Field Study Analysis of Temporal Temperature Methods to Estimate Hyporheic Fluxes within a Natural River Confluence Using VFLUX2 †
Abstract
:1. Introduction
2. Field Measurements
Study Area
3. Methodology
3.1. Temperature Measurements
3.2. Vertical Exchange Fluxes Estimated from Confluence Bed Temperature Profiles
4. Results and Discussion
4.1. Sediments’ Temporal Temperature
4.2. Estimated Hyporheic Flow Flux Using VFLUX2
4.2.1. Top Sensor Pairs
4.2.2. Sub and Extreme Sensor Pairs
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Gualtieri, C.; Ianniruberto, M.; Filizola, N.; Santos, R.; Endreny, T. Hydraulic complexity at a large river confluence in the Amazon basin. Ecohydrology 2017, 10, e1863. [Google Scholar] [CrossRef]
- Best, J.L. Flow dynamics at river channel confluences: Implications for sediment transport and bed morphology. In Recent Developments in Fluvial Sedimentology; Society of Economic Palaeontologists and Mineralogists Special Publication: Tulsa, OK, USA, 1987; Volume 39. [Google Scholar]
- Martone, I.; Gualtieri, C.; Endreny, T.A. Characterization of Hyporheic Exchange Drivers and Patterns within a Low-Gradient, First-Order, River Confluence during Low and High Flow. Water 2020, 12, 649. [Google Scholar] [CrossRef] [Green Version]
- Movahedi, N.; Dehghani, A.A.; Schmidt, C.; Trauth, N.; Pasternack, G.B.; Stewardson, M.J.; Meftah Halghi, M. Hyporheic exchanges due to channel bed and width undulations. Adv. Water Resour. 2021, 149, 103857. [Google Scholar] [CrossRef]
- Endreny, T.A.; Lautz, L.K. Comment on ‘Munz M, Krause S, Tecklenburg, C., Binley, A. Reducing monitoring gaps at the aquifer–river interface by modelling groundwater–surfacewater exchange flow patterns’. Hydrol. Processes. 2012, 26, 1586–1588. [Google Scholar] [CrossRef]
- Knapp, J.L.A.; González-Pinzón, R.; Drummond, J.D.; Larsen, L.G.; Cirpka, O.A.; Harvey, J.W. Tracer-based characterization of hyporheic exchange and benthic biolayers in streams. Water Resour. Res. 2017, 53, 1575–1594. [Google Scholar] [CrossRef]
- Lee, C.; Kim, W.; Jeen, S.W. Measurement of Flux at Sediment–Water Interface Using a Seepage Meter under Controlled Flow Conditions. Water 2020, 12, 3071. [Google Scholar] [CrossRef]
- Song, J.; Zhang, G.; Wang, W.; Liu, Q.; Jiang, W.; Guo, W.; Tang, B.; Bai, H.; Dou, X. Variability in the vertical hyporheic water exchange affected by hydraulic conductivity and river morphology at a natural confluent meander bend. Hydrol. Processes 2017, 31, 3407–3420. [Google Scholar] [CrossRef]
- Byrne, P.; Zhang, H.; Ullah, S.; Binley, A.; Heathwaite, A.; Heppell, C.; Lansdown, K.; Trimmer, M. Diffusive equilibrium in thin films provides evidence of suppression of hyporheic exchange and large-scale nitrate transformation in a groundwater-fed river. Hydrol. Processes 2015, 29, 1385–1396. [Google Scholar] [CrossRef] [Green Version]
- Gariglio, F.P.; Tonina, D.; Luce, C.H. Spatiotemporal variability of hyporheic exchange through a pool-riffle-pool sequence. Water Resour. Res. 2013, 49, 7185–7204. [Google Scholar] [CrossRef]
- Chen, X. Measurement of streambed hydraulic conductivity and its anisotropy. Environ. Geol. 2000, 39, 1317–1324. [Google Scholar] [CrossRef]
- Lautz, L.K.; Kranes, N.T.; Siegel, D.I. Heat tracing of heterogeneous hyporheic exchange adjacent to in-stream geomorphic features. Hydrol. Processes 2010, 24, 3074–3086. [Google Scholar] [CrossRef]
- Irvine, D.J.; Lautz, L.K.; Briggs, M.A.; Gordon, R.P.; McKenzie, J.M. Experimental evaluation of the applicability of phase, amplitude, and combined methods to determine water flux and thermal diffusivity from temperature time series using VFLUX 2. J. Hydrol. 2015, 531, 728–737. [Google Scholar] [CrossRef] [Green Version]
