganic Hybrid Particles with Non-Lamellar Structures. Nanomanufacturing 2022, 2, 98-111. https://doi.org/10.3390/nanomanufacturing2030008
Schmidbauer B, Uhlig F, Chemelli A. Lipid–Inorganic Hybrid Particles with Non-Lamellar Structures. Nanomanufacturing. 2022; 2(3):98-111. https://doi.org/10.3390/nanomanufacturing2030008
Chicago/Turabian StyleSchmidbauer, Benjamin, Frank Uhlig, and Angela Chemelli. 2022. "Lipid–Inorganic Hybrid Particles with Non-Lamellar Structures" Nanomanufacturing 2, no. 3: 98-111. https://doi.org/10.3390/nanomanufacturing2030008
APA StyleSchmidbauer, B., Uhlig, F., & Chemelli, A. (2022). Lipid–Inorganic Hybrid Particles with Non-Lamellar Structures. Nanomanufacturing, 2(3), 98-111. https://doi.org/10.3390/nanomanufacturing2030008