Climate Benefit Assessment of Doubling the Extent of Windbreak Plantations in Hungary
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Specifics of the Proposed Measure
2.2. Methodological Framework
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Veerkerk, P.J.; Delacote, P.; Hurmekoski, E.; Kunttu, J.; Matthews, R.; Mäkipää, R.; Mosley, F.; Perugini, L.; Reyer, C.P.; Roe, S.; et al. Forest-Based Climate Change Mitigation and Adaptation in Europe. From Science to Policy 14; European Forest Institute: Joensuu, Finland, 2022; ISBN 978-952-7426-22-7. [Google Scholar]
- IPCC. Chapter 7 Agriculture, Forestry, and Other Land Uses (AFOLU). In Sixth Assessment Report, Climate Change 2022: Mitigation of Climate Change, the Working Group III Contribution; IPCC: Geneva, Switzerland, 2022. [Google Scholar]
- Korosuo, A.; Pilli, R.; Abad Viñas, R.; Blujdea, V.N.; Colditz, R.R.; Fiorese, G.; Grassi, G. The role of forests in the EU climate policy: Are we on the right track? Carbon Balance Manag. 2023, 18, 15. [Google Scholar] [CrossRef] [PubMed]
- Honfy, V.; Pödör, Z.; Keserű, Z.; Rásó, J.; Ábri, T.; Borovics, A. The Effect of Tree Spacing on Yields of Alley Cropping Systems—A Case Study from Hungary. Plants 2023, 12, 595. [Google Scholar] [CrossRef] [PubMed]
- Borovics, A.; Somogyi, N.; Honfy, V.; Keserű, Z.; Gyuricza, C. Agrárerdészet, a klímatudatos, természetközeli termelési mód. Erdészeti Lapok 2017, 6, 178–182. [Google Scholar]
- Nair, P.K.R.; Nair, V.D.; Kumar, B.M.; Showalter, J.M. Carbon sequestration in agroforestry systems. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Cambridge, MA, USA, 2010; Volume 108, pp. 237–307. ISBN 9780123810311. [Google Scholar] [CrossRef]
- Joffre; Vacher, J.; de los Llanos, C.; Long, G. The dehesa: An agrosilvopastoral system of 4 the Mediterranean region with special reference to the Sierra Morena area of Spain. Agrofor. Syst. 1988, 6, 25. [Google Scholar] [CrossRef]
- Rigueiro-Rodríguez, A.; McAdam, J.; Mosquera-Losada, M.R. Agroforestry in Europe—Current Status and Future Prospects; Springer: Dordrecht, The Netherlands, 2009. [Google Scholar]
- Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 2004, 304, 1623–1627. [Google Scholar] [CrossRef]
- Abbas, F.; Hammad, H.M.; Ishaq, W.; Farooque, A.A.; Bakhat, H.F.; Zia, Z.; Fahad, S.; Farhad, W.; Cerdà, A. A review of soil carbon dynamics resulting from agricultural practices. J. Environ. Manag. 2020, 268, 110319. [Google Scholar] [CrossRef]
- Tiefenbacher, A.; Sandén, T.; Haslmayr, H.P.; Miloczki, J.; Wenzel, W.; Spiegel, H. Optimizing carbon sequestration in croplands: A synthesis. Agronomy 2021, 11, 882. [Google Scholar] [CrossRef]
- Eglin, T.; Ciais, P.; Piao, S.L. Historical and future perspectives of global soil carbon response to climate and land-use changes. Tellus Ser. B Chem. Phys. Meteorol. 2010, 62, 700–718. [Google Scholar] [CrossRef]
- Mayer, S.; Wiesmeier, M.; Sakamoto, E.; Hübner, R.; Cardinael, R.; Kühnel, A.; Kögel-Knabner, I. Soil organic carbon sequestration in temperate agroforestry systems—A meta-analysis. Agric. Ecosyst. Environ. 2022, 323, 107689. [Google Scholar] [CrossRef]
- Dmuchowski, W.; Baczewska-Dąbrowska, A.H.; Gworek, B. The role of temperate agroforestry in mitigating climate change: A review. For. Policy Econ. 2024, 159, 103136. [Google Scholar] [CrossRef]