- Hatch, C.E.; Fisher, A.T.; Revenaugh, J.S.; Constantz, J.; Ruehl, C. Quantifying surface water-groundwater interactions using time series analysis of streambed thermal records: Method development. Water Resour. Res. 2006, 42, W10410. [Google Scholar] [CrossRef] [Green Version]
- Keery, J.; Binley, A.; Crook, N.; Smith, J.W.N. Temporal and spatial variability of groundwater-surface water fluxes: Development and application of an analytical method using temperature time series. J. Hydrol. 2007, 336, 1–16. [Google Scholar] [CrossRef]
- McCallum, A.M.; Andersen, M.S.; Rau, G.C.; Acworth, R.I. A 1-D analytical method for estimating surface water–groundwater interactions and effective thermal diffusivity using temperature time series. Water Resour. Res. 2012, 48, W11532. [Google Scholar] [CrossRef]
- Luce, C.H.; Tonina, D.; Gariglio, F.; Applebee, R. Solutions for the diurnally forced advection-diffusion equation to estimate bulk fluid velocity and diffusivity in streambeds from temperature time series. Water Resour. Res. 2013, 49, 488–506. [Google Scholar] [CrossRef] [Green Version]
- Stallman, R.W. Steady one-dimensional fluid flow in a semi-infinite porous medium with sinusoidal surface temperature. J. Geophys. Res. 1965, 70, 2821–2827. [Google Scholar] [CrossRef]
- Tonina, D. Surface water and streambed sediment interaction: The hyporheic exchange. In Fluid Mechanics of the Environmental Interfaces; Taylor & Francis: Abingdon, UK, 2008; pp. 1–44. [Google Scholar]
- Song, J.; Jiang, W.; Xu, S.; Zhang, G.; Wang, L.; Wen, M.; Zhang, B.; Wang, Y.; Long, Y. Heterogeneity of hydraulic conductivity and Darcian flux in the submerged streambed and adjacent exposed stream bank of the Beiluo River, northwest China. Hydrogeol. J. 2016, 24, 2049–2062. [Google Scholar] [CrossRef]
- Cheng, D.; Song, J.; Wang, W.; Zhang, G. Influences of riverbed morphology on patterns and magnitudes of hyporheic water exchange within a natural river confluence. J. Hydrol. 2019, 574, 75–84. [Google Scholar] [CrossRef]
- Szupiany, R.N.; Amsler, M.L.; Parsons, D.R.; Best, J.L. Morphology, flow structure, and suspended bed sediment transport at two large braid-bar confluences. Water Resour. Res. 2009, 45, W05415. [Google Scholar] [CrossRef]
Parameter | Value | Unit |
---|---|---|
β | 0.001 | m |
Kcal | 0.0055 | cal/(s·cm·C) |
CsCal | 0.6 | cal/(cm3·C) |
CwCal | 1.0 | cal/(cm3·C) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martone, I.; Gualtieri, C.; Endreny, T.A. Field Study Analysis of Temporal Temperature Methods to Estimate Hyporheic Fluxes within a Natural River Confluence Using VFLUX2. Environ. Sci. Proc. 2022, 21, 71. https://doi.org/10.3390/environsciproc2022021071
Martone I, Gualtieri C, Endreny TA. Field Study Analysis of Temporal Temperature Methods to Estimate Hyporheic Fluxes within a Natural River Confluence Using VFLUX2. Environmental Sciences Proceedings. 2022; 21(1):71. https://doi.org/10.3390/environsciproc2022021071
Chicago/Turabian StyleMartone, Ivo, Carlo Gualtieri, and Theodore A. Endreny. 2022. "Field Study Analysis of Temporal Temperature Methods to Estimate Hyporheic Fluxes within a Natural River Confluence Using VFLUX2" Environmental Sciences Proceedings 21, no. 1: 71. https://doi.org/10.3390/environsciproc2022021071
APA StyleMartone, I., Gualtieri, C., & Endreny, T. A. (2022). Field Study Analysis of Temporal Temperature Methods to Estimate Hyporheic Fluxes within a Natural River Confluence Using VFLUX2. Environmental Sciences Proceedings, 21(1), 71. https://doi.org/10.3390/environsciproc2022021071