Soil Pollution Mapping Across Africa: Potential Tool for Soil Health Monitoring
Abstract
1. Introduction
2. Major Soil Pollutants Across Africa and Their Effects
2.1. Sources and Impacts of Heavy Metals
2.2. Soil Pollution and Impacts from Microplastics (MPs)
2.3. Soil Pollution and Impacts from Indiscriminate Waste Dumps in African Agricultural Regions
2.4. Pesticide Pollution and Its Effects on Soil Quality in Africa
2.5. Soil Pollution and Impacts from Petroleum Hydrocarbons in Africa
2.6. Soil Contamination by Radionuclides
3. Uses of Soil Pollution Maps in Soil Health Monitoring
| Country | Soil Pollutants Mapped | Application of Pollution Maps for Soil Health Monitoring | Reference |
|---|---|---|---|
| Nigeria | Petroleum products | The Nigerian government, in partnership with the World Bank, has developed a soil pollution map to identify areas contaminated with petroleum products. This map informs remediation efforts and policy decisions including provision of real-time data on contaminated areas. | [90] |
| Morocco | Excess salts | An inventory of studies conducted over a quarter century was made to assess drivers of salinity loading in Tadla (Morocco), including irrigation water. An in-depth analysis of the salinity maps generated over many years permitted the authors to identify future areas of investigation for an effective monitoring and management of soil salinity in the area. | [91] |
| Ghana | Heavy metals | Researchers at the University of Ghana have used satellite-based soil mapping to identify areas contaminated with heavy metals. They used block chain technology to track and verify soil pollution data from electronic waste (e-waste) recycling activities. This information informs policy decisions and remediation efforts. | [92] |
| Ghana | Organic contaminants and heavy metals | Researchers analyzed various pollutants in surface soil samples obtained from the e-waste processing and dumping sites in Accra (Ghana) to identify pollutants related to e-waste handling. | [93] |
| Kenya | Pesticides and fertilizers | Crowdsourced soil monitoring using mobile applications and community involvement in Lake Victoria Basin, Kenya. Farmers use low-cost sensors and mobile apps to test for pesticides, fertilizers, and industrial waste contamination in soils. This program includes soil testing and mapping to identify areas with nutrient deficiencies. | [94] |
| Cameroon | Heavy metals | Researchers attempted to assess the spatial distribution of heavy metals in an industrial zone (Douala) in order to establish pollution indices that could be useful in guiding government action with regard to remediation. | [95] |
| North Africa | Various elements and pollutants | The Environment Agency—Abu Dhabi (EAD) soil quality monitoring program. The program, launched in 2018, systematically monitors soil quality across the Middle East and North Africa, comprising 664 sites and analyses over 1376 soil samples to screen more than 35 elements and pollutants. The initiative makes use of GIS techniques and statistical analyses to optimize sampling design. | [96] |
| Africa | Lead and Mercury | The Pure earth project, the first of its kind in developing evidence-based solutions to Hg and Pb contamination, includes a site location mapping feature that is accessible through an interactive map on its website. Once the sites are identified, the most effective methods for reversing trace element contamination are then evaluated. The initiative has implemented remediation processes across 29 trial sites in 17 African countries, including Burkina Faso, Cameroon, Côte d’Ivoire, and numerous other areas in SSA. | [97] |
| Tanzania | Heavy metals | Researchers established heavy metal pollution maps in the central Dodoma Region of Tanzania using kriging interpolation techniques. The pollution maps permitted the identification of potential sampling points for effective monitoring purposes and enhanced environmental management practices in the region. | [98] |
| Namibia | Heavy metals | Researchers assessed the dispersion of dust and SO2 emissions from the Tsumeb smelter area, Oshikoto Region, to map contamination and health risk. Pollution maps generated by contouring and kriging techniques are recommended for use by different stakeholders in the sustainable management of ecosystems. | [99] |
4. Soil Pollution Mapping Across Africa
4.1. Methods of Soil Pollution Mapping
4.1.1. Manual Delineation
4.1.2. Geostatistical Interpolation Methods
4.2. Case Studies on Soil Pollution Mapping Across Africa—Methodology
| Pollutant | Scale | No. of Samples | Location | Country | Mapping Method | Accuracy Method | R2 | RMSE | Reference |
|---|---|---|---|---|---|---|---|---|---|
| Free cyanide | Local | 73 | Zougnazagmiline (northern part of Burkina Faso) and Galgouli (southern part of Burkina Faso) | Burkina Faso | DSM | n.a. | n.a. | n.a. | [112] |
| Heavy metals | Local | 103 | Central Dodoma Region | Tanzania | DSM | n.a. | n.a. | n.a. | [98] |
| Heavy metals | Local | 552 | Nangodi area, Talensi-Nabdam district, Upper East Region | Ghana | DSM | Generalized Cross-V | 0.98–0.99 | 0.12–1.04 | [113] |
| Heavy metals | Local | 86 | Sohag Governorate | Egypt | DSM | n.a. | n.a. | n.a. | [114] |
| Heavy metals | Local | 101 | Annaba | Algeria | DSM | Information theoretic approach | 0.45–0.64 | - | [115] |
| Heavy metals | Local | 60 | El-Minia Governorate | Egypt | DSM | Cross-V | - | 0.50–0.91 | [116] |
| Heavy metals | Local | 36 | Setif city | Algeria | DSM | n.a. | n.a. | n.a. | [117] |
| Heavy metals | Local | 24 | Ogere | Nigeria | DSM | n.a. | n.a. | n.a. | [118] |
| Heavy metals | Local | 33 | El-Gharbia Governorate | Egypt | DSM | n.a. | n.a. | n.a. | [119] |
| Heavy metals | Local | 54 | Mayanga, Southwest Brazaville | Congo | DSM | n.a. | n.a. | n.a. | [120] |
| Heavy metals | Local | 60 | Nairobi | Kenya | DSM | Variogram analysis | n.a. | n.a. | [121] |
| Heavy metals | Local | 198 | Usangu Basin | Tanzania | Hybrid | n.a. | n.a. | n.a. | [122] |
| Heavy metals | Local | 40 | Abuakwa South Municipal area | Ghana | Hybrid | n.a. | n.a. | n.a. | [123] |
| Heavy metals | Local | 31 | Bekao, Mbéré division, Adamawa Region | Cameroon | DSM | Cross-V | 0.95 | 0.43 | [124] |
| Heavy metals | Local | 21 | Benin city, Edo State | Nigeria | DSM | n.a. | n.a. | n.a. | [125] |
| Heavy metals | Local | 72 | Lagos metropolis | Nigeria | DSM | n.a. | n.a. | n.a. | [126] |
| Heavy metals | Local | 60 | Yaounde | Cameroon | DSM | n.a. | n.a. | n.a. | [127] |
| Heavy metals | Local | 24 | Lala-Manjo highway, Littoral Region | Cameroon | Hybrid | - | - | - | [128] |
| Heavy metals | Local | 28 | Bétaré-Oya, East Region | Cameroon | DSM | Cross-V | n.a. | 0.96–1.11 | [129] |
| Heavy metals | Local | 25 | Beni-Moussa, Tadla Plain | Morocco | DSM | n.a. | n.a. | n.a. | [130] |
| Heavy metals | Local | 98 | Touiref District | Tunisia | Hybrid | n.a. | n.a. | n.a. | [131] |
| Heavy metals | Local | 109 | Fedj Lahdoum | Tunisia | DSM | Cross-V | n.a. | n.a. | [132] |
| Heavy metals | Local | 65 | Tsumeb smelter area, Oshikoto Region | Namibia | Hybrid | n.a. | n.a. | n.a. | [99] |
| Heavy metals | Local | 340 | Santiago Island | Cape Verde | DSM | Cross-V | n.a. | 0.02–5.03 | [133] |
| Heavy metals | Local | 16 | Ijero-Ekiti | Nigeria | DSM | n.a. | n.a. | n.a. | [134] |
| Heavy metals | Local | 22 | Niger Delta basin | Nigeria | NA | n.a. | n.a. | n.a. | [135] |
| Heavy metals | Local | 9 | Al-Qalyubia Governorate | Egypt | DSM | n.a. | n.a. | n.a. | [136] |
| Heavy metals | Local | 26 | West Girga, Sohag governorate | Egypt | Hybrid | n.a. | n.a. | n.a. | [137] |
| Heavy metals | Local | 24 | Northern part of the Nile Delta | Egypt | Hybrid | n.a. | n.a. | n.a. | [138] |
| Heavy metals | Local | 107 | Kumasi metropolis | Ghana | n.a. | n.a. | n.a. | n.a. | [139] |
| Heavy metals | Local | 1050 | Maibele Airstrip North | Botswana | DSM | Cross-V | n.a. | n.a. | [111] |
| Heavy metals and nitrate | Local | 16 | University of Ibadan campus, Ibadan metropolis | Nigeria | Geoelectrical mapping | n.a. | n.a. | n.a. | [140] |
| Heavy metals and radionuclide (238U, 226Ra, 232Th, 40K, and 210Pb) | Local | 20 | Northeastern Nile Valley | Egypt | CM | n.a. | n.a. | n.a. | [141] |
| Heavy metals | Local | n.a. | Egbema Kingdom, Delta State | Nigeria | DSM | n.a. | n.a. | n.a. | [142] |
| Toxic metals | Local | 62 | Kettara Mine, west of Marrakech city | Morocco | DSM | Semi-variogram analysis | - | 0.79–0.99 | [143] |
| Toxic metals | Local | 75 | Ikirun | Nigeria | DSM | n.a. | n.a. | n.a. | [144] |
| Heavy metals | National | 60 | Confluence of the Nairobi and Thiririka rivers | Kenya | Hybrid | “out of bag” (OOB) testing and Cross-V | 0.78–0.83 | 0.27–0.51 | [145] |
| Heavy metals | National | 942 | South Africa | South Africa | DSM | n.a. | n.a. | n.a. | [110] |
| Heavy metals | Regional | 159 | Nile Valley in Minia Governorate | Egypt | DSM | n.a. | n.a. | n.a. | [146] |
| Trace metals | Regional | 60 | Eastern Nile Delta | Egypt | CM | n.a. | n.a. | n.a. | [147] |
| Hydrocarbons | Local | 290 | Alode, Eleme Local Government Area of Rivers State | Nigeria | Geoelectrical mapping | Data splitting | n.a. | n.a. | [148] |
