Impact of Artisanal Gold Mining in Community Conserved Areas with High Biodiversity Using a Multi-Criteria Approach: A Case Study in Colombia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location of the Study
2.2. Systematization of Information and Management Mode
2.3. Social, Ecological, and Environmental Review and Analytical Methods
2.4. Monitoring of Mercury Contamination and Analytical Methods
2.5. Multi-Criteria Analysis (MCA)
3. Results
3.1. Ph-A—Review of Information on the Social, Environmental, and Economic Situation in the ZRV-VRC
3.1.1. Settlement or Colonization Process of the ZRC-VRC
3.1.2. Community Conservation Agreements in the ZRC-VRC
3.1.3. Ecological Relevance of CoS and CoH
3.1.4. Socio-Environmental Conflicts in CoS and CoH
- Microsocial scenarios: The increase in deforestation in the CoS community conservation agreement has been registered in different reports [7,8,34] where the loss of forest was 3.82% during the period 2017–2019 [32]. The results of the analysis of deforestation in the CoS polygon using the social cartography methodology alongside the QGIS tool from 2020 to 2023, indicates a loss of forest cover of 1.8% (990 ha), with 70% (693 ha) of the hotpots of cover loss coinciding with the new opening areas directly or indirectly related to ASGM activity. Directly, it refers to the point of gold extraction and, indirectly, it refers to the supply of wood requirements and services in general for mining activity (Figure 3).
- Macro-social scenarios: The development model established by the Colombian state for several decades has been based mainly on an extractive model of mining and energy resources. Taking this into account, the two main scenarios of socio-environmental conflicts at the macro level are generated by the expansion of gold mining activity and by the expansion of oil activity. In ZRC-VRC, there are currently two areas of 62,342 ha with production contracts, two areas of 93,349 ha with exploration contracts, and five areas of 142,995 ha declared as available, without contract, of which two are intended for unconventional extraction [7,8]. In the Colombian Mining Information System, it is observed that on the territory of the ZRC-VRC there are currently 16 applications for mining titles (2010–2016) for the exploitation of gold, precious minerals, and construction materials with a total area of approximately 39,493 ha, and two mining titles granted (2010–2012) within CoS with a total area of 13,301 ha [8].
3.2. Ph-B—Results of the Characterization of Mercury Contamination
3.3. Ph-C—Results of the Multi-Criteria Analysis MCA
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Impact Category | Code | General Impact Criteria | C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | C9 | C10 | C11 | C12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Environmental/Health impact | C1 | Pollutant emissions in water, air, and soil. | 1.00 | 0.39 | 2.78 | 0.44 | 0.31 | 0.25 | 0.24 | 0.24 | 0.17 | 2.00 | 1.67 | 0.56 |
C2 | Effects on human health and local biodiversity. | 2.67 | 1.00 | 1.75 | 1.67 | 1.00 | 0.83 | 1.00 | 3.00 | 0.44 | 3.33 | 3.00 | 2.67 | |
C3 | Physical/geological characteristics of the territory. | 1.18 | 1.61 | 1.00 | 0.58 | 0.33 | 0.36 | 0.31 | 0.53 | 0.31 | 1.33 | 1.33 | 0.83 | |
C4 | Consumption of natural resources and raw materials (wood, groundwater, energy). | 2.33 | 0.78 | 2.33 | 1.00 | 1.00 | 1.00 | 0.67 | 1.33 | 0.51 | 2.17 | 2.33 | 2.00 | |
C5 | Living conditions of the local community over time. | 3.33 | 1.00 | 3.00 | 1.00 | 1.00 | 0.83 | 1.33 | 1.33 | 0.40 | 3.67 | 3.67 | 2.67 | |
C6 | Deforestation in conserved areas with high biodiversity. | 4.00 | 1.33 | 3.00 | 1.00 | 1.33 | 1.00 | 1.00 | 1.67 | 1.33 | 3.33 | 3.00 | 2.33 | |
Social impact | C7 | Community agreements for forest and lake conservation. | 4.33 | 1.00 | 3.33 | 1.67 | 0.83 | 1.00 | 1.00 | 1.67 | 1.00 | 4.00 | 2.33 | 2.00 |