- Kay, S.; Rega, C.; Moreno, G.; den Herderd, M.; Palmae, J.H.N.; Borekg, R.; Crous-Durane, J.; Freeseh, D.; Giannitsopoulosi, M.; Gravesi, A.; et al. Agroforestry creates carbon sinks whilst enhancing the environment in agricultural landscapes in Europe. Land Use Policy 2019, 83, 581–593. [Google Scholar] [CrossRef]
- Hart, K.; Allen, B.; Keenleyside, C.; Nanni, S.; Maréchal, A.; Paquel, K.; Nesbit, M.; Ziemann, J. Research for agri committee—The consequences of climate change for EU agriculture. In Proceedings of the Follow-Up to the COP21—Un Paris Climate Change Conference, Bonn, Germany, 6–17 November 2017. [Google Scholar] [CrossRef]
- Aertsens, J.; Nocker, L.; De Gobin, A. Valuing the carbon sequestration potential for European agriculture. Land Use Policy 2013, 31, 584–594. [Google Scholar] [CrossRef]
- Malézieux, E.; Crozat, Y.; Dupraz, C.; Laurans, M. Mixing plant species in cropping systems: Concepts, tools and models: A review. Agron. Sustain. Dev. 2009, 29, 43–62. [Google Scholar] [CrossRef]
- Dupraz, C.; Wolz, K.J.; Lecomte, I.; Talbot, G.; Vincent, G.; Mulia, R.; Bussière, F.; Ozier-Lafontaine, H.; Andrianarisoa, S.; Jackson, N.; et al. Hi-sAFe: A 3D Agroforestry Model for Integrating Dynamic Tree–Crop Interactions. Sustainability 2019, 11, 2293. [Google Scholar] [CrossRef]
- Luedeling, E.; Smethurst, P.J.; Baudron, F.; Bayala, J.; Huth, N.I.; van Noordwijk, M.; Ong, C.K.; Mulia, R.; Lusiana, B.; Muthuri, C.; et al. Field-scale modeling of tree–crop interactions: Challenges and development needs. Agric. Syst. 2016, 142, 51–69. [Google Scholar] [CrossRef]
- De Angelis, D.L.; Mooij, W.M. In praise of mechanistically rich models. In Models in Ecosystem Science; Canham, C.D., Cole, J., Lauenroth, W., Eds.; Princeton University Press: Princeton, NJ, USA, 2003; pp. 61–82. [Google Scholar]
- Oreske, N. The role of quantitative models in science. In Models in Ecosystem Science; Canham, C.D., Cole, J., Lauenroth, W., Eds.; Princeton University Press: Princeton, NJ, USA, 2003; pp. 13–31. [Google Scholar]
- Aumann, C.A. A methodology for developing simulation models of complex systems. Ecol. Model. 2007, 202, 385–396. [Google Scholar] [CrossRef]
- Boote, K.; Jones, J.; Hoogenboom, G. Simulation of crop growth CROPGRO model. In Agricultural System Modeling and Simulation; Peart, R., Cury, R., Eds.; CRC Press: New York, NY, USA, 1998; pp. 651–693. [Google Scholar]
- Brisson, N.; Mary, B.; Ripoche, D.; Jeuroy, M.-H.; Ruget, F.; Nicoullaud, B.; Gate, P.; Devienne-Barret, F.; Antonioletti, R.; Durr, C.; et al. STICS: A generic model for the simulation of crops and their water and nitrogen balances. I. Theory and parameterization applied to wheat and corn. Agronomie 1998, 18, 311–346. [Google Scholar] [CrossRef]
- Zamora, D.S.; Jose, S.; Jones, J.W.; Cropper, W.P. Modeling cotton production response to shading in a pecan alleycropping system using CROPGRO. Agrofor. Syst. 2009, 76, 423–435. [Google Scholar] [CrossRef]
- Dufour, L.; Metay, A.; Talbot, G.; Dupraz, C. Assessing light competition for cereal production in temperate agroforestry systems using experimentation and crop modelling. J. Agron. Crop Sci. 2013, 199, 217–227. [Google Scholar] [CrossRef]