| Metal/metalloid contaminants | Local | 196 | Nkana copper smelter, Copperbelt Province | Zambia | CM | n.a. | n.a. | n.a. | [149] |
| Oil spill incidence | National | n.a. | Nigeria | Nigeria | CM | - | - | - | [150] |
| Persistent organic pollutants | Local | 108 | Nyabarongo lower catchment | Rwanda | CM | [73] | |||
| Pesticides | Local | 27 | Béré watershed | Ivory Coast | DSM | Cross-V | - | 5.16 | [151] |
| Pesticides | Regional | 30 | Akwa Ibom State | Nigeria | CM | n.a. | n.a. | n.a. | [152] |
| Pesticides | Regional | 32 | Southeastern, eastern, southwestern, and central-western regions | Tanzania | Hybrid | n.a. | n.a. | n.a. | [153] |
| Polycyclic aromatic hydrocarbons | Local | 16 | Eleme and Ahoada East, Niger Delta | Nigeria | CM | n.a. | n.a. | n.a. | [154] |
| Polycyclic aromatic hydrocarbons (PAHs) | Local | 129 | Kumasi metropolis | Ghana | Hybrid | n.a. | n.a. | n.a. | [155] |
| Radioactive minerals | Local | n.a. | Mrima Hill, South Coast of Kenya | Kenya | DSM | - | - | - | [86] |
| Radionuclides including Gamma radiation | Local | 811 | Jos Plateau | Nigeria | DSM | n.a. | n.a. | n.a. | [156] |
| Radionuclides including 238U, 226Ra, 232Th, and 40K | Local | 44 | Itu local government area, Akwa Ibom State | Nigeria | Hybrid | - | - | - | [157] |
| Radionuclides including 238U, 232Th and 40K | Local | n.a. | Rustenburg | South Africa | DSM | n.a. | n.a. | n.a. | [89] |
| Radionuclides including 238U, 232Th and 40K | Local | 163 | Witwatersrand Basin, Gauteng Province | South Africa | n.a. | - | - | - | [89] |
| Radionuclides including 222Rn | Local | 100 | Ekiti State | Nigeria | DSM | n.a. | n.a. | n.a. | [87] |
| Radionuclides including 137Cs 60Co, 40K, 214Bi and 208Tl | Regional | n.a. | West Coast (Saldanha Bay nature reserve) and East Coast (near Amanzimtot) | South Africa | Hybrid | n.a. | n.a. | n.a. | [158] |
| Radionuclides including 226Ra, 232Th and 40K | Regional | 350 | Canary Islands | Off the Western Sahara African coast | DSM | n.a. | n.a. | n.a. | [85] |
| Excess salts | Local | 25 | Tafilalet plain, Errachidia Region | Morocco | Hybrid | Cross-V | 0.93 | n.a. | [159] |
| Excess salts | Local | 51 | Fatnassa Oasis | Tunisia | Hybrid | Data splitting | 0.56 | 2.94 | [160] |
| Excess salts | Local | 229 | Zaghouan Governorate | Tunisia | DSM | Data splitting | 0.67 | 0.12 | [161] |
| Excess salts | Local | 45 | Zelfana municipality, Ghardaïa province | Algeria | DSM | Data splitting | n.a. | 1.94–7.16; 1.95–7.45 | [162] |
| Excess salts | Local | 685 | Beni Amir, Tadla plain | Morocco | Hybrid | n.a. | n.a. | n.a. | [163] |
| Excess salts | Local | 20 | El-Salhia Area, East of Nile Delta | Egypt | DSM | n.a. | n.a. | n.a. | [164] |
| Excess salts | Local | 420 | Kollo, Southeast of Niamey | Niger | DSM | 0.79–0.83 | [165] | ||
| Excess salts | Regional | n.a. | Tadla | Morocco | DSM | Cross-V | 0.55–0.97 | 0.08–2.35 | [91] |
| Excess salts | Regional | 92 | Beni Amir, Tadla plain | Morocco | DSM | Cross-V | n.a. | 0.42 | [166] |
| Excess salts | Regional | 92 | East of the Nile Delta | Egypt | DSM | Cross-V | - | 0.38–0.39 | [167] |
| Excess salts | National | 1083 | Cameroon | Cameroon | DSM | Data splitting | n.a. | n.a. | [168] |
| Excess salts | Continental | >60,000 | Africa | Africa | DSM | Data splitting | 0.74–0.76 | 0.56–1.04 | [21] |
| Total N and P loads | Local | n.a. | Muanza city | Tanzania | DSM | n.a. | n.a. | n.a. | [169] |
4.2.1. Limitations in Mapping Methods—A Critical Analysis
4.2.2. Accuracy Assessment
4.2.3. Data Quality and Availability
4.2.4. Reliability of Machine Learning Outputs
4.2.5. Effectiveness of Digital Mapping Methods
5. Gaps and Challenges in Soil Pollution Mapping with Respect to the Soil Information System Framework in Sub-Saharan Africa
5.1. Lack of Political Will and Policy Weaknesses
5.2. Infrastructural, Financial, and Technological Limitations
5.3. Data Availability and Accessibility
5.4. Climate Variability and Land Use Change
6. Recommendations for Advancing Soil Pollution Mapping and Management in Africa
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| SIS | Soil information system |
| FAO | The Food and Agriculture Organization of the United Nations |
| DDT | Dichlorodiphenyltrichloroethane |
| (2,4-D) | 2,4-Dichlorophenoxyacetic acid |
| PAHs | Polycyclic aromatic hydrocarbons |
| PCBs | Polychlo-rinated biphenyls |
| MPs | Microplastics |
| PE | Polyethene |
| PP | Polypropylene |
| PS | Polystyrene |
| PVC | Polyvinylchloride |
| PET | Poly Ethylene Terephthalate |
| PU | Polyurethane |
| CA | Cellulose acetate |
| PES | Polyethylene succinate |
| EU | Europe Union |
| USA | United States of America |
| UNEP | United Nations Environment Programme |
| CUPs | Current-use pesticides |
| TPH | Total petroleum hydrocarbon |
| EAD | The Environment Agency—Abu Dhabi |
| SSA | Sub-Saharan Africa |
| XRF | X-Ray Fluorescence |
| IDW | Inverse Distance Weighting |
| DSM | Digital soil mapping |
| GIS | Geographic Information System |
| GPS | Global Positioning System |
| OK | Ordinary kriging |
| OCK | Ordinary co-kriging |
| ML | Machine learning |
| RMSE | Root mean square error (RMSE) |
| AfSIS | Africa Soil Information Service |
| FAIR | Findable, accessible, interoperable, and reusable |
| POPs | Persistent organic pollutants |
| AfSP | African soil profile |
| GSP | The Global Soil Partnership |
| GLOSIS | Global Soil Information System |
| GSOP | Global Symposium on Soil Pollution |
| INSII | The International Network of Soil Information Institutions |
| EPA | The United States Environmental Protection Agency |
References
- Lal, R.; Stewart, B.A. Soil Degradation and Restoration in Africa; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar] [CrossRef]
- Mesele, S.A.; Mechri, M.; Okon, M.A.; Isimikalu, T.O.; Wassif, O.M.; Asamoah, E.; Ahmad, H.A.; Moepi, P.I.; Gabasawa, A.I.; Bello, S.K.; et al. Current Problems Leading to Soil Degradation in Africa: Raising Awareness and Finding Potential Solutions. Eur. J. Soil. Sci. 2025, 76, e70069. [Google Scholar] [CrossRef]
- ITPS. Status of the World’s Soil Resources (SWSR)—Main Report; Food and Agriculture Organization: Rome, Italy, 2015; 650p. [Google Scholar]
- FAO; UNEP. Environmental, health and socio-economic impacts of soil pollution. Glob. Assess. Soil Pollut. Rep. 2021, 846. Available online: https://openknowledge.fao.org/server/api/core/bitstreams/fe5df8d6-6b19-4def-bdc6-62886d824574/content/src/html/chapter-04-1.html (accessed on 22 August 2025).
- Wołejko, E.; Jabłońska-Trypuć, A.; Wydro, U.; Butarewicz, A.; Łozowicka, B. Soil biological activity as an indicator of soil pollution with pesticides—A review. Appl. Soil. Ecol. 2020, 147, 103356. [Google Scholar] [CrossRef]
- Dhuldhaj, U.P.; Singh, R.; Singh, V.K. Pesticide contamination in agro-ecosystems: Toxicity, impacts, and bio-based management strategies. Environ. Sci. Pollut. Res. 2022, 30, 9243–9270. [Google Scholar] [CrossRef]
- Ziliotto, M.; Kulmann-Leal, B.; Roitman, A.; Artur, J.; Chies, B.; Ellwanger, J.H. Pesticide Pollution in the Brazilian Pampa: Detrimental Impacts on Ecosystems and Human Health in a Neglected Biome. Pollutants 2023, 3, 280–292. [Google Scholar] [CrossRef]
- Ashitha, A.; Rakhimol, K.R.; Mathew, J. Fate of the Conventional Fertilizers in Environment. In Controlled Release Fertilizers for Sustainable Agriculture; Academic Press: New York, NY, USA, 2021; pp. 25–39. [Google Scholar] [CrossRef]
- Craswell, E. Fertilizers and nitrate pollution of surface and ground water: An increasingly pervasive global problem. SN Appl. Sci. 2021, 34, 518. [Google Scholar] [CrossRef]
- Mensah, A.K.; Marschner, B.; Antoniadis, V.; Stemn, E.; Shaheen, S.M.; Rinklebe, J. Human health risk via soil ingestion of potentially toxic elements and remediation potential of native plants near an abandoned mine spoil in Ghana. Sci. Total Environ. 2021, 798, 149272. [Google Scholar] [CrossRef]
- Khurshid, C.A.; Mahdi, K.; Ahmed, O.I.; Osman, R.; Rahman, M.; Ritsema, C. Assessment of Potentially Toxic Elements in the Urban Soil and Plants of Kirkuk City in Iraq. Sustainability 2022, 14, 5655. Available online: https://www.mdpi.com/2071-1050/14/9/5655 (accessed on 22 August 2025). [CrossRef]
- Laptiev, V.; Giltrap, M.; Tian, F.; Ryzhenko, N. Assessment of Heavy Metals (Cr Cu Pb Zn) Bioaccumulation Translocation by Erigeron canadensis, L. in Polluted Soil. Pollutants 2024, 4, 434–451. [Google Scholar] [CrossRef]
- Maphuhla, N.G.; Oyedeji, O.O. Assessment of possibly toxic elements in landfill soils and their impacts on the Ecosystem in Alice, South Africa. Pollutants 2024, 4, 291–301. [Google Scholar] [CrossRef]
- Cachada, A.; Rocha-Santos, T.A.P.; Duarte, A.C. Soil and Pollution: An Introduction to the Main Issues. In Soil Pollution; Academic Press: New York, NY, USA, 2018; pp. 1–28. [Google Scholar] [CrossRef]
- Lifidi Bida, I.; Dan-Badjo, T.A.; Sani, M.M.I.; Charzynski, P.; Guero, Y. Risques sanitaires lies a l’utilisation des pesticides dans la riziculture irriguee a Niamey. Rev. Des. Bio. Resour. 2024, 14, 1–12. Available online: https://dspace.univ-ouargla.dz/jspui/handle/123456789/37859 (accessed on 22 August 2025).