C8 | Organizational culture of the local community. | 4.33 | 0.33 | 2.67 | 0.83 | 0.83 | 0.67 | 0.67 | 1.00 | 0.31 | 2.67 | 2.00 | 1.50 | |
C9 | Social and armed conflict over land use and occupation. | 6.67 | 2.33 | 4.00 | 3.00 | 3.00 | 0.83 | 1.00 | 3.33 | 1.00 | 3.33 | 3.00 | 1.00 | |
Economic impact | C10 | Technological development and investment in infrastructure. | 0.61 | 0.31 | 0.83 | 0.89 | 0.28 | 0.31 | 0.26 | 0.39 | 0.31 | 1.00 | 0.83 | 0.75 |
C11 | Generation of employment and development of the local economy. | 0.67 | 0.36 | 0.83 | 0.44 | 0.28 | 0.33 | 0.44 | 0.50 | 0.33 | 1.33 | 1.00 | 1.11 | |
C12 | Creation of new inhabited nuclei with livestock and agricultural production areas. | 2.33 | 0.53 | 1.33 | 0.61 | 0.53 | 0.56 | 0.61 | 1.00 | 1.00 | 2.00 | 1.50 | 1.00 |
Impact Category | Code | General Impact Criteria | Weight of the Standardized Criterion | ASGMs in High Biodiversity Community Conservation Areas | Weighted Score (Final Score) |
---|---|---|---|---|---|
Environmental/Health impact | C1 | Pollutant emissions in water, air and soil. | 0.13 | 2 | 0.25 |
C2 | Effects on human health and local biodiversity. | 0.29 | 3 | 0.88 | |
C3 | Physical/geological characteristics of the territory. | 0.14 | 1 | 0.14 | |
C4 | Consumption of natural resources and raw materials (wood, groundwater, energy). | 0.23 | 2 | 0.47 | |
C5 | Living conditions of the local community over time. | 0.29 | 2 | 0.59 | |
C6 | Deforestation in conserved areas with high biodiversity. | 0.34 | 3 | 1.01 | |
Social impact | C7 | Community agreements for forest and lake conservation. | 0.32 | 2 | 0.65 |
C8 | Organizational culture of the local community. | 0.21 | 2 | 0.43 | |
C9 | Social and armed conflict over land use and occupation. | 0.47 | 3 | 1.40 | |
Economic impact | C10 | Technological development and investment in infrastructure. | 0.10 | 1 | 0.10 |
C11 | Generation of employment and development of the local economy. | 0.10 | 2 | 0.21 | |
C12 | Creation of new inhabited nuclei with livestock and agricultural production areas. | 0.19 | 2 | 0.37 |
References
- Cuya, A.; Glikman, J.A.; Groenendijk, J.; Macdonald, D.W.; Swaisgood, R.R.; Barocas, A. Socio-environmental perceptions and barriers to conservation engagement among artisanal small-scale gold mining communities in Southeastern Peru. Glob. Ecol. Conserv. 2021, 31, e01816. [Google Scholar] [CrossRef]
- Palacios-Torres, Y.; de la Rosa, J.D.; Olivero-Verbel, J. Trace elements in sediments and fish from Atrato River: An ecosystem with legal rights impacted by gold mining at the Colombian Pacific. Environ. Pollut. 2019, 256, 113290. [Google Scholar] [CrossRef] [PubMed]
- Betancur, M. Gold Mining, Territory and Conflict in Colombia Challenges and Recommendations for the Protection of Human Rights and Environment. Heinrich-Böll-Stiftung, Oficina Bogotá—Colombia. 2019. Available online: https://co.boell.org/sites/default/files/2019-12/20190612_Mineri%CC%81a%20del%20oro%2C%20territorio%20y%20conflicto%20en%20colombia%20para%20web.pdf (accessed on 14 August 2023).
- Enaruvbe, G.; Keculah, K.; Atedhor, G.; Osewole, A. Armed conflict and mining induced land-use transition in northern Nimba County, Liberia. Glob. Ecol. Conserv. 2019, 17, e00597. [Google Scholar] [CrossRef]
- Vélez-Torres, I.; Vanegas, D. Contentious environmental governance in polluted gold mining geographies: The case of La Toma, Colombia. World Dev. 2022, 157, 105953. [Google Scholar] [CrossRef]
- ACVC Asociación Campesina del Valle del Río Cimitarra, Instituto Colombiano de Desarrollo Rural, & Corporación Desarrollo y Paz del Magdalena Medio. Actualización del Plan de Desarrollo Sostenible ZRC-VRC. Barrancabermeja (Colombia). 2012. Available online: https://reservacampesinariocimitarra.org/wp-content/uploads/2022/07/PLAN-DE-DESARROLLO-ZRC-VALLE-RIO-CIMITARRA-2_compressed.pdf (accessed on 5 May 2023).