- Williams, J.R.; Jones, C.A.; Kiniry, J.R.; Spanel, D.A. The EPIC Crop Growth Model. Trans. ASAE 1989, 32, 497–511. [Google Scholar] [CrossRef]
- Easterling, W. Modelling the effect of shelterbelts on maize productivity under climate change: An application of the EPIC model. Agric. Ecosyst. Environ. 1997, 61, 163–176. [Google Scholar] [CrossRef]
- Qi, X.; Mize, C.W.; Batchelor, W.D.; Takle, E.S.; Litvina, I.V. SBELTS: A model of soybean production under tree shelter. Agrofor. Syst. 2001, 52, 53–61. [Google Scholar] [CrossRef]
- Mayus, M.; Van Keulen, H.; Stroosnijder, L. A model of tree–crop competition for windbreak systems in the Sahel: Description and evaluation. Agrofor. Syst. 1999, 43, 183–201. [Google Scholar] [CrossRef]
- Van Noordwijk, M.; Lusiana, B. WaNuLCAS, a model of water, nutrient and light capture in agroforestry systems. Agrofor. Syst. 1999, 43, 217–242. [Google Scholar] [CrossRef]
- Walker, A.P.; Mutuo, P.K.; van Noordwijk, M.; Albrecht, A.; Cadisch, G. Modelling of planted legume fallows in Western Kenya using WaNuLCAS. (I) Model calibration and validation. Agrofor. Syst. 2007, 70, 197–209. [Google Scholar] [CrossRef]
- Martin, F.S.; van Noordwijk, M. Trade-offs analysis for possible timber-based agroforestry scenarios using native trees in the Philippines. Agrofor. Syst. 2009, 76, 555–567. [Google Scholar] [CrossRef]
- Pansak, W.; Hilger, T.; Lusiana, B.; Kongkaew, T.; Marohn, C.; Cadisch, G. Assessing soil conservation strategies for upland cropping in Northeast Thailand with the WaNuLCAS model. Agrofor. Syst. 2010, 79, 123–144. [Google Scholar] [CrossRef]
- Cahyo, A.N.; Babel, M.S.; Datta, A.; Prasad, K.C.; Clemente, R. Evaluation of land and water management options to enhance productivity of rubber plantation using WaNuLCas model. Agrivita J. Agric. Sci. 2016, 38, 93–103. [Google Scholar] [CrossRef]
- Graves, A.R.; Burgess, P.J.; Palma, J.H.N.; Herzog, F.; Moreno, G.; Bertomeu, M.; Dupraz, C.; Liagre, F.; Keesman, K.; van der Werf, W.; et al. Development and application of bio-economic modelling to compare silvoarable, arable, and forestry systems in three European countries. Ecol. Eng. 2007, 29, 434–449. [Google Scholar] [CrossRef]
- Graves, A.R.; Burgess, P.J.; Palma, J.; Keesman, K.J.; van der Werf, W.; Dupraz, C.; Van Keulen, H.; Herzog, F.; Mayus, M. Implementation and calibration of the parameter-sparse Yield-SAFE model to predict production and land equivalent ratio in mixed tree and crop systems under two contrasting production situations in Europe. Ecol. Model. 2010, 221, 1744–1756. [Google Scholar] [CrossRef]
- Huth, N.I.; Carberry, P.S.; Poulton, P.L.; Brennan, L.E.; Keating, B.A. A framework for simulating agroforestry options for the low rainfall areas of Australia using APSIM. Eur. J. Agron. 2002, 18, 171–185. [Google Scholar] [CrossRef]
- Mobbs, D.C.; Cannell, M.G.R.; Crout, N.M.J.; Lawson, G.J.; Friend, A.D.; Arah, J. Complementarity of light and water use in tropical agroforests I. Theoretical model outline, performance and sensitivity. For. Ecol. Manag. 1998, 102, 259–274. [Google Scholar] [CrossRef]
- Friend, A.D.; Stevens, A.K.; Knox, R.G.; Cannell, M.G.R. A process-based, terrestrial biosphere model of ecosystem dynamics (Hybrid v3.0). Ecol. Model. 1997, 95, 249–287. [Google Scholar] [CrossRef]