- Xiong, X.; Yanxia, L.; Wei, L.; Chunye, L.; Wei, H.; Ming, Y. Copper content in animal manures and potential risk of soil copper pollution with animal manure use in agriculture. Resour. Conserv. Recycl. 2010, 54, 985–990. [Google Scholar] [CrossRef]
- EPA. Literature Review of Contaminants in Livestock and Poultry Manure and Implications for Water Quality; EPA 820-R-13-002; United States Environmental Protection Agency: Washington, DC, USA, 2013. [Google Scholar]
- Muhammad, J.; Khan, S.; Su, J.Q.; Hesham, A.E.L.; Ditta, A.; Nawab, J.; Ali, A. Antibiotics in poultry manure their associated health issues: A systematic review. J. Soils Sediments 2020, 20, 486–497. Available online: https://link.springer.com/article/10.1007/s11368-019-02360-0 (accessed on 22 August 2025). [CrossRef]
- Nag, R. Towards evaluating the conditional probability of waterborne microbial risks associated with critical rainfall events following land application of animal waste—Afocus on Irish pastures. Int. J. River Basin Manag. 2025, 23, 515–536. [Google Scholar] [CrossRef]
- Wang Yuting Wang Yanhua Shao, T.; Wang, R.; Dong, Z.; Xing, B. Antibiotics microplastics in manure surrounding soil of farms in the Loess Plateau: Occurrence correlation. J. Hazard. Mater. 2024, 465, 133434. [Google Scholar] [CrossRef]
- Omuto, C.T.; Kome, G.K.; Ramakhanna, S.J.; Muzira, N.M.; Ruley, J.A.; Jayeoba, O.J.; Raharimanana, V.; Owusu Ansah, A.; Khamis, N.A.; Mathafeng, K.K.; et al. Trend of soil salinization in Africa and implications for agro-chemical use in semi-arid croplands. Sci. Total Environ. 2024, 951, 175503. [Google Scholar] [CrossRef] [PubMed]
- Sanad, H.; Mouhir, L.; Zouahri, A.; Moussadek, R.; El Azhari, H.; Yachou, H.; Ghanimi, A.; Oueld Lhaj, M.; Dakak, H. Assessment of Groundwater Quality Using the Pollution Index of Groundwater (PIG), Nitrate Pollution Index (NPI), Water Quality Index (WQI), Multivariate Statistical Analysis (MSA), and GIS Approaches: A Case Study of the Mnasra Region, Gharb Plain, Morocco. Water 2024, 16, 1263. [Google Scholar] [CrossRef]
- Shokri, N.; Hassani, A.; Sahimi, M. Multi-Scale Soil Salinization Dynamics From Global to Pore Scale: A Review. Rev. Geophys. 2024, 62, e2023RG000804. [Google Scholar] [CrossRef]
- He, D.; Luo, Y.; Lu, S.; Liu, M.; Song, Y.; Lei, L. Microplastics in soils: Analytical methods, pollution characteristics and ecological risks. TrAC Trends Anal. Chem. 2018, 109, 163–172. [Google Scholar] [CrossRef]
- Büks, F.; Kaupenjohann, M. Global concentrations of microplastics in soils—A review. Soil. Discuss. 2020, 6, 649–662. [Google Scholar] [CrossRef]
- Kumar, M.; Xiong, X.; He, M.; Tsang, D.C.W.; Gupta, J.; Khan, E.; Harrad, S.; Hou, D.; Ok, Y.S.; Bolan, N.S. Microplastics as pollutants in agricultural soils. Environ. Pollut. 2020, 265, 114980. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Zhang, Y.; Kang, S.; Wang, Z.; Wu, C. Microplastics in soil: A review on methods, occurrence, sources, and potential risk. Sci. Total Environ. 2021, 780, 146546. [Google Scholar] [CrossRef] [PubMed]
- Schnaak, W.; Küchler, T.; Kujawa, M.; Henschel, K.P.; Süßenbach, D.; Donau, R. Organic contaminants in sewage sludge and their ecotoxicological significance in the agricultural utilization of sewage sludge. Chemosphere 1997, 35, 5–11. [Google Scholar] [CrossRef]
- Udom, B.E.; Mbagwu, J.S.C.; Adesodun, J.K.; Agbim, N.N. Distributions of zinc, copper, cadmium and lead in a tropical ultisol after long-term disposal of sewage sludge. Environ. Int. 2004, 30, 467–470. [Google Scholar] [CrossRef]
- Eriksson, E.; Christensen, N.; Ejbye Schmidt, J.; Ledin, A. Potential priority pollutants in sewage sludge. Desalination 2008, 226, 371–388. [Google Scholar] [CrossRef]
- Molaey, R.; Appels, L.; Yesil, H.; Tugtas, A.E.; Çalli, B. Sustainable heavy metal removal from sewage sludge: A review of bioleaching and other emerging technologies. Sci. Total Environ. 2024, 955, 177020. [Google Scholar] [CrossRef]
- Gradaščević, N.; Selović, A.; Mujić, N.; Smječanin, N.; Karaman, N.; Nuhanović, M. Study of radionuclides and heavy metal migration through soil profiles (0–60 cm) at points near the targets of NATO strikes in 1995: Environmental monitoring and assessment. Environ. Monit. Assess. 2022, 194, 522. Available online: https://link.springer.com/article/10.1007/s10661-022-10168-8 (accessed on 22 August 2025). [CrossRef]
- Mirzoeva, N.; Tereshchenko, N.; Korotkov, A. Artificial Radionuclides in the System: Water, Irrigated Soils, and Agricultural Plants of the Crimea Region. Land 2022, 11, 1539. [Google Scholar] [CrossRef]
- Osman, R.; Dawood, Y.H.; Melegy, A.; El-Bady, M.S.; Saleh, A.; Gad, A. Distributions and Risk Assessment of the Natural Radionuclides in the Soil of Shoubra El Kheima, South Nile Delta, Egypt. Atmosphere 2022, 13, 98. [Google Scholar] [CrossRef]
- Azeem, U.; Younis, H.; Ullah, N.; Mehboob, K.; Ajaz, M.; Ali, M.; Hidayat, A.; Muhammad, W. Radionuclide concentrations in agricultural soil and lifetime cancer risk due to gamma radioactivity in district Swabi, KPK, Pakistan. Nucl. Eng. Technol. 2024, 56, 207–215. [Google Scholar] [CrossRef]
- Dewitte, O.; Jones, A.; Elbelrhiti, H.; Horion, S.; Montanarella, L. Satellite remote sensing for soil mapping in Africa. Prog. Phys. Geogr. 2012, 36, 514–538. [Google Scholar] [CrossRef]
- Hou, D.; Jia, X.; Wang, L.; McGrath, S.P.; Zhu, Y.G.; Hu, Q.; Nriagu, J. Global soil pollution by toxic metals threatens agriculture and human health. Science 2025, 388, 316–321. [Google Scholar] [CrossRef]
- Qi, C.; Hu, T.; Zheng, Y.; Wu, M.; Tang, F.H.; Liu, M.; Zhang, B.; Derrible, S.; Chen, Q.; Hu, G.; et al. Global and regional patterns of soil metal (loid) mobility and associated risks. Nat. Commun. 2025, 16, 2947. [Google Scholar] [CrossRef]
- Wrigley, O.; Braun, M.; Amelung, W. Global soil microplastic assessment in different land-use systems is largely determined by the method of analysis: A meta-analysis. Sci. Total Environ. 2024, 957, 177226. [Google Scholar] [CrossRef] [PubMed]
- Kang, Q.; Zhang, K.; Dekker, S.C.; Mao, J. Microplastics in soils: A comprehensive review. Sci. Total Environ. 2025, 960, 178298. [Google Scholar] [CrossRef]
- Ivushkin, K.; Bartholomeus, H.; Bregt, A.K.; Pulatov, A.; Kempen, B.; De Sousa, L. Global mapping of soil salinity change. Remote Sens. Environ. 2019, 231, 111260. [Google Scholar] [CrossRef]
- Hassani, A.; Azapagic, A.; Shokri, N. Global predictions of primary soil salinization under changing climate in the 21st century. Nat. Commun. 2021, 12, 6663. [Google Scholar] [CrossRef]
- Panagos, P.; Broothaerts, N.; Ballabio, C.; Orgiazzi, A.; De Rosa, D.; Borrelli, P.; Jones, A. How the EU Soil Observatory is providing solid science for healthy soils. Eur. J. Soil Sci. 2024, 75, e13507. [Google Scholar] [CrossRef]
- Silva, V.; Mol, H.G.; Zomer, P.; Tienstra, M.; Ritsema, C.J.; Geissen, V. Pesticide residues in European agricultural soils–A hidden reality unfolded. Sci. Total Environ. 2019, 653, 1532–1545. [Google Scholar] [CrossRef] [PubMed]
- Tóth, G.; Hermann, T.; Da Silva, M.R.; Montanarella, L. Heavy metals in agricultural soils of the European Union with implications for food safety. Environ. Int. 2016, 88, 299–309. [Google Scholar] [CrossRef] [PubMed]
- Meusburger, K.; Evrard, O.; Alewell, C.; Borrelli, P.; Cinelli, G.; Ketterer, M.; Ballabio, C. Plutonium aided reconstruction of caesium atmospheric fallout in European topsoils. Sci. Rep. 2020, 10, 11858. [Google Scholar] [CrossRef]
- Lofty, J.; Muhawenimana, V.; Wilson, C.A.M.E.; Ouro, P. Microplastics removal from a primary settler tank in a wastewater treatment plant and estimations of contamination onto European agricultural land via sewage sludge recycling. Environ. Pollut. 2022, 304, 119198. [Google Scholar] [CrossRef]
- Pickard, B.R.; Daniel, J.; Mehaffey, M.; Jackson, L.E.; Neale, A. EnviroAtlas: A new geospatial tool to foster ecosystem services science and resource management. Ecosyst. Serv. 2015, 14, 45–55. [Google Scholar] [CrossRef]
- Adhikari, K.; Mancini, M.; Libohova, Z.; Blackstock, J.; Winzeler, E.; Smith, D.R.; Curi, N. Heavy metals concentration in soils across the conterminous USA: Spatial prediction, model uncertainty, and influencing factors. Sci. Total Environ. 2024, 919, 170972. [Google Scholar] [CrossRef]
