Previous Issue
Volume 5, March
 
 

Gases, Volume 5, Issue 2 (June 2025) – 2 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
24 pages, 3270 KiB  
Article
Theoretical Analysis and Modelling of LNG Reforming to Hydrogen Marine Fuel for FLNG Applications
by We Lin Chan, Ivan C. K. Tam and Arun Dev
Gases 2025, 5(2), 8; https://doi.org/10.3390/gases5020008 - 17 Apr 2025
Viewed by 179
Abstract
The LNG maritime industry started to anticipate offshore LNG production in tandem with increasing demand for FLNG platforms as offshore gas resources were developed further. The rapid expansion of FLNG deployment demands equipment and procedures that handle challenges associated with weight and space [...] Read more.
The LNG maritime industry started to anticipate offshore LNG production in tandem with increasing demand for FLNG platforms as offshore gas resources were developed further. The rapid expansion of FLNG deployment demands equipment and procedures that handle challenges associated with weight and space constraints. The chemical composition of LNG will result in slightly fewer CO2 emissions. While not significant, another crucial aspect is that LNG predominantly comprises methane, which is acknowledged as a greenhouse gas and is more harmful than CO2. This requires investigation into clean energy fuel supply for power generation systems, carbon emissions from the process, and thermodynamic analysis and optimisation. Focus on supplying fuel for FLNG power generation to reduce the essential management of boil-off fuel gas, which can be researched on the direct reforming method of hydrogen as a marine fuel gas to support the power generation system. The principal reason for choosing hydrogen over other energy sources is its exceptional energy-to-mass ratio (H/C ratio). The most effective method for hydrogen production is the methane reforming process, recognised for generating significant quantities of hydrogen. To optimise the small-scale plant with a carbon capture system (CCS) as integrated into the reforming process to produce blue hydrogen fuel with zero carbon emissions, this research selection focuses on two alternative processes: steam methane reforming (SMR) and autothermal reforming (ATR). Furthermore, the research article will contribute to other floating production platforms, such as FPSOs and FSRUs, and will be committed to clean energy policies that mandate the support of green alternatives in substitution of hydrocarbon fuel utilisation. Full article
Show Figures

Figure 1

14 pages, 588 KiB  
Article
Measurement Uncertainty in the Totalisation of Quantity and Energy Measurement in Gas Grids
by Adriaan M. H. van der Veen, Kjetil Folgerø and Federica Gugole
Gases 2025, 5(2), 7; https://doi.org/10.3390/gases5020007 - 3 Apr 2025
Viewed by 214
Abstract
The total quantity and energy delivered through a gas grid is calculated using simple formulæ that sum the increments measured at regular time intervals. These calculations are described in international standards (e.g., ISO 15112 and EN 1776) and guidelines (e.g., OIML R140). These [...] Read more.
The total quantity and energy delivered through a gas grid is calculated using simple formulæ that sum the increments measured at regular time intervals. These calculations are described in international standards (e.g., ISO 15112 and EN 1776) and guidelines (e.g., OIML R140). These guidelines recommend that the associated measurement uncertainty is evaluated assuming the measurement results to be mutually independent. This assumption leads to the underestimation of the measurement uncertainty. To address the growing concern among transmission and distribution system operators, the underlying assumptions of these uncertainty evaluations are revisited and reworked to be more adequate. The dependence of measurement results coming from, e.g., the same flow meter and gas chromatograph will be assessed for correlations, as well as other effects, such as the effect of the chosen mathematical approximation of the totalisation integral and fluctuations in the flow rate and gas quality. In this paper, an outline is given for improvements that can be implemented in the measurement models to render them more responsive to the error structure of the measurement data, temporal effects in these data, and the fluctuations in the gas quality and gas quantity. By impact assessment using a simple scenario involving the injection of (renewable) hydrogen into a natural gas grid, it is shown that these improvements lead to a substantive difference. This preliminary work demonstrates that correlations occur both in the instrumental measurement uncertainty and due to temporal effects in the gas grid. To obtain a fit-for-purpose uncertainty budget for custody transfer and grid balancing, it is key to enhance the current models and standards accordingly. Full article
(This article belongs to the Section Natural Gas)
Show Figures

Figure 1

Previous Issue
Back to TopTop