- Stephens, W.; Hess, T.M. Modelling the benefits of soil water conservation using the PARCH model—A case study from a semi-arid region of Kenya. J. Arid Environ. 1999, 41, 335–344. [Google Scholar] [CrossRef]
- Cannell, M.G.R.; Mobbs, D.C.; Lawson, G.J. Complementarity of light and water use in tropical agroforests II. Modelled theoretical tree production and potential crop yield in arid to humid climates. For. Ecol. Manag. 1998, 102, 275–282. [Google Scholar] [CrossRef]
- Dupraz, C.; Burgess, P.; Gavaland, A.; Graves, A.; Herzog, F.; Incoll, L.D.; Jackson, N.; Keesman, K.; Lawson, G.; Lecomte, I.; et al. Synthesis of the Silvoarable Agroforestry for Europe (SAFE) Project; INRA-UMR System: Montpellier, France, 2005; pp. 1–254. [Google Scholar]
- Talbot, G. L’intégration Spatiale et Temporelle du Partage des Ressources dans un Système Agroforestier Noyers-Céréales: Une Clef pour en Comprendre la Productivité? Ecosystems; Université Montpellier II—Sciences et Techniques du Languedoc: Montpellier, France, 2011; pp. 1–298. [Google Scholar]
- Winrock International. AFOLU Carbon Calculator. In The Agroforestry Tool: Underlying Data and Methods; Prepared by Winrock International under the Cooperative Agreement No. EEM-A-00-06-00024-00; Winrock International: Washington, DC, USA, 2014. [Google Scholar]
- Rotz, C.A.; Corson, M.S.; Chianese, D.S.; Montes, F.; Hafner, S.D.; Coiner, C.U. The Integrated Farm System Model; Reference Manual; Version 4.7; Pasture Systems and Watershed Management Research Unit, Agricultural Research Service, United States Department of Agriculture: University Park, PA, USA, 2022; p. 253. [Google Scholar]
- Borovics, A.; Király, É.; Kottek, P. Projection of the Carbon Balance of the Hungarian Forestry and Wood Industry Sector Using the Forest Industry Carbon Model. Forests 2024, 15, 600. [Google Scholar] [CrossRef]
- Borovics, A. ErdőLab: A Soproni Egyetem erdészeti és faipari projektje: Fókuszban az éghajlatváltozás mérséklése. Erdészeti Lapok 2022, 157, 114–115. [Google Scholar]
- Gál, J. A Mezőgazdasági Terméshozamok Növekedése az Erdősávok Védelmében; Az Erdészeti és Faipari Egyetem Tudományos Közleményei: Sopron, Hungary, 1963; pp. 41–83. [Google Scholar]
- Gál, J. A Mezővédő Erdősávok Tervezési Irányelvei és Gazdaságossági Vizsgálata; Erdészeti és Faipari Egyetem Kiadványa: Sopron, Hungary, 1967; p. 83. [Google Scholar]
- Danszky, I. Erdőművelés I; Mezőgazdasági Könyvkiadó Vállalat: Budapest, Hungary, 1972; pp. 420–448. [Google Scholar]
- Frank, N.; Takács, V. Hó-és szélfogó erdősávok minősítése szélsebesség-csökkentő hatásuk alapján. Erdészettudományi Közlemények 2012, 2, 151–162. [Google Scholar]
- Király, É.; Keserű, Z.; Molnár, T.; Szabó, O.; Borovics, A. Carbon Sequestration in the Aboveground Living Biomass of Windbreaks—Climate Change Mitigation by Means of Agroforestry in Hungary. Forests 2024, 15, 63. [Google Scholar] [CrossRef]
- NAK. Fától az Erdőig—Új Támogatási Lehetőségek. National Chamber of Agriculture. 2022. Available online: https://www.nak.hu/tajekoztatasi-szolgaltatas/erdogazdalkodas/104858-fatol-az-erdoig-uj-tamogatasi-lehetosegek (accessed on 10 October 2024).
- Eighth National Communication and Fifth Biennial Report of Hungary. 4 August 2023, p. 291. Available online: https://unfccc.int/documents/630941 (accessed on 10 October 2024).
