Towards a Digital Twin Model for the Management of the Laives Aqueduct †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Case Study
2.2. Hydraulic Modelling
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Makropoulos, C.; Savić, D.A. Urban hydroinformatics: Past, present and future. Water 2019, 11, 1959. [Google Scholar] [CrossRef] [Green Version]
- De Luca, A.; Menapace, A.; Pisaturo, G.; Gerola, D.; Righetti, M. EPANET in QGIS framework: The QEPANET plugin. J. Water Supply Res. Technol.-Aqua 2020, 69, 1–5. [Google Scholar]
- Sonaje, N.; Mandar, G.J. A review of modeling and application of water distribution networks (WDN) softwares. Int. J. Tech. Res. Appl. 2015, 3, 174–178. [Google Scholar]
- Menapace, A.; Avesani, D. Global Gradient Algorithm Extension to Distributed Pressure Driven Pipe Demand Model. Water Resour. Manag. 2019, 33, 1717–1736. [Google Scholar] [CrossRef] [Green Version]
- Berardi, L.; Giustolisi, O.; Todini, E. Accounting for uniformly distributed pipe demand in WDN analysis: Enhanced GGA. Urban Water J. 2010, 7, 243–255. [Google Scholar] [CrossRef]
- Menapace, A.; Avesani, D.; Righetti, M.; Bellin, A.; Pisaturo, G. Uniformly Distributed Demand EPANET Extension. Water Resour. Manag. 2018, 32, 2165–2180. [Google Scholar] [CrossRef]
- Burger, G.; Sitzenfrei, R.; Kleidorfer, M.; Rauch, W. Quest for a new solver for EPANET 2. J. Water Resour. Plan. Manag. 2016, 142, 04015065. [Google Scholar] [CrossRef]
- Giustolisi, O.; Savic, D.; Kapelan, Z. Pressure-Driven Demand and Leakage Simulation for Water Distribution Networks. J. Hydraul. Eng. 2008, 134, 626–635. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Choi, D.; Kim, D.; Lee, D. Water distribution operation systems based on smart meter and sensor network. Procedia Eng. 2014, 89, 444–448. [Google Scholar] [CrossRef] [Green Version]
- Giudicianni, C.; Herrera, M.; Di Nardo, A.; Adeyeye, K.; Ramos, H.M. Overview of energy management and leakage control systems for smart water grids and digital water. Modelling 2020, 1, 134–155. [Google Scholar] [CrossRef]
- Bonilla, C.; Zanfei, A.; Brentan, B.; Montalvo, I.; Izquierdo, J. A Digital Twin of a Water Distribution System by Using Graph Convolutional Networks for Pump Speed-Based State Estimation. Water 2022, 14, 51. [Google Scholar] [CrossRef]
- Losier, L.-M.; Fernandes, R.; Tabarro, P.; Braunschweig, F. The Importance of Digital Twins for Resilient Infrastructure. 2019. Available online: https://cdn2.webdamdb.com/md_A6HafPVAhHf0.jpg.pdf (accessed on 1 January 2022).
- Ketzler, B.; Naserentin, V.; Latino, F.; Zangelidis, C.; Thuvander, L.; Logg, A. Digital twins for cities: A state of the art review. Built Environ. 2020, 46, 547–573. [Google Scholar] [CrossRef]
- Zanfei, A.; Menapace, A.; Granata, F.; Gargano, R.; Frisinghelli, M.; Righetti, M. An Ensemble Neural Network Model to Forecast Drinking Water Consumption. J. Water Resour. Plan. Manag. 2022, 148, 04022014. [Google Scholar] [CrossRef]
- Menapace, A.; Zanfei, A.; Felicetti, M.; Avesani, D.; Righetti, M.; Gargano, R. Burst Detection in Water Distribution Systems: The Issue of Dataset Collection. Appl. Sci. 2020, 10, 8219. [Google Scholar] [CrossRef]
- Brunone, B.; Capponi, C.; Measurement, S.M. Design criteria and performance analysis of a smart portable device for leak detection in water transmission mains. Measurement 2021, 183, 109844. [Google Scholar] [CrossRef]
- Zanfei, A.; Menapace, A.; Pisaturo, G.R.; Righetti, M. Calibration of Water Leakages and Valve Setting in a Real Water Supply System. Environ. Sci. Proc. 2020, 2, 41. [Google Scholar] [CrossRef]
- Zanfei, A.; Menapace, A.; Santopietro, S.; Righetti, M. Calibration procedure for water distribution systems: Comparison among hydraulic models. Water 2020, 12, 1421. [Google Scholar] [CrossRef]
- Allen, M.; Preis, A.; Iqbal, M.; Srirangarajan, S.; Lim, H.B.; Girod, L.; Whittle, A.J. Real-time in-network distribution system monitoring to improve operational efficiency. J. Am. Water Works Assoc. 2011, 103, 63–75. [Google Scholar] [CrossRef]
- Brentan, B.M.; Meirelles, G.; Herrera, M.; Luvizotto, E.; Izquierdo, J. Correlation Analysis of Water Demand and Predictive Variables for Short-Term Forecasting Models. Math. Probl. Eng. 2017, 2017, 6343625. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Menapace, A.; Zanfei, A.; De Luca, A.; Pauli, D.D.; Righetti, M. Towards a Digital Twin Model for the Management of the Laives Aqueduct. Environ. Sci. Proc. 2022, 21, 70. https://doi.org/10.3390/environsciproc2022021070
Menapace A, Zanfei A, De Luca A, Pauli DD, Righetti M. Towards a Digital Twin Model for the Management of the Laives Aqueduct. Environmental Sciences Proceedings. 2022; 21(1):70. https://doi.org/10.3390/environsciproc2022021070
Chicago/Turabian StyleMenapace, Andrea, Ariele Zanfei, Alberto De Luca, David Di Pauli, and Maurizio Righetti. 2022. "Towards a Digital Twin Model for the Management of the Laives Aqueduct" Environmental Sciences Proceedings 21, no. 1: 70. https://doi.org/10.3390/environsciproc2022021070
APA StyleMenapace, A., Zanfei, A., De Luca, A., Pauli, D. D., & Righetti, M. (2022). Towards a Digital Twin Model for the Management of the Laives Aqueduct. Environmental Sciences Proceedings, 21(1), 70. https://doi.org/10.3390/environsciproc2022021070