A Comparative Study of n- and p-Channel FeFETs with Ferroelectric HZO Gate Dielectric
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental
2.2. Polarization Characterization of HZO
3. Simulation Methodology
3.1. Experimental Results
3.1.1. DC Characterization
3.1.2. Pulse Characterization
3.2. Simulation Methodology
Calibration of the Fabricated Devices
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kim, J.Y.; Choi, M.-J.; Jang, H.W. Ferroelectric Field Effect Transistors: Progress and Perspective. APL Mater. 2021, 9, 021102. [Google Scholar] [CrossRef]
- Mulaosmanovic, H.; Ocker, J.; Müller, S.; Noack, M.; Müller, J.; Polakowski, P.; Mikolajick, T.; Slesazeck, S. Novel Ferroelectric FET Based Synapse for Neuromorphic Systems. In Proceedings of the 2017 Symposium on VLSI Technology, Kyoto, Japan, 5–8 June 2017; IEEE: Piscataway, NJ, USA, 2017; pp. T176–T177. [Google Scholar]
- Mulaosmanovic, H.; Chicca, E.; Bertele, M.; Mikolajick, T.; Slesazeck, S. Mimicking Biological Neurons with a Nanoscale Ferroelectric Transistor. Nanoscale 2018, 10, 21755–21763. [Google Scholar] [CrossRef]
- Ni, Y.; Wang, Y.; Xu, W. Recent Process of Flexible Transistor-structured Memory. Small 2021, 17, 1905332. [Google Scholar] [CrossRef] [PubMed]
- Han, S.-T.; Zhou, Y. Photo-Electroactive Non-Volatile Memories for Data Storage and Neuromorphic Computing; Woodhead Publishing: Cambridge, UK, 2020; ISBN 0128226064. [Google Scholar]
- Yoon, S.-K.; Youn, Y.-S.; Kim, J.-G.; Kim, S.-D. Design of DRAM-NAND Flash Hybrid Main Memory and Q-Learning-Based Prefetching Method. J. Supercomput. 2018, 74, 5293–5313. [Google Scholar] [CrossRef]
- Mogul, J.C.; Argollo, E.; Shah, M.A.; Faraboschi, P. Operating System Support for NVM+ DRAM Hybrid Main Memory. In Proceedings of the HotOS, Monte Verità, Switzerland, 18–20 May 2009; Volume 9, p. 14. [Google Scholar]
- Ali, T.; Mertens, K.; Kühnel, K.; Rudolph, M.; Oehler, S.; Lehninger, D.; Müller, F.; Revello, R.; Hoffmann, R.; Zimmermann, K. A FeFET with a Novel MFMFIS Gate Stack: Towards Energy-Efficient and Ultrafast NVMs for Neuromorphic Computing. Nanotechnology 2021, 32, 425201. [Google Scholar] [CrossRef] [PubMed]
- Hahnloser, R.H.R.; Sarpeshkar, R.; Mahowald, M.A.; Douglas, R.J.; Seung, H.S. Digital Selection and Analogue Amplification Coexist in a Cortex-Inspired Silicon Circuit. Nature 2000, 405, 947–951. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.; Kim, M.-K.; Lee, J.-S. Emerging Memory Devices for Artificial Synapses. J. Mater. Chem. C Mater. 2020, 8, 9163–9183. [Google Scholar] [CrossRef]
- Merolla, P.A.; Arthur, J.V.; Alvarez-Icaza, R.; Cassidy, A.S.; Sawada, J.; Akopyan, F.; Jackson, B.L.; Imam, N.; Guo, C.; Nakamura, Y. A Million Spiking-Neuron Integrated Circuit with a Scalable Communication Network and Interface. Science 2014, 345, 668–673. [Google Scholar] [CrossRef]
- Isupov, V.A. Phases in the PZT Ceramics. Ferroelectrics 2002, 266, 91–102. [Google Scholar] [CrossRef]
- Chung, C.-C. Microstructural Evolution in Lead Zirconate Titanate (PZT) Piezoelectric Ceramics. Ph.D. Thesis, University of Connecticut, Storrs, CT, USA, 2014. [Google Scholar]
- Bhalla, A.S.; Guo, R.; Alberta, E.F. Some Comments on the Morphotropic Phase Boundary and Property Diagrams in Ferroelectric Relaxor Systems. Mater. Lett. 2002, 54, 264–268. [Google Scholar] [CrossRef]
- Zhu, H.; Yamamoto, S.; Matsui, J.; Miyashita, T.; Mitsuishi, M. Resistive Non-Volatile Memories Fabricated with Poly (Vinylidene Fluoride)/Poly (Thiophene) Blend Nanosheets. RSC Adv. 2018, 8, 7963–7968. [Google Scholar] [CrossRef] [PubMed]
- Furukawa, T. Ferroelectric Properties of Vinylidene Fluoride Copolymers. Phase Transit. Multinatl. J. 1989, 18, 143–211. [Google Scholar] [CrossRef]