- NIR. Chapter: Land-Use, Land-Use Change and Forestry. In National Inventory Report for 1985–2021. Hungary; Somogyi, Z., Tobisch, T., Király, É., Eds.; Hungarian Meteorological Service: Budapest, Hungary, 2023. [Google Scholar]
- Király, É.; Borovics, A. Preparatory Study for Carbon Sequestration Modelling of Agroforestry Systems in Hungary: The Assessment of the Yield Class Distribution of Windbreaks. Acta Agrar. Debreceniensis 2024, 1, 73–78. [Google Scholar] [CrossRef]
- Király, É.; Borovics, A. Preparatory Study for Carbon Sequestration Modelling of Agroforestry in Hungary—The Assesment of the Average Canopy Closure of Windbreaks. Hung. Agric. Res. Environ. Manag. Land Use Biodivers. 2024, 2024, 4–8. [Google Scholar]
- Király, É.; Forsell, N.; Schulte, M.; Kis-Kovács, G.; Börcsök, Z.; Kocsis, Z.; Kottek, P.; Mertl, T.; Németh, G.; Polgár, A.; et al. Climate change mitigation potentials of wood industry related measures in Hungary. Mitig. Adapt. Strateg. Glob. Change 2024, 29, 62. [Google Scholar] [CrossRef]
- Kottek, P. Hosszútávú Erdőállomány Prognózisok [Long Term Forest Prognosen]. Ph.D. Thesis, Roth Gyula Erdészetiés Vadgazdálkodási Tudományok Doktori Iskola, Soproni Egyetem, Sopron, Hungary, 2023; p. 142. [Google Scholar]
- IPCC. IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme; Eggleston, H.S., Buendia, L., Miwa, K., Ngara, T., Tanabe, K., Eds.; IPCC: Geneva, Switzerland, 2006. [Google Scholar]
- IPCC. Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Calvo Buendia, E., Tanabe, K., Kranjc, A., Baasansuren, J., Fukuda, M., Ngarize, S., Osako, A., Pyrozhenko, Y., Shermanau, P., Federici, S., Eds.; IPCC: Geneva, Switzerland, 2019. [Google Scholar]
- Leskinen, P.; Cardellini, G.; González-García, S.; Hurmekoski, E.; Sathre, R.; Seppälä, J.; Smyth, C.; Stern, T.; Verkerk, P.J. Substitution Effects of Wood-Based Products in Climate Change Mitigation. From Science to Policy 7; European Forest Institute: Joensuu, Finland, 2018; p. 28. [Google Scholar]
- Myllyviita, T.; Soimakallio, S.; Judl, J.; Seppälä, J. Wood substitution potential in greenhouse gas emission reduction–review on current state and application of displacement factors. For. Ecosyst. 2021, 8, 42. [Google Scholar] [CrossRef]
- Knauf, M.; Köhl, M.; Mues, V.; Olschofsky, K.; Frühwald, A. Modeling the CO2-effects of forest management and wood usage on a regional basis. Carbon Balance Manag. 2015, 10, 13. [Google Scholar] [CrossRef]
- Knauf, M.; Joosten, R.; Frühwald, A. Assessing fossil fuel substitution through wood use based on long-term simulations. Carbon Manag. 2016, 7, 67–77. [Google Scholar] [CrossRef]
- Härtl, F.H.; Höllerl, S.; Knoke, T. A new way of carbon accounting emphasises the crucial role of sustainable timber use for successful carbon mitigation strategies. Mitig. Adapt. Strateg. Glob. Change 2017, 22, 1163–1192. [Google Scholar] [CrossRef]
- Schweinle, J.; Köthke, M.; Englert, H.; Dieter, M. Simulation of forest-based carbon balances for Germany: A contribution to the ‘carbon debt’ debate. WIREs Energy Environ. 2018, 7, e260. [Google Scholar] [CrossRef]
- Wenzel, W.W.; Philipsen, F.N.; Herold, L.; Kingsland-Mengi, A.; Laux, M.; Golestanifard, A.; Strobel, B.W.; Duboc, O. Carbon sequestration potential and fractionation in soils after conversion of cultivated land to hedgerows. Geoderma 2023, 435, 116501. [Google Scholar] [CrossRef]