- Yabe, J.; Ishizuka, M.; Umemura, T. Current Levels of Heavy Metal Pollution in Africa. J. Vet. Med. Sci. 2010, 72, 1257–1263. [Google Scholar] [CrossRef]
- Fayiga, A.O.; Ipinmoroti, M.O.; Chirenje, T. Environmental pollution in Africa. Environ. Dev. Sustain. 2017, 20, 41–73. [Google Scholar] [CrossRef]
- Tindwa, H.J.; Singh, B.R. Soil pollution and agriculture in sub-Saharan Africa: State of the knowledge and remediation technologies. Front. Soil. Sci. 2023, 2, 1101944. Available online: https://www.frontiersin.org/journals/soil-science/articles/10.3389/fsoil.2022.1101944/full (accessed on 22 August 2025). [CrossRef]
- Yevugah, L.L.; Darko, G.; Bak, J. Does mercury emission from small-scale gold mining cause widespread soil pollution in Ghana? Environ. Pollut. 2021, 284, 116945. [Google Scholar] [CrossRef]
- Dehkordi, M.; Pournuroz Nodeh, Z.; Soleimani Dehkordi, K.; Salmanvandi, H.; Rasouli Khorjestan, R.; Ghaffarzadeh, M. Soil, air, and water pollution from mining and industrial activities: Sources of pollution, environmental impacts, and prevention and control methods. Results Eng. 2024, 23, 102729. [Google Scholar] [CrossRef]
- Gelaye, Y. Public health and economic burden of heavy metals in Ethiopia-A review. Heliyon 2024, 10, e39022. [Google Scholar] [CrossRef] [PubMed]
- Tibane, L.V.; Mamba, D. Ecological risk of trace metals in soil from gold mining region in South Africa. J. Hazard. Mater. Adv. 2022, 7, 100118. [Google Scholar] [CrossRef]
- Boularbah, A.; Schwartz, C.; Bitton, G.; Morel, J.L. Heavy metal contamination from mining sites in South Morocco: 1. Use of a biotest to assess metal toxicity of tailings and soils. Chemosphere 2006, 63, 802–810. [Google Scholar] [CrossRef]
- Boularbah, A.; Schwartz, C.; Bitton, G.; Aboudrar, W.; Ouhammou, A.; Morel, J.L. Heavy metal contamination from mining sites in South Morocco: 2. Assessment of metal accumulation and toxicity in plants. Chemosphere 2006, 63, 811–817. [Google Scholar] [CrossRef]
- Yuan, Z.; Nag, R.; Cummins, E. Ranking of potential hazards from microplastics polymers in the marine environment. J. Hazard. Mater. 2022, 429, 128399. [Google Scholar] [CrossRef]
- Fan, P.; Yu, H.; Xi, B.; Tan, W. A review on the occurrence and influence of biodegradable microplastics in soil ecosystems: Are biodegradable plastics substitute or threat? Environ. Int. 2022, 163, 107244. [Google Scholar] [CrossRef]
- Dennison, M.S.; Paramasivam, S.K.; Wanazusi, T.; Sundarrajan, K.J.; Erheyovwe, B.P.; Marshal Williams, A.M. Addressing Plastic Waste Challenges in Africa: The Potential of Pyrolysis for Waste-to-Energy Conversion. Clean. Technol. 2025, 7, 20. [Google Scholar] [CrossRef]
- Wang, F.; Wang, Q.; Adams, C.A.; Sun, Y.; Zhang, S. Effects of microplastics on soil properties: Current knowledge future perspectives. J. Hazard. Mater. 2022, 424, 127531. [Google Scholar] [CrossRef]
- Bodor, A.; Feigl, G.; Kolossa, B.; Mészáros, E.; Laczi, K.; Kovács, E.; Perei, K.; Rákhely, G. Soils in distress: The impacts and ecological risks of (micro)plastic pollution in the terrestrial environment. Ecotoxicol. Environ. Saf. 2024, 269, 115807. [Google Scholar] [CrossRef]
- Bao, X.; Gu, Y.; Chen, L.; Wang, Z.; Pan, H.; Huang, S.; Meng, Z.; Chen, X. Microplastics derived from plastic mulch films and their carrier function effect on the environmental risk of pesticides. Sci. Total Environ. 2024, 924, 171472. [Google Scholar] [CrossRef]
- Xu, G.; Lin, X.; Yu, Y. Different effects and mechanisms of polystyrene micro- and nano-plastics on the uptake of heavy metals (Cu, Zn, Pb and Cd) by lettuce (Lactuca sativa L.). Environ. Pollut. 2023, 316, 120656. [Google Scholar] [CrossRef]
- Alimi, O.S.; Fadare, O.O.; Okoffo, E. Microplastics in African ecosystems: Current knowledge, abundance, associated contaminants, techniques, and research needs. Sci. Total Environ. 2021, 755, 142422. [Google Scholar] [CrossRef]
- Niyobuhungiro, R.V.; Schenck, C.J. The dynamics of indiscriminate/illegal dumping of waste in Fisantekraal, Cape Town, South Africa. J. Environ. Manag. 2021, 293, 112954. [Google Scholar] [CrossRef]
- Mbaegbu, G.I.; Ihem, E.E.; Okon, M.A.; Akakuru, O.C. Impact of waste dumps on soil groundwater quality in Owerri Southeastern Nigeria. Agric. Food Nat. Resour. J. 2024, 3, 113–121. [Google Scholar] [CrossRef]
- Szulc, J.; Okrasa, M.; Nowak, A.; Ryngajłło, M.; Nizioł, J.; Kuźniar, A.; Ruman, T.; Gutarowska, B. Uncontrolled Post-Industrial Landfill—Source of Metals, Potential Toxic Compounds, Dust, and Pathogens in Environment—A Case Study. Molecules 2024, 29, 1496. Available online: https://www.mdpi.com/1420-3049/29/7/1496 (accessed on 22 August 2025). [CrossRef]
- UNEP. Global Assessment of Soil Pollution–Summary for Policy Makers; FAO: Rome, Italy, 2021. [Google Scholar]
- Kumar, C.; Bailey-Morley, A.; Kargbo, E.; Sanyang, L. Waste Management in Africa: A Review of Cities’ Experiences; ODI Working Paper; ODI: London, UK, 2022; Available online: www.odi.org/en/publications/waste-management-in-africa-a-review-of-cities-experiences (accessed on 1 April 2025).
- Olisah, C.; Okoh, O.O.; Okoh, A.I. Occurrence of organochlorine pesticide residues in biological and environmental matrices in Africa: A two-decade review. Heliyon 2020, 6, e03518. [Google Scholar] [CrossRef]
- Umulisa, V.; Kalisa, D.; Skutlarek, D.; Reichert, B. First evaluation of DDT (dichlorodiphenyltrichloroethane) residues and other Persistence Organic Pollutants in soils of Rwanda: Nyabarongo urban versus rural wetlands. Ecotoxicol. Environ. Saf. 2020, 197, 110574. [Google Scholar] [CrossRef]
- Degrendele, C.; Klánová, J.; Prokeš, R.; Příbylová, P.; Šenk, P.; Šudoma, M.; Röösli, M.; Dalvie, M.A.; Fuhrimann, S. Current use pesticides in soil and air from two agricultural sites in South Africa: Implications for environmental fate and human exposure. Sci. Total Environ. 2022, 807, 150455. [Google Scholar] [CrossRef]
- Ouhajjou, M.; Edahbi, M.; Hachimi, H. First surveillance of pesticides in soils of the perimeter of Tadla, a Moroccan sugar beet intensive area. Environ. Monit. Assess. 2024, 196, 28. [Google Scholar] [CrossRef]
- Hendriks, C.M.J.; Gibson, H.S.; Trett, A.; Python, A.; Weiss, D.J.; Vrieling, A.; Coleman, M.; Gething, P.W.; Hancock, P.A.; Moyes, C.L. Mapping geospatial processes affecting the environmental fate of agricultural pesticides in Africa. Int. J. Environ. Res. Public Health 2019, 16, 3523. [Google Scholar] [CrossRef]
- Mokrani, S.; Houali, K.; Yadav, K.K.; Arabi, A.I.A.; Eltayeb, L.B.; AwjanAlreshidi, M.; Benguerba, Y.; Cabral-Pinto, M.M.S.; Nabti, E. Bioremediation techniques for soil organic pollution: Mechanisms, microorganisms, and technologies—A comprehensive review. Ecol. Eng. 2024, 207, 107338. [Google Scholar] [CrossRef]
- Akinpelumi, V.K.; Kumi, K.G.; Onyena, A.P.; Sam, K.; Ezejiofor, A.N.; Frazzoli, C.; Ekhator, O.C.; Udom, G.J.; Orisakwe, O.E. A comparative study of the impacts of polycyclic aromatic hydrocarbons in water and soils in Nigeria and Ghana: Towards a framework for public health protection. J. Hazard. Mater. Adv. 2023, 11, 100336. [Google Scholar] [CrossRef]
- Adeniran, M.A.; Oladunjoye, M.A.; Doro, K.O. Soil and groundwater contamination by crude oil spillage: A review and implications for remediation projects in Nigeria. Front. Environ. Sci. 2023, 11, 1137496. [Google Scholar] [CrossRef]
- Falkova, M.; Vakh, C.; Shishov, A.; Zubakina, E.; Moskvin, A.; Moskvin, L.; Bulatov, A. Automated IR determination of petroleum products in water based on sequential injection analysis. Talanta 2016, 148, 661–665. [Google Scholar] [CrossRef]
- Emoyan, O.O.; Akporido, S.O.; Agbaire, P.O. Effects of soil pH, total organic carbon and texture on fate of polycyclic aromatic hydrocarbons (PAHs) in soils. Glob. NEST J. 2018, 20, 181–187. [Google Scholar]
- Muze, N.E.; Opara, A.I.; Ibe, F.C.; Njoku, O.C. Assessment of the geo-environmental effects of activities of auto-mechanic workships at Alaoji Aba and Elekahia Port Harcourt, Niger Delta, Nigeria. Environ. Anal. Health Toxicol. 2020, 35, e2020005. [Google Scholar] [CrossRef]
- Dasnois, N. Uranium Mining in Africa: A Continent at the Center of a Global Nuclear Renaissance. Occasional Paper No 122. 2012. Available online: https://saiia.org.za/wp-content/uploads/2012/10/Occasional-Paper-122.pdf (accessed on 22 August 2025).