- ACVC Asociación Campesina del Valle del Río Cimitarra, UNDP and Soluterra. Estudio Participativo de Tenencia de la Tierra y el Territorio, Usos y Conflictos en La Zona de Reserva Campesina Del Valle Del Río Cimitarra—Cartografía. BARRANCABERMEJA—Colombia. 2014. Available online: https://reservacampesinariocimitarra.org/wp-content/uploads/2022/07/Informe-final-PNUD-ACVC-20072014-4_compressed.pdf (accessed on 11 December 2023).
- ACVC Asociación Campesina del Valle del Río Cimitarra, Fondo Acción, Conserva Colombia. Biodiversity Assessment of the Caño Negro and Cimitarra River Marsh Complex in the Cimitarra River Valley Peasant Reserve Zone. Colombia. Barrancabermeja, Junio de 2017. 2017. Available online: https://reservacampesinariocimitarra.org/informe-caracterizacion-biologica-de-la-zona-de-cienagas-del-valle-del-rio-cimitarra-colombia/ (accessed on 25 October 2023).
- Baccini, A.; Walker, W.; Carvalho, L.; Farina, M.; Sulla-Menashe, D.; Houghton, R.A. Tropical forests are a net carbon source based on aboveground measurements of gain and loss. Science 2017, 358, 230–234. [Google Scholar] [CrossRef] [PubMed]
- Epple, C.; García Rangel, S.; Jenkins, M.; Guth, M. Managing Ecosystems in the Context of Climate Change Mitigation: A Review of Current Knowledge and Recommendations to Support Ecosystem-Based Mitigation Actions That Look beyond Terrestrial Forests. 2016. Available online: https://www.cbd.int/doc/publications/cbd-ts-86-en.pdf (accessed on 2 July 2023).
- Mikołajczak, K.M.; Barlow, J.; Lees, A.C.; Ives, C.D.; Strack, M.; de Almeida, O.T.; Souza, A.C.; Sinclair, F.; Parry, L. Evaluating the influence of nature connection and values on conservation attitudes at a tropical deforestation frontier. Conserv. Biol. 2023, 37, e14067. [Google Scholar] [CrossRef] [PubMed]
- FAO; UNEP. The State of the World’s Forests 2020. In Forests, Biodiversity and People; FAO: Rome, Italy, 2020. [Google Scholar] [CrossRef]
- Hoffmann, C.; Márquez, J.R.G.; Krueger, T. A local perspective on drivers and measures to slow deforestation in the Andean-Amazonian foothills of Colombia. Land Use Policy 2018, 77, 379–391. [Google Scholar] [CrossRef]
- WWF & BCG. Deforestation- and Conversion-Free Supply Chains: A Guide for Action. 2021. Available online: https://wwflac.awsassets.panda.org/downloads/wwf_bcg_deforestation_and_conversion_free_supply_chains_a_guide_for_action_3_.pdf (accessed on 15 February 2023).
- Gutiérrez-Mosquera, H.; Marrugo-Negrete, J.; Díez, S.; Morales-Mira, G.; Montoya-Jaramillo, L.J.; Jonathan, M. Mercury distribution in different environmental matrices in aquatic systems of abandoned gold mines, Western Colombia: Focus on human health. J. Hazard. Mater. 2020, 404, 124080. [Google Scholar] [CrossRef] [PubMed]
- Hilson, G.M.M.; James Thomas, P.; Faulkner, B.R.; Lahiri-Dutt, S.; Primus, K.; Smith, U.; Patience, E.S. State of the Artisanal and Small-Scale Mining Sector; World Bank Group: Washington, DC, USA, 2019; Available online: http://documents.worldbank.org/curated/en/939441630571322749/State-of-the-Artisanal-and-Small-Scale-Mining-Sector-2019-from-Delve (accessed on 2 December 2023).
- UNEP United Nations Environment Programme Global Mercury Partnership. Sound Management of Mercury-Containing Tailings in Artisanal and Small-Scale Gold Mining. 2021. Available online: https://wedocs.unep.org/20.500.11822/37319 (accessed on 10 January 2024).
