Next Issue
Volume 5, March
Previous Issue
Volume 4, September
 
 

Solids, Volume 4, Issue 4 (December 2023) – 6 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
12 pages, 10144 KiB  
Article
A Comparative Study of n- and p-Channel FeFETs with Ferroelectric HZO Gate Dielectric
by Paul Jacob, Pooja C. Patil, Shan Deng, Kai Ni, Khushwant Sehra, Mridula Gupta, Manoj Saxena, David MacMahon and Santosh Kurinec
Solids 2023, 4(4), 356-367; https://doi.org/10.3390/solids4040023 - 1 Dec 2023
Viewed by 2366
Abstract
This study investigates the electrical characteristics observed in n-channel and p-channel ferroelectric field effect transistor (FeFET) devices fabricated through a similar process flow with 10 nm of ferroelectric hafnium zirconium oxide (HZO) as the gate dielectric. The n-FeFETs demonstrate a faster complete polarization [...] Read more.
This study investigates the electrical characteristics observed in n-channel and p-channel ferroelectric field effect transistor (FeFET) devices fabricated through a similar process flow with 10 nm of ferroelectric hafnium zirconium oxide (HZO) as the gate dielectric. The n-FeFETs demonstrate a faster complete polarization switching compared to the p-channel counterparts. Detailed and systematic investigations using TCAD simulations reveal the role of fixed charges and interface traps at the HZO-interfacial layer (HZO/IL) interface in modulating the subthreshold characteristics of the devices. A characteristic crossover point observed in the transfer characteristics of n-channel devices is attributed with the temporary switching between ferroelectric-based operation to charge-based operation, caused by the pinning effect due to the presence of different traps. This experimental study helps understand the role of charge trapping effects in switching characteristics of n- and p-channel ferroelectric FETs. Full article
(This article belongs to the Special Issue Recent Advance in Ferroelectric Composites)
Show Figures

Figure 1

12 pages, 4701 KiB  
Article
Synthesis and Crystal and Electronic Structures of the Zintl Phase Sr21Cd4Sb18
by Kowsik Ghosh and Svilen Bobev
Solids 2023, 4(4), 344-355; https://doi.org/10.3390/solids4040022 - 17 Nov 2023
Cited by 1 | Viewed by 1383
Abstract
Reported herein are the synthesis and crystal chemistry analysis of the Zintl phase Sr21Cd4Sb18. Single crystals of this compound were grown using the Sn-flux method, and structural characterization was carried out using single-crystal X-ray diffraction. Crystal data: [...] Read more.
Reported herein are the synthesis and crystal chemistry analysis of the Zintl phase Sr21Cd4Sb18. Single crystals of this compound were grown using the Sn-flux method, and structural characterization was carried out using single-crystal X-ray diffraction. Crystal data: Monoclinic space group C2/m (No. 12, Z = 4); a = 18.2536(6) Å, b = 17.4018(5) Å, and c = 17.8979(6) Å, β = 92.024(1)°. The structure is based on edge- and corner-shared CdSb4 tetrahedra, which ultimately form octameric [Cd8Sb22] fragments, where two symmetry-equivalent subunits are connected via a homoatomic Sb–Sb interaction. The electronic band structure calculations contained herein reveal the emergence of a direct gap between the valence and the conduction bands. Full article
Show Figures

Figure 1

17 pages, 1498 KiB  
Article
Thermodynamic Properties as a Function of Temperature of AlMoNbV, NbTaTiV, NbTaTiZr, AlNbTaTiV, HfNbTaTiZr, and MoNbTaVW Refractory High-Entropy Alloys from First-Principles Calculations
by Danielsen E. Moreno and Chelsey Z. Hargather
Solids 2023, 4(4), 327-343; https://doi.org/10.3390/solids4040021 - 6 Nov 2023
Viewed by 1899
Abstract
Refractory high-entropy alloys (RHEAs) are strong candidates for use in high-temperature engineering applications. As such, the thermodynamic properties as a function of temperature for a variety of RHEA systems need to be studied. In the present work, thermodynamic quantities such as entropy, enthalpy, [...] Read more.
Refractory high-entropy alloys (RHEAs) are strong candidates for use in high-temperature engineering applications. As such, the thermodynamic properties as a function of temperature for a variety of RHEA systems need to be studied. In the present work, thermodynamic quantities such as entropy, enthalpy, heat capacity at constant volume, and linear thermal expansion are calculated for three quaternary and three quinary single-phase, BCC RHEAs: AlMoNbV, NbTaTiV, NbTaTiZr, AlNbTaTiV, HfNbTaTiZr, and MoNbTaVW. First-principle calculations based on density functional theory are used for the calculations, and special quasirandom structures (SQSs) are used to represent the random solid solution nature of the RHEAs. A code for the finite temperature thermodynamic properties using the Debye-Grüneisen model is written and employed. For the first time, the finite temperature thermodynamic properties of all 24 atomic configuration permutations of a quaternary RHEA are calculated. At most, 1.7% difference is found between the resulting properties as a function of atomic configuration, indicating that the atomic configuration of the SQS has little effect on the calculated thermodynamic properties. The behavior of thermodynamic properties among the RHEAs studied is discussed based on valence electron concentration and atomic size. Among the quaternary RHEAs studied, namely AlMoNbV, NbTaTiZr, and NbTaTiV, it is found that the presence of Zr contributes to higher entropy. Additionally, at lower temperatures, Zr contributes to higher heat capacity and thermal expansion compared to the alloys without Zr, possibly due to its valence electron concentration. At higher temperatures, Al contributes to higher heat capacity and thermal expansion, possibly due its ductility. Among the quinary systems, the presence of Mo, W, and/or V causes the RHEA to have a lower thermal expansion than the other systems studied. Finally, when comparing the systems with the NbTaTi core, the addition of Al increases thermal expansion, while the removal of Zr lowers the thermal expansion. Full article
Show Figures