- Ntsohi, L.; Usman, I.; Mavunda, R.; Kureba, O. Characterization of uranium in soil samples from a prospective uranium mining in Serule, Botswana for nuclear forensic application. J. Radiat. Res. Appl. Sci. 2021, 14, 23–33. [Google Scholar] [CrossRef]
- Arnedo, M.A.; Rubiano, J.G.; Alonso, H.; Tejera, A.; González, A.; González, J.; Gil, J.M.; Rodríguez, R.; Martel, P.; Bolivar, J.P. Mapping natural radioactivity of soils in the eastern Canary Islands. J. Environ. Radioact. 2017, 166, 242–258. [Google Scholar] [CrossRef]
- Ondieki, J.O.; Mito, C.O.; Kaniu, M.I. Feasibility of mapping radioactive minerals in high background radiation areas using remote sensing techniques. Int. J. Appl. Earth Obs. Geoinf. 2022, 107, 102700. [Google Scholar] [CrossRef]
- Ajiboye, Y.; Isinkaye, M.O.; Khanderkar, M.U. Spatial distribution mapping and radiological hazard assessment of groundwater and soil gas radon in Ekiti State, Southwest Nigeria. Environ. Earth Sci. 2018, 77, 545. Available online: https://link.springer.com/article/10.1007/s12665-018-7727-5 (accessed on 22 August 2025). [CrossRef]
- Moshupya, P.M.; Mohuba, S.C.; Abiye, T.A.; Korir, I.; Nhleko, S.; Mkhosi, M. In Situ Determination of Radioactivity Levels and Radiological Doses in and around the Gold Mine Tailing Dams, Gauteng Province, South Africa. Minerals 2022, 12, 1295. [Google Scholar] [CrossRef]
- Olagbaju, P.O.; Wojuola, O.B.; Tshivhase, V. Radionuclides Contamination in Soil: Effects, Sources and Spatial Distribution. EPJ Web Conf. 2021, 253, 09006. [Google Scholar] [CrossRef]
- Sam, K.; Coulon, F.; Prpich, G. Use of stakeholder engagement to support policy transfer: A case of contaminated land management in Nigeria. Environ. Dev. 2017, 24, 50–62. [Google Scholar] [CrossRef]
- Silatsa, F.B.T.; Kebede, F. A quarter century experience in soil salinity mapping and its contribution to sustainable soil management and food security in Morocco. Geoderma Reg. 2023, 34, e00695. [Google Scholar] [CrossRef]
- Armah, F.A.; Quansah, R.; Luginaah, I. A systematic review of heavy metals of anthropogenic origin in environmental media and biota in the context of gold mining in Ghana. Int. Sch. Res. Notices. 2014, 2014, 252148. [Google Scholar] [CrossRef]
- Moeckel, C.; Breivik, K.; Nøst, T.H.; Sankoh, A.; Jones, K.C.; Sweetman, A. Soil pollution at a major West African E-waste recycling site: Contamination pathways and implications for potential mitigation strategies. Environ. Int. 2020, 137, 105563. [Google Scholar] [CrossRef]
- Weeser, B.; Gräf, J.; Njue, N.K.; Cerutti, P.; Rufino, M.C.; Breuer, L.; Jacobs, S.R. Crowdsourced water level monitoring in Kenya’s sondu-miriu basin—Who is “the crowd”? Front. Earth Sci. 2021, 8, 602422. [Google Scholar] [CrossRef]
- Asaah, V.A.; Abimbola, A.F.; Suh, C.E. Heavy metal concentrations and distribution in surface soils of the Bassa industrial zone 1, Douala, Cameroon. Arab. J. Sci. Eng. 2006, 31, 147–158. [Google Scholar]
- Environment Agency—Abu Dhabi. Soil Quality Monitoring Programme. Available online: https://www.ead.gov.ae/en/Media-Centre/News/Soil-Quality-Monitoring-Programme (accessed on 23 March 2025).
- Lead Pollution Lead Pollution. 2025. Available online: https://leadpollution.org/ (accessed on 23 March 2025).
- Abu, M.; Kalimenze, J.; Mvile, B.N.; Kazapoe, R.W. Sources and pollution assessment of trace elements in soils of the central, Dodoma region, East Africa: Implication for public health monitoring. Environ. Technol. Innov. 2021, 23, 101705. [Google Scholar] [CrossRef]
- Kříbek, B.; Majer, V.; Knésl, I.; Keder, J.; Mapani, B.; Kamona, F.; Mihaljevič, M.; Ettler, V.; Penížek, V.; Vaněk, A.; et al. Contamination of soil and grass in the Tsumeb smelter area, Namibia: Modeling of contaminants dispersion and ground geochemical verification. Appl. Geochem. 2016, 64, 75–91. [Google Scholar] [CrossRef]
- Al Maliki, A.; Al-lami, A.K.; Hussain, H.M.; Al-Ansari, N. Comparison between inductively coupled plasma and X-ray fluorescence performance for Pb analysis in environmental soil samples. Environ. Earth Sci. 2017, 76, 433. Available online: https://link.springer.com/article/10.1007/s12665-017-6753-z (accessed on 22 August 2025). [CrossRef]
- Chakraborty, S.; Weindorf, D.C.; Deb, S.; Li, B.; Paul, S.; Choudhury, A.; Ray, D.P. Rapid assessment of regional soil arsenic pollution risk via diffuse reflectance spectroscopy. Geoderma 2017, 289, 72–81. [Google Scholar] [CrossRef]
- FAO. Fundamentals and Tools to Map Soil Pollution. In Proceedings of the Second Annual Meeting of the International Network on Soil Pollution (INSOP), Online, 26–28 November 2024; Food and Agriculture Organization: Rome, Italy, 2024. Available online: https://www.fao.org/fileadmin/user_upload/GSP/INSOP/INSOP_annual_metting24/DAY3/4._Fundamentals_and_tools_to_map_soil_pollution.pdf (accessed on 22 August 2025).
- Hou, D.; O’Connor, D.; Nathanail, P.; Tian, L.; Ma, Y. Integrated GIS and multivariate statistical analysis for regional scale assessment of heavy metal soil contamination: A critical review. Environ. Pollut. 2017, 231, 1188–1200. [Google Scholar] [CrossRef]
- Lourenço, R.W.; Landim, P.M.B.; Rosa, A.H.; Roveda, J.A.F.; Martins, A.C.G.; Fraceto, L.F. Mapping soil pollution by spatial analysis and fuzzy classification. Environ. Earth Sci. 2010, 60, 495–504. Available online: https://link.springer.com/article/10.1007/s12665-009-0190-6 (accessed on 22 August 2025). [CrossRef]
- Jia, X.; Cao, Y.; O’Connor, D.; Zhu, J.; Tsang, D.C.W.; Zou, B.; Hou, D. Mapping soil pollution by using drone image recognition and machine learning at an arsenic-contaminated agricultural field. Environ. Pollut. 2021, 270, 116281. [Google Scholar] [CrossRef] [PubMed]
- Shepard, D. A Two-Dimensional Interpolation Function for Irregularly-Spaced Data. In Proceedings of the 1968 23rd ACM National Conference, New York, NY, USA, August 27–29 1968; pp. 517–524. [Google Scholar] [CrossRef]
- Mitáš, L.; Mitášová, H. General variational approach to the interpolation problem. Comput. Math. Appl. 1988, 16, 983–992. [Google Scholar] [CrossRef]
- Gotway, C.A.; Ferguson, R.B.; Hergert, G.W.; Peterson, T.A. Comparison of Kriging and Inverse-Distance Methods for Mapping Soil Parameters. Soil Sci. Soc. Am. J. 1996, 60, 1237–1247. [Google Scholar] [CrossRef]
- Aguilar, F.J.; Agüera, F.; Aguilar, M.A.; Carvajal, F. Effects of Terrain Morphology, Sampling Density, and Interpolation Methods on Grid DEM Accuracy. Photogramm. Eng. Remote Sens. 2005, 71, 805–816. [Google Scholar] [CrossRef]
- de Villiers, S.; Thiart, C.; Basson, N.C. Identification of sources of environmental lead in South Africa from surface soil geochemical maps. Environ. Geochem. Health. 2010, 32, 451–459. Available online: https://link.springer.com/article/10.1007/s10653-010-9288-8 (accessed on 22 August 2025). [CrossRef]
- Eze, P.N.; Madani, N.; Adoko, A.C. Multivariate Mapping of Heavy Metals Spatial Contamination in a Cu–Ni Exploration Field (Botswana) Using Turning Bands Co-simulation Algorithm. Nat. Resour. Res. 2019, 28, 109–124. Available online: https://link.springer.com/article/10.1007/s11053-018-9378-3 (accessed on 22 August 2025). [CrossRef]
- Razanamahandry, L.C.; Andrianisa, H.A.; Karoui, H.; Podgorski, J.; Yacouba, H. Prediction model for cyanide soil pollution in artisanal gold mining area by using logistic regression. CATENA 2018, 162, 40–50. [Google Scholar] [CrossRef]
- Kwayisi, D.; Kazapoe, R.W.; Alidu, S.; Sagoe, S.D.; Umaru, A.O.; Amuah, E.E.Y.; Kpiebaya, P. Exploring soil pollution patterns in Ghana’s northeastern mining zone using machine learning models. J. Hazard. Mater. Adv. 2024, 16, 100480. [Google Scholar] [CrossRef]
- Ali, M.H.; Mustafa, A.R.A.; El-Sheikh, A.A. Geochemistry and spatial distribution of selected heavy metals in surface soil of Sohag, Egypt: A multivariate statistical and GIS approach. Environ. Earth Sci. 2016, 75, 1257. Available online: https://link.springer.com/article/10.1007/s12665-016-6047-x (accessed on 22 August 2025). [CrossRef]
- Maas, S.; Scheifler, R.; Benslama, M.; Crini, N.; Lucot, E.; Brahmia, Z.; Benyacoub, S.; Giraudoux, P. Spatial distribution of heavy metal concentrations in urban, suburban and agricultural soils in a Mediterranean city of Algeria. Environ. Pollut. 2010, 158, 2294–2301. [Google Scholar] [CrossRef]
- Hammam, A.A.; Mohamed, W.S.; Sayed, S.E.E.; Kucher, D.E.; Mohamed, E.S. Assessment of Soil Contamination Using GIS and Multi-Variate Analysis: A Case Study in El-Minia Governorate, Egypt. Agronomy 2022, 12, 1197. [Google Scholar] [CrossRef]
- Sellami, S.; Zeghouan, O.; Dhahri, F.; Mechi, L.; Moussaoui, Y.; Kebabi, B. Assessment of heavy metal pollution in urban and peri-urban soil of Setif city (High Plains, Eastern Algeria). Environ. Monit. Assess. 2022, 194, 126. Available online: https://link.springer.com/article/10.1007/s10661-022-09781-4 (accessed on 22 August 2025). [CrossRef] [PubMed]
- Adedeji, O.H.; Olayinka, O.O.; Tope-Ajayi, O.O.; Adekoya, A.S. Assessing spatial distribution, potential ecological and human health risks of soil heavy metals contamination around a Trailer Park in Nigeria. Sci. Afr. 2020, 10, e00650. [Google Scholar] [CrossRef]
