Previous Issue
Volume 6, September
 
 

J. Nucl. Eng., Volume 6, Issue 4 (December 2025) – 8 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
14 pages, 2799 KB  
Article
Application of Dynamic PRA to Nuclear Power Plant Operation Support—Evaluation of Plant Operation Support Using a Simple Plant Model
by Nami Yamamoto, Mami Kagimoto, Yohei Ueno, Takafumi Narukawa and Takashi Takata
J. Nucl. Eng. 2025, 6(4), 46; https://doi.org/10.3390/jne6040046 - 4 Nov 2025
Abstract
Following the Great East Japan Earthquake in 2011, there has been an increased focus on risk assessment and the practical application of its findings to safety enhancement. In particular, dynamic probabilistic risk assessment (PRA) used in conjunction with plant dynamics analysis is being [...] Read more.
Following the Great East Japan Earthquake in 2011, there has been an increased focus on risk assessment and the practical application of its findings to safety enhancement. In particular, dynamic probabilistic risk assessment (PRA) used in conjunction with plant dynamics analysis is being considered for accident management (AM) and operational support. Determining countermeasure priorities in AM can be challenging due to the diversity of accident scenarios. In multi-unit operations, the complexity of scenarios increases in cases of simultaneous disasters, which makes establishing response operations priorities more difficult. Dynamic PRA methods can efficiently generate and assess complex scenarios by incorporating changes in plant state. This paper introduces the continuous Markov chain Monte Carlo (CMMC) method, a dynamic PRA approach, as a tool for prioritizing countermeasures to support nuclear power plant operations. The proposed method involves three steps: (1) generating exhaustive scenarios that include events, operator actions, and system responses; (2) classifying scenarios according to countermeasure patterns; and (3) assigning priority based on risk data for each pattern. An evaluation was conducted using a simple plant model to analyze event countermeasure patterns for addressing steam generator tube rupture during single-unit operation. The generated scenario patterns included depressurization by opening a pressurizer relief valve (DP), depressurization via heat removal through the steam generator (DSG), and both operations combined (DP + DSG). The timing of the response operations varied randomly, resulting in multiple scenarios. The assessment, based on reactor pressure vessel water level and the potential for core damage, showed that the time margin to core damage depended on the countermeasure pattern. The findings indicate that the effectiveness of each countermeasure can be evaluated and that it is feasible to identify which countermeasure should be prioritized. Full article
(This article belongs to the Special Issue Probabilistic Safety Assessment and Management of Nuclear Facilities)
Show Figures

Figure 1

13 pages, 3028 KB  
Review
Frictional Pressure Drops Modeling for Helical Pipes: Comparative Evaluation of Recent Predictive Approaches over Various Geometries and Operating Conditions
by Mariarosa Giardina and Calogera Lombardo
J. Nucl. Eng. 2025, 6(4), 45; https://doi.org/10.3390/jne6040045 - 30 Oct 2025
Viewed by 131
Abstract
Helically coiled tube heat exchangers (HCT) are recognized as promising solutions for steam generator applications in Small Modular Reactors (SMRs), where compactness and high thermal performance are crucial. The complex geometry of HCTs, however, substantially increases the difficulty of accurately estimating pressure drops, [...] Read more.
Helically coiled tube heat exchangers (HCT) are recognized as promising solutions for steam generator applications in Small Modular Reactors (SMRs), where compactness and high thermal performance are crucial. The complex geometry of HCTs, however, substantially increases the difficulty of accurately estimating pressure drops, particularly under two-phase flow conditions. Over the last decade, several predictive correlations have been suggested, and their applicability is often limited to specific ranges of geometry and operating pressure. The present study examines correlations proposed during the previous decade, aiming to clarify their applicability limits. Validation is carried out using experimental datasets from the literature, enabling a rigorous evaluation of predictive accuracy, robustness, and generality. Full article
Show Figures

Graphical abstract

21 pages, 6024 KB  
Article
Simulation of NuScale-Like SMR Benchmark with OpenMC Code
by Abdo Ez Aldeen, Dzianis Litskevich, Christopher Grove, Seddon Atkinson, Anna Detkina and Hasnain Gulzar
J. Nucl. Eng. 2025, 6(4), 44; https://doi.org/10.3390/jne6040044 - 27 Oct 2025
Viewed by 326
Abstract
Compared to traditional large-scale reactors, the more heterogeneous, boron-free SMR cores create additional challenges for accurate multiphysics simulations. Therefore, advanced modelling and simulation tools should be used to create high-fidelity, high-accuracy, and computationally efficient multiphysics and multiscale solvers. These solvers can evaluate the [...] Read more.
Compared to traditional large-scale reactors, the more heterogeneous, boron-free SMR cores create additional challenges for accurate multiphysics simulations. Therefore, advanced modelling and simulation tools should be used to create high-fidelity, high-accuracy, and computationally efficient multiphysics and multiscale solvers. These solvers can evaluate the safety and performance of SMRs and could be attractive for industrial applications if the computational power requirements were reasonably low. The first crucial step in building a computationally efficient simulation model is to define an SMR benchmark model. This model is a reference for validating the simulation results. In this paper, the benchmark model is a NuScale-like SMR, where the Serpent code has been utilized to run the neutronic simulation. The neutronic simulation was then performed again in the benchmark model, this time utilizing OpenMC code. The results of the Serpent and OpenMC codes were compared in terms of the reactivity coefficient, control rod worth and radial and axial power distribution. By comparing two different codes to validate the simulation of the NuScale-like benchmark, OpenMC will be utilized for future work, such as generating the nuclear material cross-section data for core simulators. Full article
Show Figures

