Phenolic Profiling of Merlot Wines from Albania: Influence of Geographical Origin and Vintage Assessed by LC-DAD-ESI-MS/MS
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Wine Sampling
2.3. Liquid Chromatography–Tandem Mass Spectrometry Analysis
2.4. Wine Phenolics Screening
2.5. Statistical Analysis
2.6. Viticulture Regions of Albania and Meteorological Data
3. Results and Discussions
3.1. Phenolic Profile of Merlot Wines
3.2. Non-Flavonoid Phenolics
3.2.1. Hydroxybenzoic Acid Derivatives
3.2.2. Hydroxycinnamic Acid and Phenolic AcidDerivatives
3.2.3. Stilbenoid Content in Merlot Wines
3.3. Flavonoid Content in Merlot Wines
3.3.1. Flavan-3-Ol Monomers
3.3.2. Procyanidin Dimer Profiles in Merlot Wines
3.3.3. Flavonol Levels in Merlot Wines
3.3.4. Influence of Temperature on Phenolic Composition
3.3.5. Regional Differentiation of Phenolic Compounds
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- De Luca, V. Wines. In Comprehensive Biotechnology, 3rd ed.; Moo-Young, M., Ed.; Elsevier: Pergamon, Turkey, 2011; pp. 260–274. [Google Scholar] [CrossRef]
- Waterhouse, A.L.; Sacks, G.L.; Jeffery, D.W. Non-flavonoid phenolics. In Understanding Wine Phenolics; John Wiley & Sons: Hoboken, NJ, USA, 2024; pp. 126–130. [Google Scholar] [CrossRef]
- Gutiérrez-Escobar, R.; Aliaño-González, M.J.; Cantos-Villar, E. Wine Polyphenol Content and Its Influence on Wine Quality and Properties: A Review. Molecules 2021, 26, 718. [Google Scholar] [CrossRef]
- Tresserra-Rimbau, A.; Lamuela-Raventos, R.M.; Moreno, J.J. Polyphenols, food, and pharma. Current knowledge and directions for future research. Biochem. Pharmac. 2018, 156, 186–195. [Google Scholar] [CrossRef]
- Ajila, C.M.; Brar, S.K.; Verma, M.; Tyagi, R.D.; Godbout, S.; Valéro, J.R. Extraction and analysis of polyphenols: Recent trends. Crit. Rev. Biotechnol. 2011, 31, 227–249. [Google Scholar] [CrossRef]
- Fang, F.; Li, J.M.; Zhang, P.; Tang, K.; Wang, W.; Pan, Q.H.; Huang, W.D. Effects of grape variety, harvest date, fermentation vessel and wine ageing on flavonoid concentration in red wines. Food Res. Int. 2008, 41, 53–60. [Google Scholar] [CrossRef]
- Cosme, F.; Aires, A.; Pinto, T.; Oliveira, I.; Vilela, A.; Gonçalves, B. A Comprehensive Review of Bioactive Tannins in Foods and Beverages: Functional Properties, Health Benefits, and Sensory Qualities. Molecules 2025, 30, 800. [Google Scholar] [CrossRef]
- Berscheneider, B.; Winterhalter, P. Isolation and Characterization of novel benzoates, Cinnamates, Flavonoids, and Lignans, from Riesling wine and Screening for Antioxidant Activity. J. Agric. Food Chem. 2001, 49, 2788–2798. [Google Scholar] [CrossRef] [PubMed]
- Majkić, T.M.; Torović, L.D.; Lesjak, M.M.; Četojević-Simin, D.D.; Beara, I.N. Activity profiling of Serbian and some other European Merlot wines in inflammation and oxidation processes. Food Res. Int. 2019, 121, 151–160. [Google Scholar] [CrossRef]
- Prado, R.A.; Yuste-Rojas, M.; Sort, X.; Andrea Lacueva, C.; Torres, M.; Lamuela-Raventoa, R.M. Effect of soil type on wines produced from Vitis vinifera L. Cv. Grenache in commercial vineyards. J. Agric. Food Chem. 2007, 55, 779–786. [Google Scholar] [CrossRef]