- WGC—World Gold Council. Report: Lessons Learned on Managing the Interface between Large-Scale and Artisanal and Small-Scale Gold Mining. World Gold Council. 2022. Available online: https://www.gold.org/esg/artisanal-and-small-scale-gold-mining#registration-type=google&just-verified=1 (accessed on 12 December 2023).
- Aghaei, E.; Alorro, R.D.; Tadesse, B.; Browner, R. A review on current practices and emerging technologies for sustainable management, sequestration and stabilization of mercury from gold processing streams. J. Environ. Manag. 2019, 249, 109367. [Google Scholar] [CrossRef]
- Seccatore, J.; Veiga, M.; Origliasso, C.; Marin, T.; De Tomi, G. An estimation of the artisanal small-scale production of gold in the world. Sci. Total. Environ. 2014, 496, 662–667. [Google Scholar] [CrossRef]
- Veiga, M.M.; Angeloci, G.; Hitch, M.; Velasquez-Lopez, P.C. Processing centres in artisanal gold mining. J. Clean. Prod. 2014, 64, 535–544. [Google Scholar] [CrossRef]
- Gomez, F.H.; Collivignarelli, M.C.; Masoud, A.M.N.; Miino, M.C.; Torres, K.C.; Quintero, J.A.; Sorlini, S.; Vaccari, M. Mercury Removal from Mining Wastewater by Phytoaccumulation in Autochthonous Aquatic Plant Species. Clean Technol. 2023, 5, 839–851. [Google Scholar] [CrossRef]
- Telmer, K.H.; Veiga, M.M. World emissions of mercury from artisanal and small scale gold mining. In Mercury Fate and Transport in the Global Atmosphere; Springer: Berlin, Germany, 2009; pp. 131–172. [Google Scholar]
- González, A.R.; Alfaro Velásquez, J.M. Nuevos disruptores endocrinos: Su importancia en la población pediátrica. Iatreia 2005, 18, 446–456. [Google Scholar] [CrossRef]
- Rice, K.M.; Walker, E.M., Jr.; Wu, M.; Gillette, C.; Blough, E.R. Environmental Mercury and Its Toxic Effects. J. Prev. Med. Public Health 2014, 47, 74–83. [Google Scholar] [CrossRef] [PubMed]
- WHO—World Health Organization. Elemental Mercury and Inorganic Mercury Compounds: Human Health Aspects. Concise International Chemical Assessment Document 50. 2003. Available online: https://iris.who.int/bitstream/handle/10665/42607/9241530502.pdf?sequence=1 (accessed on 9 November 2023).
- Garfì, M.; Ferrer-Martí, L. Decision-making criteria and indicators for water and sanitation projects in developing countries. Water Sci. Technol. 2011, 64, 83–101. [Google Scholar] [CrossRef]
- Garfì, M.; Tondelli, S.; Bonoli, A. Multi-criteria decision analysis for waste management in Saharawi refugee camps. Waste Manag. 2009, 29, 2729–2739. [Google Scholar] [CrossRef]
- Arbelaez-Cortes, E.; Villamizar-Escalante, D.; Trujillo-Arias, N. New voucher specimens and tissue samples from an avifaunal survey of the Middle Magdalena Valley of Bolivar, Colombia, bridge geographical and temporal gaps. Wilson J. Ornithol. 2020, 132, 773–779. [Google Scholar] [CrossRef] [PubMed]
- Duarte, F. Plantas Útiles del Valle del rio Cimitarra (Cantagallo Bolívar) Colección Herbario Universidad Industrial de Santander. 2019. Available online: http://biologia.uis.edu.co/museo/coleccion_herbario.html (accessed on 25 May 2023).
- Duarte, J.; Mantilla, A.; Castano, F. Diversity of Plant Uses by a Farming Community of Northwestern Colombia: A Quantitative Approach. Econ. Bot. 2023, 77, 153–168. [Google Scholar] [CrossRef]
- Trujillo-Arias, N.; Serrano-Cardozo, V.H.; Ramirez-Pinilla, M.P. Role of a Campesine Reserve Zone in The Magdalena Valley (Colombia) in The Conservation Of Endangered Tropical Rainforests. Nat. Conserv. Res. 2023, 8, 1–15. [Google Scholar] [CrossRef]
- Molina, A. The Cimitarra River Valley Rural Reserve Zone: An Unfinished Exercise in Citizen Participation and Collective Management of Territory. Rev. Colomb. Geogr. 2011, 20, 21–33. [Google Scholar] [CrossRef]
- Quijano-Mejia, C.M.; Linares-García, J. Zonas de Reserva Campesina: Territorialidades en disputa. El caso del Valle del río Cimitarra, Colombia. Prospectiva 2017, 24, 225–251. [Google Scholar] [CrossRef]
- Silva-Prada, D. Organización de la comunidad en medio del conflicto social y armado. El caso de la Asociación Campesina del Valle del río Cimitarra. Cuad. Desarro. Rural. 2012, 9, 17–40. Available online: http://www.scielo.org.co/pdf/cudr/v9n68/v9n68a02.pdf (accessed on 27 July 2023).
- Agnew, J. Territorialidades superpuestas, soberanía en disputa: Lecciones empíricas desde América Latina. Tabula Rasa 2010, 13, 191–213. [Google Scholar] [CrossRef]
- Moreno-Quintero, R.; Córdoba, D.; Acevedo, R. Decolonizing local planning through new social cartography: Making Black geographies visible in a plantation context in Colombia. Third World Themat. A TWQ J. 2021, 6, 225–249. [Google Scholar] [CrossRef]
- Olivero-Verbel, J.; Caballero-Gallardo, K.; Turizo-Tapia, A. Mercury in the gold mining district of San Martin de Loba, South of Bolivar (Colombia). Environ. Sci. Pollut. Res. 2014, 22, 5895–5907. [Google Scholar] [CrossRef] [PubMed]
- Reyes Garcés, N.; Duarte, M.F. Evaluaciòn de la Capacidad Bioacumuladora de Mercurio de Siete Especies Vegetales. 2012. Available online: https://api.semanticscholar.org/CorpusID:164110979 (accessed on 5 July 2023).
- Collivignarelli, M.C.; Gomez, F.H.; Caccamo, F.M.; Sorlini, S. Reduction of pathogens in greywater with biological and sustainable treatments selected through a multicriteria approach. Environ. Sci. Pollut. Res. 2023, 30, 38239–38254. [Google Scholar] [CrossRef] [PubMed]
- Quintana Ramírez, A.P. El Conflicto Socioambiental y Estrategias de Manejo. 2006. Available online: https://www.fuhem.es/cdv_biblioteca/el-conflicto-socioambiental-y-estrategias-de-manejo/ (accessed on 8 August 2023).
- Rözer, V.; Surminski, S.; Laurien, F.; McQuistan, C.; Mechler, R. Multiple resilience dividends at the community level: A comparative study of disaster risk reduction interventions in different countries. Clim. Risk Manag. 2023, 40, 100518. [Google Scholar] [CrossRef]
- UNDP United Nations Development Programme. Human Development Report 2021–2022: Uncertain Times, Unsettled Lives: Shaping our Future in a Transforming World. New York. 2022. Available online: https://hdr.undp.org/content/human-development-report-2021-22 (accessed on 25 May 2023).
- UNITAR—United Nations Institute for Training and Research. Socio-Economic ASGM Research Methodology, Geneva. 2018. Available online: https://www.unitar.org/sites/default/files/media/file/final_socio-economic_methodology.pdf (accessed on 25 May 2023).
- Van Dyke, M.; Woldman, R. Evaluation Report Sphere Project. Center for Global Health and Economic Development Program on Forced Migration and Health. 2004. Available online: https://www.unscn.org/layout/modules/resources/files/Evaluation_report.pdf (accessed on 16 November 2023).
- Vargas, A. Lucha Contra el Terrorismo en Latinoamérica Antecedentes y Cambios: Cuadernos de Estrategia; Ministerio de Defensa, Subdirección General de Publicaciones: Madrid, Spain, 2012; pp. 106–150. ISSN 1697-6924. Nº. 158; Available online: https://dialnet.unirioja.es/descarga/articulo/4172765.pdf (accessed on 8 October 2023).
- Espinal, M.A.A. Conflicto armado y configuración regional: El caso del Magdalena Medio. Estud. Políticos 1992, 2, 87–112. [Google Scholar] [CrossRef]
- Patiño, C.A. 60 años de las JAC: Su Origen se Preserva en el Archivo Histórico UN. Gestión Documental. 2019. Available online: http://gestiondocumental.unal.edu.co/60-anos-de-las-jac-su-origen-se-preserva-en-el-archivo-historico-un/ (accessed on 20 February 2023).
- Universidad Javeriana. Plan de Desarrollo Sostenible de la Zona de Reserva Campesina del Valle del río Cimitarra 2000–2010. 2000. Available online: https://www.prensarural.org/acvc/plandesarrollozrc.pdf (accessed on 20 February 2023).
- Quintero, E.; Benavides, A.; Moreno, N.; Gonzalez, S. Bosques Andinos, Estado Actual y Retos para su Conservación en Antioquia; Fundación Jardín Botánico de Medellín Joaquín Antonio Uribe-Programa Bosques Andinos: Medellín, Colombia, 2017; 542p, Available online: https://www.bosquesandinos.org/wp-content/uploads/2018/01/Libro_Bosques_Andinos_Interactivo.pdf (accessed on 5 July 2023).
- Falla, J.T.; Castrillon, C.A.R. The new rural dynamics in peasants reserve zones in Colombia. Perspect. Geogr. 2018, 1, 23. [Google Scholar] [CrossRef]
- Garzón, N.; Gutiérrez, J. Deterioro de Humedales en el Magdalena Medio: Un Llamado para su Conservación. Bogotá D.C.: Fundación Alma—Instituto de Investigación de Recursos Biológicos Alexander von Humboldt. 2013. Available online: http://hdl.handle.net/20.500.11761/31386 (accessed on 2 December 2023).
- Myers, N.; Mittermeier, R.A.; Mittermeier, C.G.; da Fonseca, G.A.B.; Kent, J. Biodiversity hotspots for conservation priorities. Nature 2000, 403, 853–858. [Google Scholar] [CrossRef]
- Alvarez, E.; Salazar, A. Informe Final, Caracterización de Agentes y Causas de la Deforestación en la Serranía de San Lucas, Departamento de Antioquia. Bogotá D.C.: Programa de Bosque y Clima redd+ y Agencia para la Cooperación Alemana Giz. 2017. Available online: https://www.calameo.com/read/006599260594b1ab282c9 (accessed on 25 May 2023).
- Valverde, A.; Camarero, G.; Ordóñez, S.; Partucci, H.; y Bojanich, L. Conflictos Socioambientales y Territoriales: Propuestas Teórico-Metodológicas para su Abordaje; Universidad de Buenos Aires: Buenos Aires, Argentina, 2015; Available online: https://cdsa.aacademica.org/000-061/736.pdf (accessed on 9 November 2023).
- INDEPAZ—Instituto de Estudios para el Desarrollo y la Paz. Balance en Cifras de la Violencia en los Territorios. Registros del Observatorio de Derechos Humanos y Conflictividades de Indepaz. 2021. Available online: https://indepaz.org.co/wp-content/uploads/2021/12/5-an%CC%83os-del-acuerdo-de-paz-1.pdf (accessed on 5 July 2023).
- OCHA—United Nations Office for the Coordination of Humanitarian Affairs. Briefing Regional. Región del Magdalena Medio, Enero a Junio 2023. 2023. Available online: https://www.unocha.org/publications/report/colombia/colombia-briefing-regional-region-del-magdalena-medio-enero-junio-de-2023 (accessed on 2 July 2023).
- República de Colombia, Ministerio de Ambiente y Desarrollo Sostenible. N. 1658 Issued in 2013, the Government Has Banned the Use of Mercury in Any Mineral Extraction Activity; Ministerio de Ambiente y Desarrollo Sostenible: Bogotá, Colombia, 2013. Available online: https://www.minambiente.gov.co/wp-content/uploads/2021/06/ley-1658-2013.pdf (accessed on 16 November 2023).
- Velásquez-López, P.C.; Veiga, M.M.; Klein, B.; Shandro, J.A.; Hall, K. Cyanidation of mercury-rich tailings in artisanal and small-scale gold mining: Identifying strategies to manage environmental risks in Southern Ecuador. J. Clean. Prod. 2011, 19, 1125–1133. [Google Scholar] [CrossRef]
- Cleckner, L.B.; Gilmour, C.C.; Hurley, J.P.; Krabbenhoft, D.P. Mercury methylation in periphyton of the Florida Everglades. Limnol. Oceanogr. 1999, 44, 1815–1825. [Google Scholar] [CrossRef]
Impact Category | Code | General Impact Criteria |
---|---|---|
Environmental/Health impact | C1 | Pollutant emissions in water, air, and soil. |
C2 | Effects on human health and local biodiversity. | |
C3 | Physical/geological characteristics of the territory. | |
C4 | Consumption of natural resources and raw materials (wood, groundwater, energy). | |
C5 | Living conditions of the local community over time. | |
C6 | Deforestation in conserved areas with high biodiversity. | |
Social impact | C7 | Community agreements for forest and lake conservation. |
C8 | Organizational culture of the local community. | |
C9 | Social and armed conflict over land use and occupation. | |
Economic impact | C10 | Technological development and investment in infrastructure. |
C11 | Generation of employment and development of the local economy. | |
C12 | Creation of new inhabited nuclei with livestock and agricultural production areas. |
Monitoring Point | Distance from the Mine (m) | Water Flow Rate (m3s−1) | Water (µg THg L−1) | Sludge (mgTHg kg−1) |
---|---|---|---|---|
1 | 100 (Out of mine) | 0.005 | 21.73 | 13.64 |
2 | 1000 | 1 | 1.24 | 4.17 |
3 | 5000 (Manila river) | 83 | 0.87 | 0.94 |
4 | 20,000 (Tamar river) | 170 | 0.53 | <0.005 |
5 | 30,000 (Cimitarra river) | 500 | 0.16 | <0.005 |
6 | 40,000 (Cimitarra river) | 537 | 0.09 | <0.005 |
7 | 40,000 (San Lorenzo lake) | 0 | 0.07 | Macrophytes: 0.01 |
Criterion with the Greatest Impact | Actions/Recommendations to Be Developed |
---|---|
C9 (Social and armed conflict over land use and occupation) 1.40 points | Social organizations present in the ZRC-VRC continue to implement the commitment to comprehensive territorial peace and the defense of human rights, embodied in the Sustainable Development Plan of the ZRC-VRC. The grassroots social organizations present in the ZRV-VRC join the dialogue processes with different armed actors and position in the dialogue tables opened by the government. There is an emphasis on the importance of community conservation agreements and on their respect as well as on the search for legal formulas for safeguarding and institutional support. |
C6 (Deforestation in conserved areas with high biodiversity) 1.01 points | To consolidate the endogenous peasant community model in the ZRC-VRC, which seeks to economically stabilize the peasant and mining families present in the ZRC-VRC through agroecological models, sustainable agricultural and livestock production, investment in infrastructure, education, productive innovation and, in general, implementation the PDS of ZRC-VRC. To guarantee forestry economics incentives for social organizations and peasant families to protect forests and wetlands, aimed at stabilizing the peasant economy and preventing the expansion of the agricultural frontier or the opening of new agricultural production or mining zones in the areas of the community conservation agreements. To find a figure of protection within the legal regulations of Colombia that is aligned with the principles established in the community conservation agreements for the CoS and the CoH. |
C2 (Effects on human health and local biodiversity) 0.88 points | To implement good artisanal gold production practices that are in line with a technological transition process in order to achieve, in the short and medium term, that mercury is no longer used for gold production. To recover the areas already polluted by mercury mainly located around the mining villages. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gomez, F.H.; Pelegri, N.; Lopez, J.G.; Torres, K.C.; Vaccari, M. Impact of Artisanal Gold Mining in Community Conserved Areas with High Biodiversity Using a Multi-Criteria Approach: A Case Study in Colombia. Pollutants 2024, 4, 276-290. https://doi.org/10.3390/pollutants4020018
Gomez FH, Pelegri N, Lopez JG, Torres KC, Vaccari M. Impact of Artisanal Gold Mining in Community Conserved Areas with High Biodiversity Using a Multi-Criteria Approach: A Case Study in Colombia. Pollutants. 2024; 4(2):276-290. https://doi.org/10.3390/pollutants4020018
Chicago/Turabian StyleGomez, Franco Hernan, Natalia Pelegri, Juan Guillermo Lopez, Kelly Cristina Torres, and Mentore Vaccari. 2024. "Impact of Artisanal Gold Mining in Community Conserved Areas with High Biodiversity Using a Multi-Criteria Approach: A Case Study in Colombia" Pollutants 4, no. 2: 276-290. https://doi.org/10.3390/pollutants4020018
APA StyleGomez, F. H., Pelegri, N., Lopez, J. G., Torres, K. C., & Vaccari, M. (2024). Impact of Artisanal Gold Mining in Community Conserved Areas with High Biodiversity Using a Multi-Criteria Approach: A Case Study in Colombia. Pollutants, 4(2), 276-290. https://doi.org/10.3390/pollutants4020018