Graphical abstract

19 pages, 4768 KB  
Article
Evaporation Behavior of Water in Confined Nanochannels Using Molecular Dynamics Simulation
by Sumith Yesudasan, Mamshad Mohammed, Joseph Marcello and Mark Taylor
J. Nucl. Eng. 2025, 6(4), 43; https://doi.org/10.3390/jne6040043 - 23 Oct 2025
Viewed by 341
Abstract
This study presents a molecular dynamics (MD) investigation of water evaporation in copper nanochannels, with a focus on accurately modeling copper–water interactions through forcefield calibration. The TIP4P/2005 water model was coupled with the Modified Embedded Atom Method (MEAM) for copper, and the oxygen–copper [...] Read more.
This study presents a molecular dynamics (MD) investigation of water evaporation in copper nanochannels, with a focus on accurately modeling copper–water interactions through forcefield calibration. The TIP4P/2005 water model was coupled with the Modified Embedded Atom Method (MEAM) for copper, and the oxygen–copper Lennard–Jones (LJ) parameters were systematically tuned to match experimentally reported water contact angles (WCAs) on Cu (111) surfaces. Contact angles were extracted from simulation trajectories using a robust five-step protocol involving 2D kernel density estimation, adaptive thresholding, circle fitting, and mean squared error (MSE) validation. The optimized forcefield demonstrated strong agreement with experimental WCA values (50.2°–82.3°), enabling predictive control of wetting behavior by varying ε in the range 0.20–0.28 kcal/mol. Using this validated parameterization, we explored nanoscale evaporation in copper channels under varying thermal loads (300–600 K). The results reveal a clear temperature-dependent transition from interfacial-layer evaporation to bulk-phase vaporization, with evaporation onset and rate governed by the interplay between copper–water adhesion and thermal disruption of hydrogen bonding. These findings provide atomistically resolved insights into wetting and evaporation in metallic nanochannels, offering a calibrated framework for simulating phase-change heat transfer in advanced thermal management systems. Full article
Show Figures

Graphical abstract

22 pages, 9259 KB  
Article
Two-Phase Flow Studies in Steam Separators Using Interface Capturing Simulations
by Taylor E. Grubbs and Igor A. Bolotnov
J. Nucl. Eng. 2025, 6(4), 42; https://doi.org/10.3390/jne6040042 - 15 Oct 2025
Viewed by 388
Abstract
The two-phase flow within a Boiling Water Reactor steam separator is investigated using an interface capturing method. The simulations are focused on resolving the flow around the first pickoff ring which is the highest contributor to steam carryunder phenomenon. Multiple simulations are conducted [...] Read more.
The two-phase flow within a Boiling Water Reactor steam separator is investigated using an interface capturing method. The simulations are focused on resolving the flow around the first pickoff ring which is the highest contributor to steam carryunder phenomenon. Multiple simulations are conducted of varying levels of resolution to evaluate the capabilities of interface capturing technique for this challenging problem. First, high-resolution simulations of the flow using a simplified 30° wedge are conducted without a swirling velocity field present in the actual system. In order to understand the flow field generated by the separator swirler, secondary simulations of single-phase flow passing through a swirler model are conducted. Using this information, a coarse simulation of the full 360° model was performed, which incorporated the effect of the swirler using a custom inflow boundary condition. Instantaneous carryunder/carryover along with void fraction and film thickness are evaluated at the pickoff ring entrance. Overall, these simulations demonstrate that interface capturing simulations can be an accurate tool for studying full-scale components within nuclear power plants. Full article
(This article belongs to the Special Issue Advances in Thermal Hydraulics of Nuclear Power Plants)
Show Figures

Figure 1

17 pages, 3258 KB  
Article
Using CFD Modeling to Investigate the Non-Uniform Circumferential Distribution of Heat Transfer Characteristics in a Single-Phase Helical Coiled Tube
by Hung-Tsung Tsai, Bo-Jun Lu, Yuh-Ming Ferng and Yu Sun
J. Nucl. Eng. 2025, 6(4), 41; https://doi.org/10.3390/jne6040041 - 14 Oct 2025
Viewed by 322
Abstract
Helical coiled tube (HCT) heat exchangers (HXs) are used in the nuclear industry, particularly in the residual heat removal systems of nuclear power plants (NPPs) and steam generators for small modular reactors. In this study, a single-phase CFD model was developed to investigate [...] Read more.
Helical coiled tube (HCT) heat exchangers (HXs) are used in the nuclear industry, particularly in the residual heat removal systems of nuclear power plants (NPPs) and steam generators for small modular reactors. In this study, a single-phase CFD model was developed to investigate non-uniform circumferential distributions in the local wall heat transfer characteristics of a vertical HCT to obtain localized information critical for the safety of NPPs. In a comparison, the predicted circumferential heat transfer characteristics agreed well with the measured data. Governed by centrifugal/gravitational forces, these non-uniform distributions are clearly visible in the results, explaining the test data. We performed additional simulations of the conjugated heat transfer from the hot fluid of the shell side to the cold fluid of the tube side, confirming that the inhomogeneity of circumferential distributions in HCTs is due to the assumption of a constant heat flux boundary condition. Full article
Show Figures

Figure 1

22 pages, 3383 KB  
Review
Isotopic Engineering—Potentials in “Nonproliferating” Nuclear Fuel
by Marat Margulis and Mustafa J. Bolukbasi
J. Nucl. Eng. 2025, 6(4), 40; https://doi.org/10.3390/jne6040040 - 13 Oct 2025
Viewed by 465
Abstract
Nuclear energy plays a critical role in global decarbonisation, but its expansion raises concerns about the proliferation risks associated with conventional fuel cycles. This study addresses this challenge by evaluating Am-241 doping as a method to enhance the intrinsic proliferation resistance of nuclear [...] Read more.
Nuclear energy plays a critical role in global decarbonisation, but its expansion raises concerns about the proliferation risks associated with conventional fuel cycles. This study addresses this challenge by evaluating Am-241 doping as a method to enhance the intrinsic proliferation resistance of nuclear fuel. Using full-core simulations across Pressurised Water Reactors (PWRs), Boiling Water Reactors (BWRs), and Molten Salt Reactors (MSRs), the research assesses the impact of Am-241 on isotopic composition, reactor performance, and safety. The results show that Am-241 reliably increases the Pu-238 fraction in spent fuel above the 6% threshold, which significantly complicates its use in nuclear weapons. Additionally, Am-241 serves as a burnable poison, reducing the need for conventional absorbers without compromising operational margins. Economic modelling indicates that the levelised cost of electricity (LCOE) increases modestly, with the most notable impact observed in MSRs due to continuous doping requirements. The project concludes that Am-241 doping offers a passive, fuel-intrinsic safeguard that complements existing verification regimes. Adoption of this approach may require adjustments to regulatory frameworks, particularly in fuel licencing and fabrication standards, but could ultimately support the secure expansion of nuclear energy in regions with heightened proliferation concerns. Full article
Show Figures

Figure 1

13 pages, 250 KB  
Article
AHP-Based Methodological Proposal for Identifying Suitable Sites for the Italian Near-Surface Repository
by Giambattista Guidi, Anna Carmela Violante and Francesca Romana Macioce
J. Nucl. Eng. 2025, 6(4), 39; https://doi.org/10.3390/jne6040039 - 26 Sep 2025
Viewed by 443
Abstract
The selection of suitable sites for the disposal of radioactive waste constitutes a critical component of nuclear waste management. This study presents an original methodological proposal based on the Analytic Hierarchy Process (AHP), designed to support early-stage site screening for a near-surface repository [...] Read more.
The selection of suitable sites for the disposal of radioactive waste constitutes a critical component of nuclear waste management. This study presents an original methodological proposal based on the Analytic Hierarchy Process (AHP), designed to support early-stage site screening for a near-surface repository in Italy. AHP could be used to identify appropriate locations, focusing on 51 areas that have already undergone a preliminary screening phase. These areas, included in the National Map of Suitable Areas (CNAI), were selected as they fulfill all the technical requirements (geological, geomorphological, and hydraulic stability) necessary to ensure the safety performance of the engineering structures to be implemented through multiple artificial barriers, as specified in Technical Guide N. 29. The proposed methodology is applicable in cases where multiple sites listed in the CNAI have been identified as potential candidates for hosting the repository. A panel of 20 multidisciplinary experts, including engineers, environmental scientists, sociologists, and economists, evaluated two environmental, two economic, and two social criteria not included among the criteria outlined in Technical Guide N. 29. Pairwise comparisons were aggregated using the geometric mean, and consistency ratios (CRs) were calculated to ensure the coherence of expert judgements. Results show that social criteria received the highest overall weight (0.53), in particular the “degree of site acceptability”, followed by environmental (0.28) and economic (0.19) criteria. While the method does not replace detailed site investigations (which will nevertheless be carried out once the site has been chosen), it can facilitate the early identification of promising areas and guide future engagement with local communities. The approach is reproducible, adaptable to additional criteria or national requirements, and may be extended to other countries facing similar nuclear waste management challenges. Full article
Show Figures

Graphical abstract

Previous Issue
Back to TopTop