- Shokr, M.S.; El Baroudy, A.A.; Fullen, M.A.; El-Beshbeshy, T.R.; Ali, R.R.; Elhalim, A.; Guerra, A.J.T.; Jorge, M.C.O. Mapping of heavy metal contamination in alluvial soils of the Middle Nile Delta of Egypt. J. Environ. Eng. Landsc. Manag. 2016, 24, 218–231. [Google Scholar] [CrossRef]
- Nzila, J.D.D.; Mouhamed, S.Y.; Watha-Ndoudy, N.; Prudence, D.; Kampé, P.; Louembé, D.; Kimpouni, V. Spatial distribution of metallic trace elements in the soils of Mayanga market garden sites in Brazzaville (Congo). J. Appl. Biosci. 2018, 132, 13413–13423. [Google Scholar] [CrossRef]
- Ahogle, A.M.A.; Letema, S.; Schaab, G.; Ngure, V.; Mwesigye, A.R.; Korir, N.K. Heavy metals and trace elements contamination risks in peri-urban agricultural soils in Nairobi city catchment, Kenya. Front. Soil. Sci. 2023, 2, 1048057. Available online: https://www.frontiersin.org/journals/soil-science/articles/10.3389/fsoil.2022.1048057/full (accessed on 22 August 2025). [CrossRef]
- Mng’ong’o, M.; Comber, S.; Munishi, L.K.; Ndakidemi, P.A.; Blake, W.; Hutchinson, T.H. Land use patterns influence the distribution of potentially toxic elements in soils of the Usangu Basin, Tanzania. Chemosphere 2021, 284, 131410. [Google Scholar] [CrossRef]
- Baah, D.S.; Foli, G.; Gikunoo, E.; Gidigasu, S.S.R. Spatial distribution and potential ecological risk assessment of trace metals in reclaimed mine soils in Abuakwa South Municipal, Ghana. Soil Sediment Contam. Int. J. 2023, 32, 692–712. [Google Scholar] [CrossRef]
- Abende Sayom, R.Y.; Mfenjou, M.L.; Ayiwouo Ngounouno, M.; Etoundi, M.M.C.; Boroh, W.A.; Mambou Ngueyep, L.L.; Meying, A. A coupled geostatistical and machine learning approach to address spatial prediction of trace metals and pollution indices in sediments of the abandoned gold mining site of Bekao, Adamawa, Cameroon. Heliyon 2023, 9, e18511. [Google Scholar] [CrossRef]
- Ajeh, E.A.; Modi, F.J.; Omoregie, I.P. Health risk estimations and geospatial mapping of trace metals in soil samples around automobile mechanic workshops in Benin city, Nigeria. Toxicol. Reports. 2022, 9, 575–587. [Google Scholar] [CrossRef]
- Taiwo, A.M.; Musa, M.O.; Oguntoke, O.; Afolabi, T.A.; Sadiq, A.Y.; Akanji, M.A.; Shehu, M.R. Spatial distribution, pollution index, receptor modelling and health risk assessment of metals in road dust from Lagos metropolis, Southwestern Nigeria. Environ. Adv. 2020, 2, 100012. [Google Scholar] [CrossRef]
- Nana, A.S.; Falkenberg, T.; Rechenburg, A.; Ntajal, J.; Kamau, J.W.; Ayo, A.; Borgemeister, C. Seasonal variation and risks of potentially toxic elements in agricultural lowlands of central Cameroon. Environ. Geochem. Health. 2023, 45, 4007–4023. Available online: http://link.springer.com/article/10.1007/s10653-022-01473-9 (accessed on 22 August 2025). [CrossRef]
- Tiabou, A.F.; Tanyi, T.A.M.; Yiika, L.P.; Ayuk, M.M.A. Spatial distribution, ecological and ecotoxicity evaluation of heavy metals in agricultural soils along Lala-Manjo Highway, Cameroon Volcanic Line. Discov. Soil. 2024, 1, 1–21. [Google Scholar] [CrossRef]
- Elvine Paternie, E.D.; Hakkou, R.; Ekengele Nga, L.; Bitom Oyono, L.D.; Ekoa Bessa, A.Z.; Oubaha, S.; Khalil, A. Geochemistry and geostatistics for the assessment of trace elements contamination in soil and stream sediments in abandoned artisanal small-scale gold mining (Bétaré-Oya, Cameroon). Appl. Geochem. 2023, 150, 105592. [Google Scholar] [CrossRef]
- El Hamzaoui, E.H.; El Baghdadi, M.; Oumenskou, H.; Aadraoui, M.; Hilali, A. Spatial repartition and contamination assessment of heavy metal in agricultural soils of Beni-Moussa, Tadla plain (Morocco). Model. Earth Syst. Environ. 2020, 6, 1387–1406. Available online: https://link.springer.com/article/10.1007/s40808-020-00756-3 (accessed on 22 August 2025). [CrossRef]
- Othmani, M.A.; Souissi, F.; Durães, N.; Abdelkader, M.; da Silva, E.F. Assessment of metal pollution in a former mining area in the NW Tunisia: Spatial distribution and fraction of Cd, Pb and Zn in soil. Environ. Monit. Assess. 2015, 187, 523. Available online: https://link.springer.com/article/10.1007/s10661-015-4734-9 (accessed on 22 August 2025). [CrossRef]
- Sebei, A.; Chaabani, A.; Abdelmalek-Babbou, C.; Helali, M.A.; Dhahri, F.; Chaabani, F. Evaluation of pollution by heavy metals of an abandoned Pb-Zn mine in northern Tunisia using sequential fractionation and geostatistical mapping. Environ. Sci. Pollut. Res. 2020, 27, 43942–43957. Available online: https://link.springer.com/article/10.1007/s11356-020-10101-x (accessed on 22 August 2025). [CrossRef]
- Cabral Pinto, M.M.S.; Ferreira da Silva, E.A. Heavy Metals of Santiago Island (Cape Verde) Alluvial Deposits: Baseline Value Maps and Human Health Risk Assessment. Int. J. Environ. Res. Public Health 2018, 16, 2. [Google Scholar] [CrossRef]
- Olusola, J.A.; Aturamu, A.O.; Asaolu, O.; Ogunleye, O.S. Spatial distribution and potential ecological and health risks associated with heavy metals in the Ijero-Ekiti mining site, Nigeria. Reg. Sustain. 2024, 5, 100110. [Google Scholar] [CrossRef]
- Eyankware, M.O.; Akakuru, O.C.; Igwe, E.O.; Olajuwon, W.O.; Ukor, K.P. Pollution Indices, Potential Ecological Risks and Spatial distribution of Heavy Metals in soils around Delta State, Nigeria. Water Air Soil Pollut. 2024, 235, 452. [Google Scholar] [CrossRef]
- Abuzaid, A.S.; Fadl, M.E. Mapping potential risks of long-term wastewater irrigation in alluvial soils, Egypt. Arab. J. Geosci. 2018, 11, 433. [Google Scholar] [CrossRef]
- Rizk, S.; Elhaddad, B. Environmental impact of sewage water disposable sites using remote sensing and geochemical studies in West Girga, Sohag, Egypt. Epis. J. Int. Geosci. 2023, 46, 575–589. [Google Scholar] [CrossRef]
- Abowaly, M.E.; Ali, R.A.; Moghanm, F.S.; Gharib, M.S.; Moustapha, M.E.; Elbagory, M.; Omara, A.E.D.; Elmahdy, S.M. Assessment of soil degradation and hazards of some heavy metals, using remote sensing and GIS techniques in the Northern part of the Nile Delta, Egypt. Agriculture 2022, 13, 76. [Google Scholar] [CrossRef]
- Darko, G.; Dodd, M.; Nkansah, M.A.; Aduse-Poku, Y.; Ansah, E.; Wemegah, D.D.; Borquaye, L.S. Distribution and ecological risks of toxic metals in the topsoils in the Kumasi metropolis, Ghana. Cogent Environ. Sci. 2017, 3, 1354965. [Google Scholar] [CrossRef]
- Amidu, S.A.; Olayinka, A.I. Environmental assessment of sewage disposal systems using 2D electrical-resistivity imaging and geochemical analysis: A case study from Ibadan, southwestern Nigeria. Environ. Eng. Geosci. 2006, 12, 261–272. [Google Scholar] [CrossRef]
- Monged, M.H.E.; Hassan, H.B.; El-Sayed, S.A. Spatial Distribution and Ecological Risk Assessment of Natural Radionuclides and Trace Elements in Agricultural Soil of Northeastern Nile Valley, Egypt. Water. Air. Soil. Pollut. 2020, 231, 338. Available online: https://link.springer.com/article/10.1007/s11270-020-04678-9 (accessed on 22 August 2025). [CrossRef]
- Enuneku, A.A.; Anani, O.A.; Job, O.; Kubeyinje, B.F.; Ogbomida, E.T.; Asemota, C.O.; Okpara, B.; Imoobe, T.; Ezemonye, L.I.; Oluwaseun, A.C.; et al. Mapping soil susceptibility to crude oil pollution in the region of Delta, South-South Nigeria: A proportional study of environmetrics, health, ecological risks, and geospatial evaluation. Sci. Afr. 2021, 14, e01012. [Google Scholar] [CrossRef]
- Khalil, A.; Hanich, L.; Bannari, A.; Zouhri, L.; Pourret, O.; Hakkou, R. Assessment of soil contamination around an abandoned mine in a semi-arid environment using geochemistry and geostatistics: Pre-work of geochemical process modeling with numerical models. J. Geochem. Explor. 2013, 125, 117–129. [Google Scholar] [CrossRef]
- Ogunkunle, C.O.; Varun, M.; Dawodu, O.F.; Awotoye, O.O.; Fatoba, P.O. Ecological vulnerability assessment of trace metals in topsoil around a newly established metal scrap factory in southwestern Nigeria: Geochemical, geospatial and exposure risk analyses. Rend. Fis. Acc. Lincei. 2016, 27, 573–588. [Google Scholar] [CrossRef]
- Omondi, E.; Boitt, M. Modeling the Spatial Distribution of Soil Heavy Metals Using Random Forest Model—A Case Study of Nairobi and Thirirka Rivers’ Confluence. J. Geogr. Inf. Syst. 2020, 12, 597–619. [Google Scholar] [CrossRef]
- El-Rawy, M.; Abdelrahman, M.A.; Ismail, E.S.A.M. Integrated use of pollution indices and geomatics to assess soil contamination and identify soil pollution source in El-Minia Governorate, Upper Egypt. J. Eng. Sci. Technol. 2020, 15, 2223–2238. [Google Scholar]
- Ibrahim, E.A.; Selim, E.M.M. Pollution and health risk assessment of trace metal in vegetable field soils in the Eastern Nile Delta, Egypt. Environ. Monit. Assess. 2022, 194, 540. Available online: https://link.springer.com/article/10.1007/s10661-022-10199-1 (accessed on 22 August 2025). [CrossRef]
- Ahmed, N.O.; Nik Daud, N.N.; Okunlola, I.A. Geoelectrical soil mapping for subsurface hydrocarbon contaminant characterization and remediation site zoning at Alode, Central Niger Delta, Nigeria. Phys. Chem. Earth Parts A/B/C 2024, 136, 103726. [Google Scholar] [CrossRef]
- Ettler, V.; Mihaljevič, M.; Kříbek, B.; Majer, V.; Šebek, O. Tracing the spatial distribution and mobility of metal/metalloid contaminants in Oxisols in the vicinity of the Nkana copper smelter, Copperbelt province, Zambia. Geoderma 2011, 164, 73–84. [Google Scholar] [CrossRef]