Figure 1

11 pages, 372 KiB  
Article
Energy-Gap-Refractive Index Relations in Semiconductors—Using Wemple–DiDomenico Model to Unify Moss, Ravindra, and Herve–Vandamme Relationships
by Aneer Lamichhane
Solids 2023, 4(4), 316-326; https://doi.org/10.3390/solids4040020 - 1 Nov 2023
Cited by 5 | Viewed by 2210
Abstract
The refractive index of solids gauges their transparency to incident light, while the energy gap determines the threshold for light absorption. This paper provides a mathematical formulation for the relationship between the refractive index and the energy gap. It is also established that [...] Read more.
The refractive index of solids gauges their transparency to incident light, while the energy gap determines the threshold for light absorption. This paper provides a mathematical formulation for the relationship between the refractive index and the energy gap. It is also established that this formulation aided in the unification of the Moss, Ravindra, and Herve–Vandamme relationships. Full article
Show Figures

Figure 1

12 pages, 1701 KiB  
Article
Conversion of Hard to Soft Magnetic Ferrite Nanowires by Paramagnetic Shielding
by Xian-Lin Zeng, Indujan Sivanesarajah and Uwe Hartmann
Solids 2023, 4(4), 304-315; https://doi.org/10.3390/solids4040019 - 16 Oct 2023
Cited by 1 | Viewed by 1185
Abstract
In this study, we investigate the magnetization behavior of coaxial nanowires fabricated through the sol-gel electrospinning method. Our analysis uncovers a significant reduction in coercivity for CoFe2O4 nanowires when BaTiO3 is used as the shell material, effectively transforming them [...] Read more.
In this study, we investigate the magnetization behavior of coaxial nanowires fabricated through the sol-gel electrospinning method. Our analysis uncovers a significant reduction in coercivity for CoFe2O4 nanowires when BaTiO3 is used as the shell material, effectively transforming them from hard to soft magnetic. This intriguing behavior is attributed to the magnetization reversal effect at the interface between ferromagnetic and paramagnetic regions, and it is also observed in NiFe2O4 and Fe2O3 nanowires. Surprisingly, introducing a GdBa2Cu3O7 shell induces a similar effect. Additionally, we employ magnetic impedance measurements on the coaxial nanowires, unveiling their potential for magnetic field sensing applications. Full article
Show Figures

Figure 1

17 pages, 1894 KiB  
Article
Evaluating Phonon Characteristics by Varying the Layer and Interfacial Thickness in Novel Carbon-Based Strained-Layer Superlattices
by Devki N. Talwar and Piotr Becla
Solids 2023, 4(4), 287-303; https://doi.org/10.3390/solids4040018 - 1 Oct 2023
Cited by 1 | Viewed by 1260
Abstract
Systematic results of lattice dynamical calculations are reported as a function of m and n for the novel (SiC)m/(GeC)n superlattices (SLs) by exploiting a modified linear-chain model and a realistic rigid-ion model (RIM). A bond polarizability method is employed to [...] Read more.
Systematic results of lattice dynamical calculations are reported as a function of m and n for the novel (SiC)m/(GeC)n superlattices (SLs) by exploiting a modified linear-chain model and a realistic rigid-ion model (RIM). A bond polarizability method is employed to simulate the Raman intensity profiles (RIPs) for both the ideal and graded (SiC)10-Δ/(Si0.5Ge0.5C)Δ/(GeC)10-Δ/(Si0.5Ge0.5C)Δ SLs. We have adopted a virtual-crystal approximation for describing the interfacial layer thickness, Δ (≡0, 1, 2, and 3 monolayers (MLs)) by selecting equal proportions of SiC and GeC layers. Systematic variation of Δ has initiated considerable upward (downward) shifts of GeC-(SiC)-like Raman peaks in the optical phonon frequency regions. Our simulated results of RIPs in SiC/GeC SLs are agreed reasonably well with the recent analyses of Raman scattering data on graded short-period GaN/AlN SLs. Maximum changes in the calculated optical phonons (up to ±~47 cm−1) with Δ = 3, are proven effective for causing accidental degeneracies and instigating localization of atomic displacements at the transition regions of the SLs. Strong Δ-dependent enhancement of Raman intensity features in SiC/GeC are considered valuable for validating the interfacial constituents in other technologically important heterostructures. By incorporating RIM, we have also studied the phonon dispersions [ωjSLq] of (SiC)m/(GeC)n SLs along the growth [001] as well as in-plane [100], [110] directions [i.e., perpendicular to the growth]. In the acoustic mode regions, our results of ωjSLq  have confirmed the formation of mini-gaps at the zone center and zone edges while providing strong evidences of the anti-crossing and phonon confinements. Besides examining the angular dependence of zone-center optical modes, the results of phonon folding, confinement, and anisotropic behavior in (SiC)m/(GeC)n are compared and contrasted very well with the recent first-principles calculations of (GaN)m/(AlN)n strained layer SLs. Full article
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop