Coastal Vulnerability Impact Assessment under Climate Change in the Arctic Coasts of Tromsø, Norway
Abstract
:1. Introduction
2. Study Area
2.1. CVI Variables
2.1.1. Shoreline Change
2.1.2. Geomorphology
2.1.3. Coastal Slope
2.1.4. Oceanographic Parameters
3. Methodology
3.1. Shoreline Extraction
3.2. CVI Estimation
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nielsen, D.M.; Pieper, P.; Barkhordarian, A.; Overduin, P.; Ilyina, T.; Brovkin, V.; Baehr, J.; Dobrynin, M. Increase in Arctic Coastal Erosion and Its Sensitivity to Warming in the Twenty-First Century. Nat. Clim. Chang. 2022, 12, 263–270. [Google Scholar] [CrossRef]
- Petropoulos, G.P.; Karathanassi, V.; Karamvasis, K.; Detsikas, S.E.; Dermosinoglou, A. Understanding and Monitoring the Dynamics of Arctic Permafrost Regions under Climate Change Using EO & Cloud Computing: The Contribution of EO-PERSIST Project. In Geographical Information Science; Elsevier: Amsterdam, The Netherlands, 2024. [Google Scholar]
- Maslakov, A.; Kraev, G. Erodibility of Permafrost Exposures in the Coasts of Eastern Chukotka. Polar Sci. 2016, 10, 374–381. [Google Scholar] [CrossRef]
- Casas-Prat, M.; Wang, X.L. Projections of Extreme Ocean Waves in the Arctic and Potential Implications for Coastal Inundation and Erosion. JGR Ocean. 2020, 125, e2019JC015745. [Google Scholar] [CrossRef]
- Tsatsaris, A.; Kalogeropoulos, K.; Stathopoulos, N.; Louka, P.; Tsanakas, K.; Tsesmelis, D.E.; Krassanakis, V.; Petropoulos, G.P.; Pappas, V.; Chalkias, C. Geoinformation Technologies in Support of Environmental Hazards Monitoring under Climate Change: An Extensive Review. Int. J. Geo-Inf. 2021, 10, 94. [Google Scholar] [CrossRef]
- Kim, J.-I.; Hyun, C.-U.; Han, H.; Kim, H.-C. Digital Surface Model Generation for Drifting Arctic Sea Ice with Low-Textured Surfaces Based on Drone Images. ISPRS J. Photogramm. Remote Sens. 2021, 172, 147–159. [Google Scholar] [CrossRef]
- Soha, T.; Sugár, V.; Hartmann, B. City-Scale Analysis of PV Potential and Visibility in Heritage Environment Using GIS and LiDAR. Energy Build. 2024, 311, 114124. [Google Scholar] [CrossRef]
- NOAA. What Is Lidar? 2024. Available online: https://oceanservice.noaa.gov/facts/lidar.html (accessed on 10 October 2024).
- Petropoulos, G.P.; Petsini, T.; Detsikas, S.E. Geoinformation Technology in Support of Arctic Coastal Properties Characterization: State of the Art, Challenges, and Future Outlook. Land 2024, 13, 776. [Google Scholar] [CrossRef]
- Kovaleva, O.; Sergeev, A.; Ryabchuk, D. Coastal Vulnerability Index as a Tool for Current State Assessment and Anthropogenic Activity Planning for the Eastern Gulf of Finland Coastal Zone (the Baltic Sea). Appl. Geogr. 2022, 143, 102710. [Google Scholar] [CrossRef]
- Furlan, E.; Pozza, P.D.; Michetti, M.; Torresan, S.; Critto, A.; Marcomini, A. Development of a Multi-Dimensional Coastal Vulnerability Index: Assessing Vulnerability to Inundation Scenarios in the Italian Coast. Sci. Total Environ. 2021, 772, 144650. [Google Scholar] [CrossRef]
- Koroglu, A.; Ranasinghe, R.; Jiménez, J.A.; Dastgheib, A. Comparison of Coastal Vulnerability Index Applications for Barcelona Province. Ocean. Coast. Manag. 2019, 178, 104799. [Google Scholar] [CrossRef]
- Pantusa, D.; D’Alessandro, F.; Riefolo, L.; Principato, F.; Tomasicchio, G.R. Application of a Coastal Vulnerability Index. A Case Study along the Apulian Coastline, Italy. Water 2018, 10, 1218. [Google Scholar] [CrossRef]
- Dey, J.; Mazumder, S. Development of an Integrated Coastal Vulnerability Index and Its Application to the Low-Lying Mandarmani–Dadanpatrabar Coastal Sector, India. Nat. Hazards 2023, 116, 3243–3273. [Google Scholar] [CrossRef]
- Jaskólski, M.W.; Pawłowski, L.; Strzelecki, M.C. Assesment of Geohazardsand Coastal Change in Abandoned Arctic Town, Pyramiden. In Cryosphere Reactions against the Background of Environmental Changes in Contrasting High-Arctic Conditions in Svalbard; Polar Reports; Institute of Geoecology and Geoinformation, Mickiewicz University in Poznań: Poznań, Poland, 2017; Volume 2, pp. 51–64. [Google Scholar]
- Sivertsen, B.; Friborg, O.; Pallesen, S.; Vedaa, Ø.; Hopstock, L.A. Sleep in the Land of the Midnight Sun and Polar Night: The Tromsø Study. Chronobiol. Int. 2021, 38, 334–342. [Google Scholar] [CrossRef] [PubMed]
- Cartaxo, D.M.; Castilla, J.; Dymet, M.; Hossain, K.T. Digitalization and Smartening Sustainable City Development: An Investigation from the High North European Cities. 2021. Available online: https://ideas.repec.org/ (accessed on 10 October 2024).
- Dermosinoglou, A.; Detsikas, S.E.; Petropoulos, G.; Fratsea, L.M.; Papadopoulos, A. Multitemporal Monitoring of Impervious Surface Areas (ISA) Changes in an Arctic Setting, Using ML, Remote Sensing Data and GEE. Zenodo. 2023. Available online: https://zenodo.org/records/10435903 (accessed on 10 October 2024).
- Jacobsen, B.K.; Eggen, A.E.; Mathiesen, E.B.; Wilsgaard, T.; Njolstad, I. Cohort Profile: The Tromso Study. Int. J. Epidemiol. 2012, 41, 961–967. [Google Scholar] [CrossRef]
- Ketzler, G.; Römer, W.; Beylich, A.A. The Climate of Norway. In Landscapes and Landforms of Norway; Beylich, A.A., Ed.; World Geomorphological Landscapes; Springer International Publishing: Cham, Switzerland, 2021; pp. 7–29. ISBN 978-3-030-52562-0. [Google Scholar]
- Kairanov, B.; Escalona, A.; Norton, I.; Abrahamson, P. Early Cretaceous Evolution of the Tromsø Basin, SW Barents Sea, Norway. Mar. Pet. Geol. 2021, 123, 104714. [Google Scholar] [CrossRef]
- Bishop-Taylor, R.; Nanson, R.; Sagar, S.; Lymburner, L. Mapping Australia’s Dynamic Coastline at Mean Sea Level Using Three Decades of Landsat Imagery. Remote Sens. Environ. 2021, 267, 112734. [Google Scholar] [CrossRef]
- Cao, W.; Zhou, Y.; Li, R.; Li, X. Mapping Changes in Coastlines and Tidal Flats in Developing Islands Using the Full Time Series of Landsat Images. Remote Sens. Environ. 2020, 239, 111665. [Google Scholar] [CrossRef]
- Ghanavati, E.; Shah-Hosseini, M.; Marriner, N. Analysis of the Makran Coastline of Iran’s Vulnerability to Global Sea-Level Rise. J. Mar. Sci. Eng. 2021, 9, 891. [Google Scholar] [CrossRef]
- Boumboulis, V.; Apostolopoulos, D.; Depountis, N.; Nikolakopoulos, K. The Importance of Geotechnical Evaluation and Shoreline Evolution in Coastal Vulnerability Index Calculations. J. Mar. Sci. Eng. 2021, 9, 423. [Google Scholar] [CrossRef]
- Universitat Hamburg Global Lithological Map (GLiM) 2024. Available online: https://www.geo.uni-hamburg.de/en/geologie/forschung/aquatische-geochemie/glim.html (accessed on 10 October 2024).
- Nageswara Rao, K.; Subraelu, P.; Venkateswara Rao, T.; Hema Malini, B.; Ratheesh, R.; Bhattacharya, S.; Rajawat, A.S. Ajai Sea-Level Rise and Coastal Vulnerability: An Assessment of Andhra Pradesh Coast, India through Remote Sensing and GIS. J. Coast. Conserv. 2008, 12, 195–207. [Google Scholar] [CrossRef]
- Jaskólski, M.W.; Pawłowski, Ł.; Strzelecki, M.C. High Arctic Coasts at Risk—The Case Study of Coastal Zone Development and Degradation Associated with Climate Changes and Multidirectional Human Impacts in Longyearbyen (Adventfjorden, Svalbard). Land Degrad. Dev. 2018, 29, 2514–2524. [Google Scholar] [CrossRef]
- Fragou, S.; Kalogeropoulos, K.; Stathopoulos, N.; Louka, P.; Srivastava, P.K.; Karpouzas, S.; Kalivas, D.P.; Petropoulos, G.P. Quantifying Land Cover Changes in a Mediterranean Environment Using Lands at TM and Support Vector Machines. Forests 2020, 11, 750. [Google Scholar] [CrossRef]
- Wilson, M.D. Support Vector Machines. In Encyclopedia of Ecology; Elsevier: Amsterdam, The Netherlands, 2008; pp. 3431–3437 . ISBN 978-0-08-045405-4. [Google Scholar]
- Gaki-Papanastassiou, K.; Karymbalis, E.; Poulos, S.; Seni, A.; Zouva, C.H. Coastal Vulnerability Assessment to Sea-Level Rise Bαsed on Geomorphological and Oceanographical Parameters: The Case of Argolikos Gulf, Peloponnese, Greece. Hell. J. Geosci. 2010, 45, 109–121. [Google Scholar]
- Cheewinsiriwat, P.; Langkulsen, U.; Lertwattanamongkol, V.; Poompongthai, W.; Lambonmung, A.; Chamchan, C.; Boonmanunt, S.; Nakhapakorn, K.; Moses, C. Assessing Coastal Vulnerability to Climate Change: A Case Study of Nakhon Si Thammarat and Krabi. Soc. Sci. 2024, 13, 142. [Google Scholar] [CrossRef]
- Yahia Meddah, R.; Ghodbani, T.; Senouci, R.; Rabehi, W.; Duarte, L.; Teodoro, A.C. Estimation of the Coastal Vulnerability Index Using Multi-Criteria Decision Making: The Coastal Social–Ecological System of Rachgoun, Western Algeria. Sustainability 2023, 15, 12838. [Google Scholar] [CrossRef]
- Theocharidis, C.; Doukanari, M.; Kalogirou, E.; Christofi, D.; Mettas, C.; Kontoes, C.; Hadjimitsis, D.; Argyriou, A.V.; Eliades, M. Coastal Vulnerability Index (CVI) Assessment: Evaluating Risks Associated with Human-Made Activities along the Limassol Coastline, Cyprus. Remote Sens. 2024, 16, 3688. [Google Scholar] [CrossRef]
- Frederick, J.M.; Thomas, M.A.; Bull, D.L.; Jones, C.A.; Roberts, J.D. The Arctic Coastal Erosion Problem; Sandia National Laboratories: Albuquerque, NM, USA, 2016. [Google Scholar]
- Breili, K.; Simpson, M.J.R.; Klokkervold, E.; Roaldsdotter Ravndal, O. High Accuracy Coastal Flood Mapping for Norway Using LiDAR Data. Nat. Hazards Earth Syst. Sci. 2020, 20, 673–694. [Google Scholar] [CrossRef]
- Šimac, Z.; Lončar, N.; Faivre, S. Overview of Coastal Vulnerability Indices with Reference to Physical Characteristics of the Croatian Coast of Istria. Hydrology 2023, 10, 14. [Google Scholar] [CrossRef]
- Sulikowska, A.; Walawender, J.P.; Walawender, E. Temperature Extremes in Alaska: Temporal Variability and Circulation Background. Theor. Appl. Clim. 2019, 136, 955–970. [Google Scholar] [CrossRef]
- Henke, M.; Miesse, T.; de Lima, A.D.S.; Ferreira, C.M.; Ravens, T.M. Increasing Coastal Exposure to Extreme Wave Events in the Alaskan Arctic as the Open Water Season Expands. Commun. Earth Environ. 2024, 5, 165. [Google Scholar] [CrossRef]
- Kavan, J.; Strzelecki, M.C. Glacier Decay Boosts the Formation of New Arctic Coastal Environments—Perspectives from Svalbard. Land Degrad. Dev. 2023, 34, 3467–3474. [Google Scholar] [CrossRef]
Variable | Data Source | Reference Period |
---|---|---|
Geomorphology | Global Lithological Map www.geo.uni-hamburg.de (accessed on 10 October 2024) | - |
Coastal slope | Copernicus DEM https://search.earthdata.nasa.gov/search (accessed on 10 October 2024) | - |
Shoreline erosion/accretion (m/yr) | Landsat 5 TM and 9 OLI2 | 1993 & 2023 |
Relative sea level change (mm/yr) | Norwegian Hydrographic Services Mapping Authority api.sehavniva.no | 1993–2024 |
Mean tide range (m) | Norwegian Hydrographic Services Mapping Authority api.sehavniva.no | 1993–2024 |
Mean wave height (m) | Based on literature | 1993–2024 |
Vulnerability | Very Low | Low | Moderate | High | Very High |
---|---|---|---|---|---|
Parameter | 1 | 2 | 3 | 4 | 5 |
Geomorphology | Rocky, cliffed coast, fjords, fiards | Medium cliffs, indented coasts | Low cliffs, glacial drift, alluvial plains | Cobble beaches, estuary | Barrier beaches, sand beaches, deltas, sand spits |
Coastal slope (°) | >10.0 | 6.0–10.0 | 3.1–6.0 | 1.0–3.0 | <1.0 |
Relative sea level change (mm/yr) | <1.8 | 1.8–2.5 | 2.5–2.95 | 2.95–3.16 | >3.16 |
Shoreline erosion/accretion (m/yr) | >2.0 | 1.0–2.0 | (−1.0)–(+1.0) | (−1.1)–(−2.0) | <−2.0 |
Mean tide range (m) | >6.0 | 4.1–6.0 | 2.0–4.0 | 1.0–1.9 | <1.0 |
Mean wave height (m) | <0.55 | 0.55–0.85 | 0.85–1.05 | 1.05–1.25 | >1.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toumasi, P.; Petropoulos, G.P.; Detsikas, S.E.; Kalogeropoulos, K.; Tselos, N.G. Coastal Vulnerability Impact Assessment under Climate Change in the Arctic Coasts of Tromsø, Norway. Earth 2024, 5, 640-653. https://doi.org/10.3390/earth5040033
Toumasi P, Petropoulos GP, Detsikas SE, Kalogeropoulos K, Tselos NG. Coastal Vulnerability Impact Assessment under Climate Change in the Arctic Coasts of Tromsø, Norway. Earth. 2024; 5(4):640-653. https://doi.org/10.3390/earth5040033
Chicago/Turabian StyleToumasi, Polyxeni, George P. Petropoulos, Spyridon E. Detsikas, Kleomenis Kalogeropoulos, and Nektarios Georgios Tselos. 2024. "Coastal Vulnerability Impact Assessment under Climate Change in the Arctic Coasts of Tromsø, Norway" Earth 5, no. 4: 640-653. https://doi.org/10.3390/earth5040033
APA StyleToumasi, P., Petropoulos, G. P., Detsikas, S. E., Kalogeropoulos, K., & Tselos, N. G. (2024). Coastal Vulnerability Impact Assessment under Climate Change in the Arctic Coasts of Tromsø, Norway. Earth, 5(4), 640-653. https://doi.org/10.3390/earth5040033