- Bruederle, A.; Hodler, R. Effect of oil spills on infant mortality in Nigeria. Proc. Natl. Acad. Sci. USA 2019, 116, 5467–5471. Available online: https://www.pnas.org/doi/abs/10.1073/pnas.1818303116 (accessed on 22 August 2025). [CrossRef] [PubMed]
- Eba, M.G.; Akpo, K.S.; Ouattara, P.J.M.; Koné, T.; Coulibaly, L. Spatial Availability of Nitrogen and Pesticides in the Surface Layers of Agricultural Soils of Tropical Hydrosystems in the Wet Season: Case of the Béré Watershed in Côte d’Ivoire (West Africa). J. Agric. Chem. Environ. 2021, 10, 143–168. [Google Scholar] [CrossRef]
- Udoekpo, I.U.; Inyangudoh, A.I.; Awa-Arua, T.A.; Ogwo, E.I.; Offiong, N.A.O.; Inam, E.J.; Halsall, C.J. Assessment of organochlorine pesticide residues in agricultural soils of southern Nigeria and analysis of potential health risks. Toxicol. Rep. 2024, 13, 101843. [Google Scholar] [CrossRef]
- Nyihirani, F.; Qu, C.; Yuan, Z.; Zhang, Y.; Mbululo, Y.; Janneh, M.; Qi, S. Level, source, and distribution of organochlorine pesticides (OCPs) in agricultural soils of Tanzania. Environ. Monit. Assess. 2022, 194, 19. Available online: https://link.springer.com/article/10.1007/s10661-021-09631-9 (accessed on 22 August 2025). [CrossRef]
- Ana, G.R.E.E.; Sridhar, M.K.; Emerole, G.O. A comparative assessment of soil pollution by polycyclic aromatic hydrocarbons in two Niger Delta communities, Nigeria. Afr. J. Pure Appl. Chem. 2009, 3, 31–41. [Google Scholar]
- Bortey-Sam, N.; Ikenaka, Y.; Nakayama, S.M.M.; Akoto, O.; Yohannes, Y.B.; Baidoo, E.; Mizukawa, H.; Ishizuka, M. Occurrence, distribution, sources and toxic potential of polycyclic aromatic hydrocarbons (PAHs) in surface soils from the Kumasi Metropolis, Ghana. Sci. Total Environ. 2014, 496, 471–478. [Google Scholar] [CrossRef]
- Abba, H.T.; Saleh, M.A.; Hassan, W.M.S.W.; Aliyu, A.S.; Ramli, A.T. Mapping of natural gamma radiation (NGR) dose rate distribution in tin mining areas of Jos Plateau, Nigeria. Environ. Earth Sci. 2017, 76, 208. Available online: https://link.springer.com/article/10.1007/s12665-017-6534-8 (accessed on 22 August 2025). [CrossRef]
- Ekong, G.B.; Akpa, T.C.; Umaru, I.; Akpaowo, M.A.; Yusuf, S.D.; Benson, N.U. Baseline radioactivity and associated radiological hazards in soils around a proposed nuclear power plant facility, South-South Nigeria. J. Afr. Earth Sci. 2021, 182, 104289. [Google Scholar] [CrossRef]
- Bezuidenhout, J. Testing and implementation of a transportable and robust radio-element mapping system. S. Afr. J. Sci. 2015, 111, 1–7. [Google Scholar] [CrossRef]
- Rafik, A.; Ibouh, H.; Fels, A.E.A.; El Eddahby, L.; Mezzane, D.; Bousfoul, M.; Amazirh, A.; Ouhamdouch, S.; Bahir, M.; Gourfi, A.; et al. Soil Salinity Detection and Mapping in an Environment under Water Stress between 1984 and 2018 (Case of the Largest Oasis in Africa-Morocco). Remote Sens. 2022, 14, 1606. [Google Scholar] [CrossRef]
- Farzamian, M.; Bouksila, F.; Paz, A.M.; Santos, F.M.; Zemni, N.; Slama, F.; Ben Slimane, A.; Selim, T.; Triantafilis, J. Landscape-scale mapping of soil salinity with multi-height electromagnetic induction and quasi-3d inversion in Saharan Oasis, Tunisia. Agric. Water Manag. 2023, 284, 108330. [Google Scholar] [CrossRef]
- Saad, K.; Kallel, A.; Castaldi, F.; Sahli Chahed, T. Soil Salinity Detection and Mapping by Multi-Temporal Landsat Data: Zaghouan Case Study (Tunisia). Remote Sens. 2024, 16, 4761. [Google Scholar] [CrossRef]
- Benslama, A.; Khanchoul, K.; Benbrahim, F.; Boubehziz, S.; Chikhi, F.; Navarro-Pedreño, J. Monitoring the Variations of Soil Salinity in a Palm Grove in Southern Algeria. Sustainability 2020, 12, 6117. [Google Scholar] [CrossRef]
- El Hamdi, A.; Mouine, Y.; El Morarech, M.; Valles, V.; Yachou, H.; Dakak, H. Spatial Variability of Soil Salinity: The Case of Beni Amir in the Tadla Plain of Morocco. Environ. Sci. Proc. 2022, 16, 9. [Google Scholar] [CrossRef]
- Saleh, A.M.; Belal, A.B.; Mohamed, E.S. Mapping of soil salinity using electromagnetic induction: A case study of East Nile Delta, Egypt. Egypt. J. Soil. Sci. 2017, 57, 167–174. [Google Scholar] [CrossRef]
- Michot, D.; Walter, C.; Adam, I.; Guéro, Y. Digital assessment of soil-salinity dynamics after a major flood in the Niger River valley. Geoderma 2013, 207, 193–204. [Google Scholar] [CrossRef]
- Abdelmjid, Z.; Jamal, H.; Houria, D.; Ahmed, D.; Oumaima, I.H. Soil salinity: A challenge for the resilience of ecosystems and the sustainability of Moroccan agriculture. Afr. Mediterr. Agric. J. 2024, 143, 135–155. [Google Scholar]
- Hammam, A.A.; Mohamed, E.S. Mapping soil salinity in the East Nile Delta using several methodological approaches of salinity assessment. Egypt. J. Remote Sens. Space Sci. 2020, 23, 125–131. [Google Scholar] [CrossRef]
- Kome, G.K.; Silatsa, F.B.T.; Yemefack, M. Status of Salt-Affected Soils in Cameroon. In Halt Soil Salinization, Boost Soil Productivity, Proceedings of the Global Symposium on Salt-Affected Soils, Rome, Italy, 20–22 October 2021; FAO: Rome, Italy, 2022; pp. 67–68. [Google Scholar] [CrossRef]
- Zong, Y.; Chen, S.S.; Kattel, G.R.; Guo, Z. Spatial distribution of non-point source pollution from total nitrogen and total phosphorous in the African city of Mwanza (Tanzania). Front. Environ. Sci. 2023, 11, 1084031. Available online: https://www.frontiersin.org/journals/environmental-science/articles/10.3389/fenvs.2023.1084031/full (accessed on 22 August 2025). [CrossRef]
- Nenkam, A.M.; Wadoux, A.M.J.C.; Minasny, B.; Silatsa, F.B.T.; Yemefack, M.; Ugbaje, S.U.; Akpa, S.; Zijl, G.; Van Bouasria, A.; Bouslihim, Y.; et al. Applications and challenges of digital soil mapping in Africa. Geoderma 2024, 449, 117007. [Google Scholar] [CrossRef]
- Ikporukpo, C. Urbanization and the environment: The debate and evidence from two new cities in Nigeria. J. Geogr. Reg. Plan. 2018, 11, 61–79. [Google Scholar] [CrossRef]
- Ikechukwu, M.N.; Ebinne, E.; Idorenyin, U.; Raphael, N.I. Accuracy Assessment and Compar ative Analysis of IDW, Spline and Kriging in Spatial Interpolation of Landform (Topography): An Experimental Study. J. Geogr. Inf. Syst. 2017, 9, 354–371. [Google Scholar] [CrossRef]
- Van Wesemael, B.; Paustian, K.; Andrén, O.; Cerri, C.E.; Dodd, M.; Etchevers, J.; Goidts, E.; Grace, P.; Kätterer, T.; McConkey, B.G.; et al. How can soil monitoring networks be used to improve predictions of organic carbon pool dynamics and CO2 fluxes in agricultural soils? Plant Soil 2011, 338, 247–259. [Google Scholar] [CrossRef]
- Hengl, T.; Mendes de Jesus, J.; Heuvelink, G.B.M.; Ruiperez Gonzalez, M.; Kilibarda, M.; Blagotić, A.; Wei, S.; Wright, M.N.; Geng, X.; Marschallinger, B.B.; et al. SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE 2017, 12, e0169748. [Google Scholar] [CrossRef] [PubMed]
- Wadoux, A.; Minasny, B.; McBratney, A. Machine learning for digital soil mapping: Applications, challenges and suggested solutions. Earth-Sci. Rev. 2020, 210, 103359. [Google Scholar] [CrossRef]
- Wadoux, A.M.J.C.; Molnar, C. Beyond prediction: Methods for interpreting complex models of soil variation. Geoderma 2022, 422, 115953. [Google Scholar] [CrossRef]
- Ugbaje, S.U.; Karunaratne, S.; Bishop, T.; Gregory, L.; Searle, R.; Coelli, K.; Farrell, M. Space-time mapping of soil organic carbon stock and its local drivers: Potential for use in carbon accounting. Geoderma 2024, 441, 116771. [Google Scholar] [CrossRef]
- Anifowose, B.; Anifowose, F. Artificial intelligence and machine learning in environmental impact prediction for soil pollution management–case for EIA process. Environ. Adv. 2024, 17, 100554. [Google Scholar] [CrossRef]
- Goovaerts, P. Geostatistics in soil science: State-of-the-art and perspectives. Geoderma 1999, 89, 1–45. [Google Scholar] [CrossRef]
- De Caires, S.A.; Martin, C.S.; Atwell, M.A.; Kaya, F.; Wuddivira, G.A.; Wuddivira, M.N. Advancing soil mapping and management using geostatistics and integrated machine learning and remote sensing techniques: A synoptic review. Discov. Soil. 2025, 2, 53. [Google Scholar] [CrossRef]
- Nyika, J.M.; Onyari, E.K.; Dinka, M.O.; Mishra, S.B. Heavy Metal Pollution and Mobility in Soils within a Landfill Vicinity: A South African Case Study. Orient. J. Chem. 2019, 2019, 35. [Google Scholar] [CrossRef]
- Lawal, O.; Arokoyu, S.B.; Udeh, I.I. Assessment of automobile workshops and heavy metal pollution in a typical urban environment in Sub-Saharan Africa. Environ. Res. Eng. Manag. 2015, 71, 27–35. [Google Scholar] [CrossRef]
- Ibrahim, Y.Z.; Balzter, H.; Kaduk, J.; Tucker, C.J.; Karnieli, A.; Huete, A.R.; Thenkabail, P.S. Land Degradation Assessment Using Residual Trend Analysis of GIMMS NDVI3g, Soil Moisture and Rainfall in Sub-Saharan West Africa from 1982 to 2012. Remote Sens. 2015, 7, 5471–5494. [Google Scholar] [CrossRef]
- Forget, Y.; Shimoni, M.; Gilbert, M.; Linard, C. Complementarity between Sentinel-1 and Landsat 8 imagery for built-up mapping in Sub-Saharan Africa. Polym. Prepr. 2018, 2018100695. Available online: https://researchportal.unamur.be/en/publications/complementarity-between-sentinel-1-and-landsat-8-imagery-for-buil/ (accessed on 22 August 2025).