- Wang, J.; Li, H.; Liu, J.; Duan, Y.; Jiang, S.; Yan, S. On the A→ β Transition of Carbon-Coated Highly Oriented PVDF Ultrathin Film Induced by Melt Recrystallization. J. Am. Chem. Soc. 2003, 125, 1496–1497. [Google Scholar] [CrossRef] [PubMed]
- Lovinger, A.J. Unit Cell of the γ Phase of Poly (Vinylidene Fluoride). Macromolecules 1981, 14, 322–325. [Google Scholar] [CrossRef]
- Kim, S.J.; Mohan, J.; Lee, J.; Lee, J.S.; Lucero, A.T.; Young, C.D.; Colombo, L.; Summerfelt, S.R.; San, T.; Kim, J. Effect of Film Thickness on the Ferroelectric and Dielectric Properties of Low-Temperature (400 °C) Hf0.5Zr0.5O2 Films. Appl. Phys. Lett. 2018, 112, 172902. [Google Scholar] [CrossRef]
- Böscke, T.S.; Müller, J.; Bräuhaus, D.; Schröder, U.; Böttger, U. Ferroelectricity in Hafnium Oxide Thin Films. Appl. Phys. Lett. 2011, 99, 102903. [Google Scholar] [CrossRef]
- Kim, S.J.; Mohan, J.; Summerfelt, S.R.; Kim, J. Ferroelectric Hf0.5Zr0.5O2 Thin Films: A Review of Recent Advances. JOM 2019, 71, 246–255. [Google Scholar] [CrossRef]
- Ni, K.; Sharma, P.; Zhang, J.; Jerry, M.; Smith, J.A.; Tapily, K.; Clark, R.; Mahapatra, S.; Datta, S. Critical Role of Interlayer in Hf0.5Zr0.5O2 Ferroelectric FET Nonvolatile Memory Performance. IEEE Trans. Electron Devices 2018, 65, 2461–2469. [Google Scholar] [CrossRef]
- Park, M.H.; Lee, Y.H.; Kim, H.J.; Kim, Y.J.; Moon, T.; Kim, K.D.; Mueller, J.; Kersch, A.; Schroeder, U.; Mikolajick, T. Ferroelectricity and Antiferroelectricity of Doped Thin HfO2-based Films. Adv. Mater. 2015, 27, 1811–1831. [Google Scholar] [CrossRef]
- Sharma, P.; Tapily, K.; Saha, A.K.; Zhang, J.; Shaughnessy, A.; Aziz, A.; Snider, G.L.; Gupta, S.; Clark, R.D.; Datta, S. Impact of Total and Partial Dipole Switching on the Switching Slope of Gate-Last Negative Capacitance FETs with Ferroelectric Hafnium Zirconium Oxide Gate Stack. In Proceedings of the 2017 Symposium on VLSI Technology, Kyoto, Japan, 5–8 June 2017; IEEE: Piscataway, NJ, USA, 2017; pp. T154–T155. [Google Scholar]
- Lomenzo, P.D.; Jachalke, S.; Stoecker, H.; Mehner, E.; Richter, C.; Mikolajick, T.; Schroeder, U. Universal Curie Constant and Pyroelectricity in Doped Ferroelectric HfO2 Thin Films. Nano Energy 2020, 74, 104733. [Google Scholar] [CrossRef]
- Anderson, J.D.; Merkel, J.; Macmahon, D.; Kurinec, S.K. Evaluation of Si: HfO2 Ferroelectric Properties in MFM and MFIS Structures. IEEE J. Electron Devices Soc. 2018, 6, 525–534. [Google Scholar] [CrossRef]
- Yurchuk, E.; Müller, J.; Müller, S.; Paul, J.; Pešić, M.; van Bentum, R.; Schroeder, U.; Mikolajick, T. Charge-Trapping Phenomena in HfO2-Based FeFET-Type Nonvolatile Memories. IEEE Trans. Electron Devices 2016, 63, 3501–3507. [Google Scholar] [CrossRef]
- Deng, S.; Jiang, Z.; Dutta, S.; Ye, H.; Chakraborty, W.; Kurinec, S.; Datta, S.; Ni, K. Examination of the Interplay between Polarization Switching and Charge Trapping in Ferroelectric FET. In Proceedings of the 2020 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 12–18 December 2020; IEEE: Piscataway, NJ, USA, 2020; p. 4. [Google Scholar]
- Izmailov, R.A.; Strand, J.W.; Larcher, L.; O’Sullivan, B.J.; Shluger, A.L.; Afanas’ev, V.V. Electron Trapping in Ferroelectric HfO2. Phys. Rev. Mater. 2021, 5, 034415. [Google Scholar] [CrossRef]
- Lue, H.-T.; Wu, C.-J.; Tseng, T.-Y. Device Modeling of Ferroelectric Memory Field-Effect Transistor (FeMFET). IEEE Trans. Electron Devices 2002, 49, 1790–1798. [Google Scholar]
- RIT Semiconductor & Microsystems Fabrication Laboratory. Available online: https://www.rit.edu/facilities/semiconductor-and-microsystems-fabrication-laboratory (accessed on 30 September 2023).