- Valavanidis, A.; Vlachogianni, T. Plant Polyphenols: Recent Advances in Epidemiological Research and Other Studies on Cancer Prevention. In Studies in Natural Products Chemistry; Atta-ur-Rahman, Ed.; Elsevier: Amsterdam, The Netherlands, 2013; Volume 39, pp. 269–295. [Google Scholar] [CrossRef]
- Genebra, T.; Santos, R.R.; Francisco, R.; Pinto-Marijuan, M.; Brossa, R.; Serra, A.T.; Duarte, C.; Chaves, M.; Zarrouk, O. Proanthocyanidin accumulation and biosynthesis are modulated by the irrigation regime in Tempranillo seed. Int. J. Mol. Sci. 2014, 15, 11862–11877. [Google Scholar] [CrossRef] [PubMed]
- Guilford, J.M.; Pezzuto, J.M. Wine and health: A review. Am. J. Enol. Vitic. 2011, 62, 471–486. [Google Scholar] [CrossRef]
- Tekos, F.; Makri, S.; Skaperda, Z.-V.; Patouna, A.; Terizi, K.; Kyriazis, I.D.; Kotseridis, Y.; Mikropoulou, E.V.; Papaefstathiou, G.; Halabalaki, M.; et al. Assessment of Antioxidant and Antimutagenic Properties of Red and White Wine Extracts In Vitro. Metabolites 2021, 11, 436. [Google Scholar] [CrossRef]
- Habauzit, V.; Milenkovic, D.; Morand, C. Chapter 68—Vascular Protective Effects of Fruit Polyphenols. In Polyphenols in Human Health and Disease; Ross Watson, R., Preedy, V.R., Zibadi, S., Eds.; Academic Press: Cambridge, MA, USA, 2014; pp. 875–893. [Google Scholar] [CrossRef]
- Llupa, J.; Gašić, U.; Brčeski, I.; Demertzis, P.; Tešević, V.; Topi, D. LC-MS/MS characterization of phenolic compounds in the quince (Cydonia oblonga Mill.) and sweet cherry (Prunus avium L.) fruit juices. Agric. For. 2022, 68, 193–205. [Google Scholar] [CrossRef]
- Duarte, N.; Ramalhete, C.; Rijo, P.; Reis, M.A.; Ferreira, M.J.U. Stilbenoids in Grapes and Wine. In Handbook of Dietary Phytochemicals; Xiao, J., Sarker, S.D., Asakawa, Y., Eds.; Springer: Singapore, 2021. [Google Scholar] [CrossRef]
- Zdruli, P. Soil Survey in Albania. In European Soil Bureau Research Report No. 9; Jones, R.J.A., Houšková, B., Bullock, P., Montanarella, L., Eds.; EUR 20559 EN, (p. 420); Office for Official Publications of the European Communities: Luxembourg, 2005; pp. 39–45. [Google Scholar]
- Beck, H.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Lutsko, N.J.; Dufour, A.; Zeng, Z.; Jiang, X.; van Dijk, A.I.J.M.; Miralles, D.G. High-resolution (1 km) Köppen-Geiger maps for 1901–2099 based on constrained CMIP6 projections. Sci. Data 2023, 10, 724. [Google Scholar] [CrossRef] [PubMed]
- Kelebek, H.; Canbas, A.; Jourdes, M.; Teissedre, P.-L. Characterization of colored and colorless phenolic compounds in Öküzgözü wines from Denizli and Elazig regions using HPLC-DAD–MS. Ind. Crop. Prod. 2010, 31, 499–508. [Google Scholar] [CrossRef]
- Kelebek, H.; Selli, S.; Canbas, A. Öküzgözü Üzümlerinden Kırmızı Sarap Üretiminde Soğuk Maserasyon Uygulamasının Antosiyaninler Üzerine Etkisi. J. Agric. Sci. 2010, 16, 287–294. [Google Scholar] [CrossRef]
- European Commission. Council Regulation (EC) No 479/2008 of 29 April 2008 on the common organisation of the market in wine. Off J. Eur. Commun. L. 2008, 51, 1–61. Available online: http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2008:148:0001:0061:EN:PDF (accessed on 31 July 2025).
- WVS. Wine and Vine Search: Albania’s Wine Regions. 2018. Available online: http://www.wineandvinesearch.com/albania/wine_regions.php (accessed on 3 March 2024).
- Topi, D.; Arapi, D.; Seiti, B. Vine Pruning Residues and Wine Fermentation By-Products, a Non-Exploited Source, Albania Case. Resources 2025, 14, 29. [Google Scholar] [CrossRef]
- Zorba, P.; Hoxha, E.; Çomo, E. Evaluation of Hourly Temperatures Referring to the Maximal and Minimal Daily Air Temperatures. In Monthly Climate Bulletin No. 93; UPT, IGEWE: Tirana, Albania, 2024; ISSN 2521-831X. [Google Scholar]
- Topi, D.; Topi, A.; Guclu, G.; Selli, S.; Uzlasir, T.; Kelebek, H. Targeted analysis for detecting phenolics and authentication of Albanian wines using LC-DAD/ESI–MS/MS combined with chemometric tools. Heliyon 2024, 10, e31127. [Google Scholar] [CrossRef]
- Garrido, J.; Borges, F. Wine and grape polyphenols—A chemical perspective. Food Res. Int. 2013, 54, 1844–1858. [Google Scholar] [CrossRef]
- Topi, D.; Kelebek, H.; Güçlü, G.; Selli, S. LC-DAD-ESI-MS/MS characterization of phenolic compounds in wines from Vitis vinifera ‘Shesh ibardhë’ and ‘Vlosh’ cultivars. J. Food Process. Preserv. 2022, 466, e16157. [Google Scholar] [CrossRef]
- Devi, A.; Archana, K.M.; Bhavya, P.K.; Anu-Appaiah, K.A. Non-anthocyanin polyphenolic transformation by native yeast and bacteria co-inoculation strategy during vinification. J. Sci. Food Agric. 2017, 98, 1162–1170. [Google Scholar] [CrossRef]
- Gialouris, P.; Nastoua, E.; Preza-Mayo-Kataki, D.; Goulioti, E.; Kotseridis, Y.; Thomaidis, N.; Dasenaki, M. Greek PDO Xinomavro wines: A deep dive into their chemical composition and geographical origin using UHPLC-TIMS-QTOF-MS. Anal. Sens. 2025, e202400120. [Google Scholar] [CrossRef]
- Pawlus, A.D.; Waffo-Teguo, P.; Shaver, J.; Merillion, J.-M. Stilbenoid Chemistry from wine and the genus Vitis: A review. Int. J. Wine Sci. 2012, 46, 57–111. [Google Scholar] [CrossRef]
- Zhang, L.X.; Li, C.X.; Kakar, M.U.; Khan, M.S.; Wu, P.F.; Amir, R.M.; Dai, D.F.; Naveed, M.; Li, Q.Y.; Saeed, M.; et al. Resveratrol (RV): A pharmacological review and call for further research. Biomed. Pharmacother. 2021, 143, 112164. [Google Scholar] [CrossRef] [PubMed]
- Alexandru, L.; Cristea, M.; Dinu, M. Antioxidant, anti-inflammatory and hepatoprotective effects of bioactive compounds through copper chelation and free radical scavenging. Appl. Biochem. Biotechnol. 2014, 173, 1023–1035. [Google Scholar]
- Salehi, B.; Mishra, A.P.; Nigam, M.; Sener, B.; Kilic, M.; Sharifi-Rad, M.; Fokou, P.V.T.; Martins, N.; Sharifi-Rad, J. Resveratrol: A Double-Edged Sword in Health Benefits. Biomedicines 2018, 6, 91. [Google Scholar] [CrossRef]
- Kaltbach, S.B.D.A.; Kaltbach, P.; Santos, C.G.; Cunha, W.; Giacomini, M.; Domingues, F.; Malgarim, M.; Herter, F.G.; Costa, V.B.; Couto, J.A. Influence of manual and mechanical grape harvest on Merlot wine composition. J. Food Compos. Anal. 2022, 110, 104548. [Google Scholar] [CrossRef]
- Jordão, A.M.; Ricardo-da-Silva, J.M. Influence of grape proanthocyanidins on wine chemistry and quality: Condensed tannins as oligomers and polymers. In Wine Chemistry and Biochemistry; Bordiga, M., Ed.; Springer: Berlin/Heidelberg, Germany, 2019; pp. 123–145. [Google Scholar]
- Ruan, Q.; Yang, X.; Li, X.; Wang, L. Procyanidins: From agro-industrial waste to food as bioactive molecules. Foods 2021, 10, 3152. [Google Scholar] [CrossRef]
- Gómez-Míguez, J.; Gómez-Míguez, M.; Vicario, I.M.; Heredia, F.J. Assessment of colour and aroma in red wine using a sensory and instrumental approach. Food Chem. 2007, 100, 751–758. [Google Scholar] [CrossRef]
- Fermo, P.; Comite, V.; Sredojević, M.; Ćirić, I.; Gašić, U.; Mutić, J.; Baošić, R.; Tešić, Ž. Elemental Analysis and Phenolic Profiles of Selected Italian Wines. Foods 2022, 10, 158. [Google Scholar] [CrossRef] [PubMed]
- Dias, L.; Milheiro, J.; Ribeiro, M.; Fernandes, C.; Neves, N.; Filipe-Ribeiro, L.; Cosme, F.; Nunes, F.M. Fast and Simple UPLC–Q-TOF MS Method for Determination of Bitter Flavan-3-ols and Oligomeric Proanthocyanidins: Impact of Vegetable Protein Fining Agents on Red Wine Composition. Foods 2023, 12, 3313. [Google Scholar] [CrossRef]
- Allebrandt, R.; Wurz, D.A.; Brighenti, A.F.; Rufato, L. Agronomic performance and wine phenolic composition of ‘Merlot’ grown in altitude region with different rootstocks. Cienc. Tec. Vitivinic. 2024, 39, 19–29. [Google Scholar] [CrossRef]
- Nicolli, K.P.; Biasoto, A.C.T.; Guerra, C.C.; dos Santos, H.P.; Correa, L.C.; Welke, J.E.; Zini, C.A. Effects of Soil and Vineyard Characteristics on Volatile, Phenolic Composition and Sensory Profile of Cabernet Sauvignon Wines of CampanhaGaúcha. J. Braz. Chem. Soc. 2020, 31, 1110–1124. [Google Scholar] [CrossRef]
- Monagas, M.; Suarez, R.; Gomez-Cordoves, C.; Bartolome, B. Simultaneous determination of nonanthocyanin phenolic compounds in red wines by HPLC-DAD/ESI-MS. Am. J. Enol. Vitic. 2005, 56, 139–147. [Google Scholar] [CrossRef]
- Downey, M.O.; Dokoozlian, N.K.; Krstic, M.P. Cultural practice and environmental impacts on the flavonoid composition of grapes and wine: A review of recent research. Am. J. Enol. Vitic. 2006, 57, 257–268. [Google Scholar] [CrossRef]
- Conde, A.; Pimentel, D.; Neves, A.; Dinis, L.-T.; Bernardo, S.; Correia, C.M.; Gerós, H.; Moutinho-Pereira, J. Kaolin foliar application has a stimulatory effect on phenylpropanoid and flavonoid pathways in grape berries. Front. Plant Sci. 2016, 7, 1150. [Google Scholar] [CrossRef]
- Šebela, D.; Turóczy, Z.; Olejničkova, J.; Kumšta, M.; Sotolář, R. Effect of ambient sunlight intensity on the temporal phenolic profiles of Vitis vinifera L. Cv. Chardonnay during the ripening season: A field study. S. Afr. J. Enol. Vitic. 2017, 38, 94–102. [Google Scholar] [CrossRef]
- Oliveira, J.; Mateus, N.; de Freitas, V. Flavanols: Catechins and proanthocyanidins. In Comprehensive Natural Products II: Chemistry and Biology; Ramawat, K., Mérillon, J.M., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; Volume 3, pp. 1753–1801. [Google Scholar] [CrossRef]
- Xu, J.; Rong, S.; Xie, B.; Sun, Z.; Zhang, L.; Wu, H.; Yao, P.; Zhang, X.; Zhang, Y.; Liu, L. Rejuvenation of antioxidant and cholinergic systems contributes to the effect of procyanidins extracted from the lotus seedpod ameliorating memory impairment in cognitively impaired aged rats. Eur. Neuropsychopharmacol. 2009, 19, 851–860. [Google Scholar] [CrossRef] [PubMed]
- Santos-Buelga, C.; González-Paramás, A.M. Anthocyanins. In Encyclopedia of Food Chemistry; Melton, L., Shahidi, F., Varelis, P., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 10–21. [Google Scholar] [CrossRef]
- Merkytė, V.; Longo, E.; Windisch, G.; Boselli, E. Phenolic Compounds as Markers of Wine Quality and Authenticity. Foods 2020, 9, 1785. [Google Scholar] [CrossRef] [PubMed]
- Hermosín-Gutiérrez, I.; Castillo-Muñoz, N.; Gómez-Alonso, S.; García-Romero, E. Flavonol Profiles for Grape and Wine Authentication. In Progress in Authentication of Food and Wine; Ebeler, S., Takeoka, G., Winterhalter, P., Eds.; American Chemical Society: Washington, DC, USA, 2011; pp. 113–129. [Google Scholar]
- Jeffery, D.W.; Parker, M.; Smith, P.A. Flavonol composition of Australian red and white wines determined by high-performance liquid chromatography. Aust. J. Grape Wine Res. 2008, 14, 153–161. [Google Scholar] [CrossRef]
- Rastija, V.; Srečnik, G.; Marica-Medić-Šarić. Polyphenolic composition of Croatian wines with different geographical origins. Food Chem. 2009, 115, 54–60. [Google Scholar] [CrossRef]
- Etiévant, P.; Schlich, P.; Bertrand, A.; Symonds, P.; Bouvier, J.-C. Varietal and geographic classification of French red wines in terms of pigments and flavonoid compounds. J. Sci. Food Agric. 1988, 42, 39–54. [Google Scholar] [CrossRef]
Peak | Compounds | tR (min) | UV λmax (nm) | [M − H]− (m/z) | MS/MS (m/z) |
---|---|---|---|---|---|
Hydroxy benzoic acids and flavan-3-ols | |||||
1 | Gallic acid | 14.13 | 276 | 169 | 125 |
2 | 3-O-galloyl quinic acid | 14.71 | 274 | 343 | 191, 169, 125 |
3 | Protocatechuic acid-O-hexoside | 17.25 | 296 | 315 | 153 |
4 | Gallocatechin | 18.37 | 274 | 305 | 179, 125 |
5 | Protocatechuic acid | 20.55 | 294 | 153 | 109 |
6 | Epigallocatechin | 25.10 | 274 | 305 | 179, 125 |
7 | Procyanidin B3 | 23.64 | 279 | 577 | 559, 425, 289 |
8 | Procyanidin B1 | 29.53 | 279 | 577 | 559, 425, 289 |
9 | Catechin | 30.97 | 280 | 289 | 245, 175 |
10 | Procyanidin B2 | 33.86 | 280 | 577 | 559, 425, 289 |
11 | Epicatechin | 37.56 | 280 | 289 | 245, 175 |
12 | Procyanidin B4 | 42.93 | 280 | 577 | 559, 425, 289 |
13 | Ethyl gallate | 44,39 | 277 | 197 | 169, 125 |
Phenolic acids | |||||
14 | 2-S-glutathionyl-caffeoyl-tartaric acid | 18.89 | 330 | 616 | 484, 440, 272 |
15 | cis-Caftaric acid | 21.94 | 328 | 311 | 179, 149, 135 |
16 | trans-Caftaric acid | 24.18 | 328 | 311 | 179, 149, 135 |
17 | cis-Coutaric acid | 31.11 | 310 | 295 | 163, 149 |
18 | trans-Coutaric acid | 32.70 | 314 | 295 | 163 |
19 | cis-Fertaric acid | 34.83 | 322 | 325 | 193, 149 |
20 | trans-Caffeic acid | 35.83 | 323 | 179 | 135 |
21 | trans-Fertaric acid | 36.16 | 328 | 325 | 193, 149 |
22 | p-Coumaric acid | 45.94 | 310 | 163 | 119 |
Flavonols | |||||
23 | Quercetin-3-O-galactoside | 47.80 | 360 | 463 | 301 |
24 | Quercetin-3-O-glucoside | 48.14 | 360 | 463 | 397, 301 |
25 | Quercetin-3-O-glucuronide | 48.49 | 355 | 477 | 301, 133 |
26 | Isorhamnetin-3-O-glucoside | 52.32 | 356 | 477 | 315, 301, 300, 299 |
27 | Quercetin | 63.38 | 355 | 301 | 151 |
Stilbenoids | |||||
28 | cis-Piceid | 47.46 | 389 | 227 | |
29 | trans-Piceid | 53.29 | 389 | 227 | |
30 | cis-Resveratrol | 59.4 | 227 | 185, 159 | |
31 | trans-Resveratrol | 64.34 | 227 | 185, 159 |
Peak | Compound | Durrës–Kavaja Wine Region | Mati–Mirdita Wine Region | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
2019 | 2020 | Mean ± STDEV | Min | Max | 2019 | 2020 | Mean ± STDEV | Min | Max | All Wines | ||
1 | Gallic acid | 173± 3 | 168 ± 2 | 170 a ± 40 | 167 | 175 | 125 ± 1 | 120 ± 1 | 123 b ± 3 | 120 | 126 | 147 ± 25 |
2 | 3-O-galloyl quinic acid | 29.3 ± 0.4 | 29.7 ± 0.5 | 29.5 ± 0.4 | 29.0 | 30.0 | 18.7 ± 0.4 | 19.1 ± 0.3 | 18.9 ± 0.4 | 18.4 | 19.3 | 24.2 ± 5.7 |
3 | Protocatechuic acid-O-hexoside | 2.05 ± 0.42 | 1.92 ± 0.02 | 1.99 ± 0.25 | 1.75 | 2.35 | 6.40 ± 0.35 | 6.27 ± 0.05 | 6.33 ± 0.22 | 6.15 | 6.65 | 4.16 ± 2.33 |
4 | Gallocatechin | 15.4 ± 0.2 | 11.2 ± 0.1 | 13.3 ± 2.4 | 11.2 | 15.5 | 14.1 ± 0.1 | 9.9 ± 0.1 | 12.0 ± 2.4 | 9.9 | 14.1 | 12.6 ± 2.3 |
5 | Protocatechuic acid | 2.20 ± 0.06 | 2.96 ± 0.01 | 2.58 ± 0.44 | 2.16 | 2.96 | 5.82 ± 0.03 | 6.58 ± 0.02 | 6.20 ± 0.44 | 5.80 | 6.59 | 4.39 ± 1.98 |
6 | Epigallocatechin | 2.09 ± 0.67 | 1.93 ± 0.48 | 2.01 ± 0.49 | 1.59 | 2.57 | 2.05 ± 0.27 | 1.88 ± 0.47 | 5.97 ± 7.93 | 1.55 | 2.24 | 1.99 ± 0.38 |
7 | Procyanidin B3 | 12.19 ± 0.7 | 12.3 ± 0.1 | 12.2 ± 0.5 | 11.6 | 12.6 | 24.2 ± 0.6 | 24.4 ± 0.1 | 24.3 ± 0.4 | 23.8 | 24.6 | 18.3 ± 6.59 |
8 | Procyanidin B1 | 8.9 ± 3.9 | 9.5 ± 0.1 | 9.2 ± 2.3 | 6.2 | 11.7 | 14.2 ± 4.1 | 14.7 ± 0.2 | 14.4 ± 2.4 | 11.2 | 17.1 | 11.8 ± 3.5 |
9 | Catechin | 53.5 ± 5.0 | 52.7 ± 1.3 | 53.1 a ± 3.0 | 50.0 | 57.0 | 15.0 ± 3.4 | 14.2 ± 0.3 | 14.6 b ± 2.0 | 12.6 | 17.4 | 33.9 ± 20.7 |
10 | Procyanidin B2 | 29.6 ± 0.2 | 31.1 ± 0.1 | 30.3 a ± 0.9 | 29.4 | 31.2 | 11.6 ± 0.1 | 13.2 ± 0.1 | 12.4 b ± 0.9 | 11.6 | 13.2 | 21.4 ± 9.6 |
11 | Epicatechin | 32.4 ± 0.1 | 27.9 ± 0.6 | 30.2 a ± 2.6 | 27.5 | 32.5 | 17.3 ± 0.6 | 12.8 ± 1.2 | 15.0 b ± 2.7 | 11.9 | 17.8 | 22.6 ± 8.5 |
12 | Procyanidin B4 | 2.96 ± 0.02 | 2.50 ± 0.02 | 2.73 ± 0.27 | 2.49 | 2.97 | 5.32 ± 0.08 | 4.86 ± 0.04 | 5.09 ± 0.27 | 4.83 | 5.38 | 3.91 ± 1.28 |
13 | Ethyl gallate | 61.2 ± 0.3 | 54.1 ± 0.2 | 57.6 a ± 4.1 | 54.0 | 61.3 | 33.0 ± 0.3 | 26.0 ± 0.1 | 29.5 b ± 3.0 | 25.9 | 33.3 | 43.6 ± 15.5 |
Σ Hydroxybenzoic acids and flavan-3-ols | 424 ± 5 | 406 ± 0.9 | 415 ± 1 | 405 | 428 | 293 ± 6 | 274 ± 1 | 288 ± 16 | 274 | 297 | 349 ± 71 | |
14 | 2-S-glutathionyl-caffeoyl tartaric acid | 1.88 ± 0.12 | 1.76 ± 0.04 | 1.82 ± 0.10 | 1.73 | 1.97 | 1.48 ± 0.05 | 1.35 ± 0.03 | 1.42 ± 0.08 | 1.33 | 1.52 | 1.62 ± 0.23 |
15 | cis-Caftaric acid | 0.57 ± 0.05 | 0.53 ± 0.04 | 0.55 ± 0.04 | 0.50 | 0.60 | 0.32 ± 0.00 | 0.28 ± 0.02 | 0.30 ± 0.03 | 0.27 | 0.33 | 0.43 ± 0.13 |
16 | trans-Caftaric acid | 21.2 ± 1.3 | 21.2 ± 1.3 | 21.2 a ± 1.0 | 20.3 | 22.1 | 0.71 ± 0.00 | 0.64 ± 0.04 | 0.68 b ± 0.05 | 0.61 | 0.72 | 10.9 ± 11.0 |
17 | cis-Coutaric acid | 2.07 ± 0.00 | 2.08 ± 0.03 | 2.07 a ± 0.02 | 2.06 | 2.10 | 0.08 ± 0.03 | 0.09 ± 0.00 | 0.08 b ± 0.02 | 0.06 | 0.10 | 1.08 ± 1.06 |
18 | trans-Coutaric acid | 5.85 ± 0.32 | 5.88 ± 0.39 | 5.87 a ± 0.29 | 5.61 | 6.15 | 0.30 ± 0.08 | 0.33 ± 0.02 | 0.32 b ± 0.05 | 0.24 | 0.36 | 3.09 ± 2.97 |
19 | cis-Fertaric acid | 2.27 ± 0.01 | 2.58 ± 0.01 | 2.42 a ± 0.18 | 2.26 | 2.59 | 0.33 ± 0.00 | 0.64 ± 0.00 | 0.48 b ± 0.18 | 0.33 | 0.64 | 1.45 ± 1.05 |
20 | trans-Caffeic acid | 1.31 ± 0.01 | 1.23 ± 0.01 | 1.27 a ± 0.04 | 1.23 | 1.31 | 0.23 ± 0.00 | 0.15 ± 0.00 | 0.19 b ± 0.04 | 0.15 | 0.23 | 0.73 ± 0.58 |
21 | trans-Fertaric acid | 0.94 ± 0.01 | 1.22 ± 0.01 | 1.08 ± 0.16 | 0.94 | 1.23 | 0.30 ± 0.00 | 0.58 ± 0.00 | 0.44 ± 0.16 | 0.30 | 0.58 | 0.76 ± 0.37 |
22 | p-Coumaric acid | 2.25 ± 0.01 | 2.25 ± 0.01 | 2.25 ± 0.01 | 2.24 | 2.25 | 0.11 ± 0.00 | 0.11 ± 0.00 | 0.11 ± 0.00 | 0.11 | 0.11 | 1.18 ± 1.14 |
Σ-Phenolic acids | 38.4 ± 0.8 | 38.7 ± 0.8 | 38.5 a ± 0.7 | 37.8 | 39.2 | 3.87 ± 0.02 | 4.18 ± 0.04 | 4.02 b ± 0.18 | 3.86 | 4.21 | 21.3 ± 18.5 | |
23 | Quercetin-3-O-galactoside | 1.32 ± 0.03 | 1.70 ± 0.02 | 1.51 ± 0.22 | 1.30 | 1.72 | 0.70 ± 0.01 | 1.07 ± 0.02 | 0.88 ± 0.22 | 0.69 | 1.08 | 1.20 ± 0.39 |
24 | Quercetin-3-O-glucoside | 6.74 ± 0.01 | 6.86 ± 0.01 | 6.80 a ± 0.07 | 6.73 | 6.86 | 0.22 ± 0.00 | 0.33 ± 0.00 | 0.27 b ± 0.07 | 0.22 | 0.33 | 3.54 ± 3.49 |
25 | Quercetin-3-O-glucuronide | 13.6 ± 0.2 | 13.5 ± 0.2 | 13.5 ± 0.1 | 13.5 | 13.6 | 0.50 ± 0.00 | 0.43 ± 0.00 | 0.46 b ± 0.04 | 0.43 | 0.50 | 6.99 ± 6.98 |
26 | Isorhamnetin-3-O-glucoside | 1.90 ± 0.03 | 1.89 ± 0.03 | 1.89 a ± 0.03 | 1.86 | 1.92 | 0.06 ± 0.00 | 0.05 ± 0.00 | 0.06 b ± 0.01 | 0.05 | 0.06 | 0.97 ± 0.98 |
27 | Quercetin | 2.08 ± 0.03 | 2.27 ± 0.03 | 2.18 ± 0.11 | 2.06 | 2.29 | 0.35 ± 0.01 | 0.54 ± 0.01 | 0.45 ± 0.11 | 0.35 | 0.55 | 1.31 ± 0.93 |
Σ-Flavonols | 25.6 ± 0.1 | 26.2 ± 0.1 | 25.9 a ± 0.4 | 25.5 | 26.3 | 1.83 ± 0.02 | 2.43 ± 0.03 | 2.13 b ± 0.35 | 1.81 | 2.45 | 14.0 ± 12.7 | |
28 | cis-Piceid | 0.32 ± 0.02 | 0.32 ± 0.02 | 0.32 ± 0.01 | 0.30 | 0.33 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 | 0.00 | 0.16 ± 0.17 |
29 | trans-Piceid | 0.41 ± 0.00 | 0.41 ± 0.00 | 0.41 ± 0.00 | 0.41 | 0.41 | 0.01 ± 0.00 | 0.01 ± 0.00 | 0.01 ± 0.00 | 0.01 | 0.01 | 0.21 ± 0.21 |
30 | cis-Resveratrol | 0.01 ± 0.00 | 0.01 ± 0.00 | 0.01 ± 0.00 | 0.01 | 0.01 | 0.01 ± 0.00 | 0.01 ± 0.00 | 0.01 ± 0.00 | 0.01 | 0.01 | 0.01 ± 0.00 |
31 | trans-Resveratrol | 0.13 ± 0.01 | 0.15 ± 0.01 | 0.14 ± 0.01 | 0.12 | 0.16 | 0.11 ± 0.00 | 0.13 ± 0.01 | 0.12 ± 0.01 | 0.11 | 0.13 | 0.13 ± 0.02 |
Σ-Stilbenoids | 0.87 ± 0.01 | 0.89 ± 0.01 | 0.88 ± 0.01 | 0.87 | 0.90 | 0.13 ± 0.00 | 0.15 ± 0.01 | 0.14 ± 0.01 | 0.13 | 0.15 | 0.51 ± 0.40 | |
Σ-Phenolic Compounds | 489 ± 5 | 471 ± 0.3 | 480 a ± 11 | 471 | 493 | 299 ± 6 | 281 ± 0.1 | 294 b ± 15 | 281 | 303 | 385 ± 102 |
Compound | Durrës–Kavaja (mg/L) | Mati–Mirdita (mg/L) |
---|---|---|
Gallic acid | 170 a ± 4 | 123 b ± 3 |
Catechin | 53.1 a ± 3.0 | 14.6 b ± 2.0 |
Epicatechin | 30.2 a ± 2.6 | 15.0 b ± 2.7 |
Procyanidin B2 | 30.3 a ± 0.9 | 12.4 b ± 0.9 |
Ethyl gallate | 57.6 a ± 4.1 | 29.5 b ± 3.0 |
trans-Caftaric acid | 21.2 a ± 1.0 | 0.68 b ± 0.05 |
cis-Coutaric acid | 2.07 a ± 0.02 | 0.08 b ± 0.02 |
trans-Coutaric acid | 5.87 a ± 0.29 | 0.32 b ± 0.05 |
cis-Fertaric acid | 2.42 a ± 0.18 | 0.48 b ± 0.18 |
trans-Caffeic acid | 1.27 a ± 0.04 | 0.19 b ± 0.04 |
Quercetin-3-O-glucoside | 6.80 a ± 0.07 | 0.27 b ± 0.07 |
Quercetin-3-O-glucuronide | 13.5 a ± 0.05 | 0.46 b ± 0.04 |
Isorhamnetin-3-O-glucoside | 1.89 a ± 0.03 | 0.06 b ± 0.01 |
Σ-Flavonols | 25.9 a ± 0.4 | 2.13 b ± 0.35 |
Σ-Phenolic acids | 38.5 a ± 0.7 | 4.02 b ± 0.18 |
Σ-Phenolic compounds (total) | 480 a ± 11 | 294 b ± 15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Topi, D.; Kelebek, H.; Shehi, G.; Guclu, G.; Selli, S. Phenolic Profiling of Merlot Wines from Albania: Influence of Geographical Origin and Vintage Assessed by LC-DAD-ESI-MS/MS. Analytica 2025, 6, 32. https://doi.org/10.3390/analytica6030032
Topi D, Kelebek H, Shehi G, Guclu G, Selli S. Phenolic Profiling of Merlot Wines from Albania: Influence of Geographical Origin and Vintage Assessed by LC-DAD-ESI-MS/MS. Analytica. 2025; 6(3):32. https://doi.org/10.3390/analytica6030032
Chicago/Turabian StyleTopi, Dritan, Hasim Kelebek, Gazmend Shehi, Gamze Guclu, and Serkan Selli. 2025. "Phenolic Profiling of Merlot Wines from Albania: Influence of Geographical Origin and Vintage Assessed by LC-DAD-ESI-MS/MS" Analytica 6, no. 3: 32. https://doi.org/10.3390/analytica6030032
APA StyleTopi, D., Kelebek, H., Shehi, G., Guclu, G., & Selli, S. (2025). Phenolic Profiling of Merlot Wines from Albania: Influence of Geographical Origin and Vintage Assessed by LC-DAD-ESI-MS/MS. Analytica, 6(3), 32. https://doi.org/10.3390/analytica6030032