- Van Ranst, E.; Verdoodt, A.; Baert, G. Soil Mapping in Africa at the Crossroads: Work to Make up for the Lost Ground. Bull. Seanc. Acad. R. Sci. Outre-Mer. 2010, 56, 147–163. [Google Scholar]
- ISRIC. Africa Soil Information Service (AfSIS) [WWW Document]. 2013. Available online: https://www.isric.org/projects/africa-soil-information-service-afsis/ (accessed on 2 June 2025).
- Bagagnan, A.R.; Berre, D.; Webber, H.; Lairez, J.; Sawadogo, H.; Descheemaeker, K. From typology to criteria considered by farmers: What explains agroecological practice implementation in North-Sudanian Burkina Faso? Front. Sustain. Food Syst. 2024, 8, 1386143. Available online: https://www.frontiersin.org/journals/sustainable-food-systems/articles/10.3389/fsufs.2024.1386143/full (accessed on 22 August 2025). [CrossRef]
- Raimi, A.; Adeleke, R.; Roopnarain, A. Soil fertility challenges and biofertiliser as a viable alternative for increasing smallholder farmer crop productivity in sub-Saharan Africa. Cogent Food Agric. 2017, 3, 1400933. [Google Scholar] [CrossRef]
- Eugenio, N.R.; Naidu, R.; Colombo, C.M. Global approaches to assessing, monitoring, mapping, and remedying soil pollution. Environ. Monit. Assess. 2020, 192, 601. Available online: https://link.springer.com/article/10.1007/s10661-020-08537-2 (accessed on 22 August 2025). [CrossRef]
- Pérez-Sirvent, C.; Bech, J. Special issue “Spatial assessment of soil and plant contamination”. Environ. Geochem. Health. 2023, 45, 8823–8827. Available online: https://link.springer.com/article/10.1007/s10653-023-01760-z (accessed on 22 August 2025). [CrossRef]
- Brevik, E.C.; Sauer, T.J. The past, present, and future of soils and human health studies. Soil 2015, 1, 35–46. [Google Scholar] [CrossRef]
- Orubebe, B.B. Soil governance and sustainable land use system in Nigeria: The paradox of inequalities, natural resource conflict and ecological diversity in a federal system. In Legal Instruments for Sustainable Soil Management in Africa; Springer International Publishing: Cham, Switzerland, 2020; pp. 157–180. Available online: https://link.springer.com/chapter/10.1007/978-3-030-36004-7_9 (accessed on 22 August 2025).
- Henao, J.; Baanante, C. Agricultural Production and Soil Nutrient Mining in Africa: Implications for Resource Conservation and Policy Development. 2006. Available online: https://vtechworks.lib.vt.edu/server/api/core/bitstreams/b610d19d-c439-4475-9a1a-13347a993872/content (accessed on 22 August 2025).
- Kihara, J.; Mkiza, M.; Mutambu, D.; Kinyua, M.; Mwangi, O.; Bolo, P.; Liben, F.; Abera, W. Soil Health Challenges in Sub-Saharan Africa: Status and Solutions. Grow. Afr. 2023, 1, 16–22. [Google Scholar] [CrossRef]
- Wilkinson, M.D.; Dumontier, M.; Aalbersberg, I.J.J.; Appleton, G.; Axton, M.; Baak, A.; Blomberg, N.; Boiten, J.-W.; da Silva Santos, L.B.; Bourne, P.E. The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data. 2016, 3, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Fiedler, H.; Abad, E.; van Bavel, B.; de Boer, J.; Bogdal, C.; Malisch, R. The need for capacity building and first results for the Stockholm Convention Global Monitoring Plan. TrAC Trends Anal. Chem. 2013, 46, 72–84. [Google Scholar] [CrossRef]
- Biswas, B.; Qi, F.; Biswas, J.K.; Wijayawardena, A.; Khan, M.A.I.; Naidu, R. The fate of chemical pollutants with soil properties and processes in the climate change paradigm—A review. Soil. Syst. 2018, 2, 51. [Google Scholar] [CrossRef]
- Noyes, P.D.; McElwee, M.K.; Miller, H.D.; Clark, B.W.; Van Tiem, L.A.; Walcott, K.C.; Erwin, K.N.; Levin, E.D. The toxicology of climate change: Environmental contaminants in a warming world. Environ. Int. 2009, 35, 971–986. [Google Scholar] [CrossRef] [PubMed]
- Paltseva, A.A.; Neaman, A. An Emerging Frontier: Metal(loid) Soil Pollution Threat Under Global Climate Change. Environ. Toxicol. Chem. 2020, 39, 1653–1654. [Google Scholar] [CrossRef] [PubMed]
- IISD. Summary Report 2–4 May 2018 [WWW Document]. 2018. Available online: https://enb.iisd.org/events/global-symposium-soil-pollution-gsop18/summary-report-2-4-may-2018/ (accessed on 6 February 2025).
- Baritz, R.; Erdogan, H.; Fujii, K.; Takata, Y.; Nocita, M.; Bussian, B.; Batjes, N.; Hempel, J.; Wilson, P.; Vargas, R. Harmonization of methods, measurements and indicators for the sustainable management and protection of soil resources. In Food and Agriculture Organization (FAO) Annual Plenary Assembly, 2nd ed.; Plenary: Rome, Italy, 2014; pp. 22–24. [Google Scholar]
- Jahn, R.; Blume, H.P.; Asio, V.B.; Spaargaren, O.; Schad, P. Guidelines for Soil Description; FAO: Rome, Italy, 2006. [Google Scholar]
- Vågen, T.G.; Winowiecki, L.A. Land and Soil Health Assessments Using the Land Degradation Surveillance Framework (LDSF) –The LDSF Field Manual. World Agroforestry. 2023. Available online: https://www1.cifor.org/fileadmin/subsites/sentinel-landscapes/document/LDSF_Field_Guide.pdf (accessed on 22 August 2025).
- FAO. Capacity development | Global Soil Partnership | Food and Agriculture Organization of the United Nations [WWW Document]. 2022. Available online: https://www.fao.org/global-soil-partnership/areas-of-work/capacity-development/en/ (accessed on 6 February 2025).
- Hengl, T.; Heuvelink, G.B.M.; Kempen, B.; Leenaars, J.G.B.; Walsh, M.G.; Shepherd, K.D.; Sila, A.; MacMillan, R.A.; De Jesus, J.M.; Tamene, L.; et al. Mapping soil properties of Africa at 250 m resolution: Random forests significantly improve current predictions. PLoS ONE 2015, 10, e0125814. [Google Scholar] [CrossRef]
- FAO; AUC; ECA; WFP. Africa-Regional Overview of Food Security and Nutrition 2023, Africa-Regional Overview of Food Security and Nutrition 2023. 2023 Accra. Available online: https://openknowledge.fao.org/items/0db03746-74e1-4b78-9508-70b9f661859c (accessed on 22 August 2025).
- U.S. EPA. EPA Collaboration with Sub-Saharan Africa|US EPA [WWW Document]. 2022. Available online: https://www.epa.gov/international-cooperation/epa-collaboration-sub-saharan-africa/ (accessed on 6 February 2025).




Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kome, G.K.; Kundu, C.A.; Okon, M.A.; Enang, R.K.; Mesele, S.A.; Opio, J.; Asamoah, E.; Khurshid, C. Soil Pollution Mapping Across Africa: Potential Tool for Soil Health Monitoring. Pollutants 2025, 5, 38. https://doi.org/10.3390/pollutants5040038
Kome GK, Kundu CA, Okon MA, Enang RK, Mesele SA, Opio J, Asamoah E, Khurshid C. Soil Pollution Mapping Across Africa: Potential Tool for Soil Health Monitoring. Pollutants. 2025; 5(4):38. https://doi.org/10.3390/pollutants5040038
Chicago/Turabian StyleKome, Georges K., Caroline A. Kundu, Michael A. Okon, Roger K. Enang, Samuel A. Mesele, Julius Opio, Eric Asamoah, and Chrow Khurshid. 2025. "Soil Pollution Mapping Across Africa: Potential Tool for Soil Health Monitoring" Pollutants 5, no. 4: 38. https://doi.org/10.3390/pollutants5040038
APA StyleKome, G. K., Kundu, C. A., Okon, M. A., Enang, R. K., Mesele, S. A., Opio, J., Asamoah, E., & Khurshid, C. (2025). Soil Pollution Mapping Across Africa: Potential Tool for Soil Health Monitoring. Pollutants, 5(4), 38. https://doi.org/10.3390/pollutants5040038