- Silvaco Inc., S.C.U. Victory Device User’s Manual; Silvaco Inc., S.C.U.: Santa Clara, CA, USA, 2015. [Google Scholar]
- Kuzum, D.; Park, J.-H.; Krishnamohan, T.; Wong, H.-S.P.; Saraswat, K.C. The Effect of Donor/Acceptor Nature of Interface Traps on Ge MOSFET Characteristics. IEEE Trans. Electron Devices 2011, 58, 1015–1022. [Google Scholar] [CrossRef]
- Bae, H.; Nam, S.G.; Moon, T.; Lee, Y.; Jo, S.; Choe, D.-H.; Kim, S.; Lee, K.-H.; Heo, J. Sub-Ns Polarization Switching in 25 nm FE FinFET toward Post CPU and Spatial-Energetic Mapping of Traps for Enhanced Endurance. In Proceedings of the 2020 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 12–18 December 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 31–33. [Google Scholar]
- Lombardi, C.; Manzini, S.; Saporito, A.; Vanzi, M. A Physically Based Mobility Model for Numerical Simulation of Nonplanar Devices. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 1988, 7, 1164–1171. [Google Scholar] [CrossRef]
- Mittmann, T.; Materano, M.; Chang, S.-C.; Karpov, I.; Mikolajick, T.; Schroeder, U. Impact of Oxygen Vacancy Content in Ferroelectric HZO Films on the Device Performance. In Proceedings of the 2020 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 12–18 December 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 14–18. [Google Scholar]
- Khan, A.I.; Keshavarzi, A.; Datta, S. The Future of Ferroelectric Field-Effect Transistor Technology. Nat. Electron. 2020, 3, 588–597. [Google Scholar] [CrossRef]
Symbols | Description | Value |
---|---|---|
ND/S | Source/Drain Doping | 2 × 1019 cm−3 |
NSubs | Substrate Doping | 2 × 1015 cm−3 |
tS/D | Junction depth of Source/Drain | 0.8 µm |
LS/D | Lateral Extensions of Source/Drain | 13 µm |
tSiO2 | Thickness of Silicon Dioxide | 100 nm |
tFerro | Thickness of Ferro Layer | 10 nm |
tTiN | Thickness of TiN Layer | 12 nm |
tGate | Thickness of Al Gate Contact | 750 nm |
tAl(S/D) | Thickness of Al Source/Drain Contact | 750 nm |
LAl(S/D) | Length of Al Source/Drain Contact | 9 µm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jacob, P.; Patil, P.C.; Deng, S.; Ni, K.; Sehra, K.; Gupta, M.; Saxena, M.; MacMahon, D.; Kurinec, S. A Comparative Study of n- and p-Channel FeFETs with Ferroelectric HZO Gate Dielectric. Solids 2023, 4, 356-367. https://doi.org/10.3390/solids4040023
Jacob P, Patil PC, Deng S, Ni K, Sehra K, Gupta M, Saxena M, MacMahon D, Kurinec S. A Comparative Study of n- and p-Channel FeFETs with Ferroelectric HZO Gate Dielectric. Solids. 2023; 4(4):356-367. https://doi.org/10.3390/solids4040023
Chicago/Turabian StyleJacob, Paul, Pooja C. Patil, Shan Deng, Kai Ni, Khushwant Sehra, Mridula Gupta, Manoj Saxena, David MacMahon, and Santosh Kurinec. 2023. "A Comparative Study of n- and p-Channel FeFETs with Ferroelectric HZO Gate Dielectric" Solids 4, no. 4: 356-367. https://doi.org/10.3390/solids4040023
APA StyleJacob, P., Patil, P. C., Deng, S., Ni, K., Sehra, K., Gupta, M., Saxena, M., MacMahon, D., & Kurinec, S. (2023). A Comparative Study of n- and p-Channel FeFETs with Ferroelectric HZO Gate Dielectric. Solids, 4(4), 356-367. https://doi.org/10.3390/solids4040023