- Szabó, O.; Molnár, T.; Király, É.; Keserű, Z. Hazai agrárerdészeti rendszerek szénmegkötési képességének értékelése [Evaluation of the carbon sequestration capacity of domestic agroforestry systems]. In Alföldi Erdőkért Egyesület Kutatói Nap: Tudományos Eredmények a Gyakorlatban; Imre, C., Ed.; Alföldi Erdőkért Egyesület: Kecskemét, Hungary, 2023; pp. 145–149. 215p. [Google Scholar]
- Ma, Z.; Chen, H.Y.; Bork, E.W.; Carlyle, C.N.; Chang, S.X. Carbon accumulation in agroforestry systems is affected by tree species diversity, age and regional climate: A global meta-analysis. Glob. Ecol. Biogeogr. 2020, 29, 1817–1828. [Google Scholar] [CrossRef]
- Rédei, K.; Szabó, F.; Honfy, V.; Ábri, T. Growth and yield patterns of black locust (Robinia pseudoacacia L.) sample trees affected by site conditions: Case studies. Acta Agrar. Debreceniensis 2023, 2, 125–128. [Google Scholar] [CrossRef]
- Rédei, K. Bevezetés az Ültetvényszerű Fatermesztés Gyakorlatába, 2nd ed.; MED-KÖR Bt.: Kecskemét, Hungary, 2020; p. 134. [Google Scholar]
- European Commission. EU Soil Strategy for 2030: Towards Healthy Soils for People and the Planet; Publications Office of the European Union: Luxembourg, 2021; Available online: https://data.europa.eu/doi/10.2779/02668 (accessed on 10 October 2024).
- Minasny, B.; Malone, B.P.; McBratney, A.B.; Angers, D.A.; Arrouays, D.; Chambers, A.; Chaplot, V.; Chen, Z.-S.; Cheng, K.; Das, B.S.; et al. Soil carbon 4 per mille. Geoderma 2017, 292, 59–86. [Google Scholar] [CrossRef]
- Bidló, A.; Szűcs, P.; Horváth, A.; Király, É.; Németh, E.; Somogyi, Z. Telepített kocsánytalan tölgy és akác fiatalosok hatása a talaj szénkészletére néhány dunántúli erdőtelepítés példáján [The effect of oak and black locust plantations on the carbon soil carbon stock in some Transdanubian forest plantations]. Erdészettudományi Közlemények 2014, 4, 121–133. [Google Scholar]
- Shi, L.; Feng, W.; Xu, J.; Kuzyakov, Y. Agroforestry systems: Meta-analysis of soil carbon stocks, sequestration processes, and future potentials. Land Degrad. Dev. 2018, 29, 3886–3897. [Google Scholar] [CrossRef]
- Baah-Acheamfour, M.; Chang, S.X.; Bork, E.W.; Carlyle, C.N. The potential of agroforestry to reduce atmospheric greenhouse gases in Canada: Insight from pairwise comparisons with traditional agriculture, data gaps and future research. For. Chron. 2017, 93, 180–189. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Király, É.; Bidló, A.; Keserű, Z.; Borovics, A. Climate Benefit Assessment of Doubling the Extent of Windbreak Plantations in Hungary. Earth 2024, 5, 654-669. https://doi.org/10.3390/earth5040034
Király É, Bidló A, Keserű Z, Borovics A. Climate Benefit Assessment of Doubling the Extent of Windbreak Plantations in Hungary. Earth. 2024; 5(4):654-669. https://doi.org/10.3390/earth5040034
Chicago/Turabian StyleKirály, Éva, András Bidló, Zsolt Keserű, and Attila Borovics. 2024. "Climate Benefit Assessment of Doubling the Extent of Windbreak Plantations in Hungary" Earth 5, no. 4: 654-669. https://doi.org/10.3390/earth5040034
APA StyleKirály, É., Bidló, A., Keserű, Z., & Borovics, A. (2024). Climate Benefit Assessment of Doubling the Extent of Windbreak Plantations in Hungary. Earth, 5(4), 654-669. https://doi.org/10.3390/earth5040034