Previous Issue
Volume 5, December
 
 

J. Nucl. Eng., Volume 6, Issue 1 (March 2025) – 5 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
36 pages, 12554 KiB  
Review
A Review of Maritime Nuclear Reactor Systems
by Keith E. Holbert
J. Nucl. Eng. 2025, 6(1), 5; https://doi.org/10.3390/jne6010005 - 5 Feb 2025
Viewed by 656
Abstract
Marine reactors have been applied to floating nuclear power plants, naval vessels such as submarines, and civilian ships such as icebreakers. Nuclear-powered shipping is gaining increased interest because of decarbonization goals motivated by climate change. Enhanced reactor safety can potentially reduce regulatory and [...] Read more.
Marine reactors have been applied to floating nuclear power plants, naval vessels such as submarines, and civilian ships such as icebreakers. Nuclear-powered shipping is gaining increased interest because of decarbonization goals motivated by climate change. Enhanced reactor safety can potentially reduce regulatory and liability challenges to the adoption of nuclear propulsion systems for merchant ships. This gives strong impetus for reviewing past use of nuclear reactor systems in marine environments, especially from the perspective of any accident scenarios, lest planners be caught unaware of historical incidents. To that end, a loss of coolant accident (LOCA) in a Lenin icebreaker reactor in 1965 and disposal at sea of some of its damaged fuel and reactor vessel as well as the entire tri-reactor compartment is recounted. Full article
Show Figures

Figure 1

12 pages, 3454 KiB  
Review
Core Physics Characteristics of Extended Enrichment and High Burnup Boiling Water Reactor Fuel
by Ugur Mertyurek, Riley Cumberland and William A. Wieselquist
J. Nucl. Eng. 2025, 6(1), 4; https://doi.org/10.3390/jne6010004 - 31 Jan 2025
Viewed by 397
Abstract
This paper presents the highlights of boiling water reactor (BWR) core physics studies performed at Oak Ridge National Laboratory as part of a series of studies conducted to compare low-enriched uranium (LEU) with LEU+ fuel. The studies analyzed isotopic fuel content, lattice parameters [...] Read more.
This paper presents the highlights of boiling water reactor (BWR) core physics studies performed at Oak Ridge National Laboratory as part of a series of studies conducted to compare low-enriched uranium (LEU) with LEU+ fuel. The studies analyzed isotopic fuel content, lattice parameters (Phase 1), and core physics (Phase 2) to identify challenges in operation, storage, and transportation for BWRs and pressurized water reactors (PWRs). Because of a lack of publicly available lattice and core designs for modern BWR fuel assemblies and reactor cores, several optimized lattice designs were generated, and different core loading strategies were investigated. Twelve optimized lattice designs with 235U enrichments ranging from 1.6% to 9% and gadolinia loadings ranging from 3 to 8 wt% were used to model axial enrichment and geometry variations in fuel assemblies for core designs. Each core shares a common set of approximations in design and analysis to allow for consistent comparisons between LEU and LEU+ fuel. The objective is to highlight anticipated changes in core behavior with respect to the reference LEU core. The results of this study show that the differences in LEU and LEU+ core reactor physics characteristics are less significant than the differences in lattice physics characteristics reported in the Phase 1 studies. Full article
Show Figures

Figure 1

41 pages, 2385 KiB  
Article
A Concept of a Para-Hydrogen-Based Cold Neutron Source for Simultaneous High Flux and High Brightness
by Alexander Ioffe, Petr Konik and Konstantin Batkov
J. Nucl. Eng. 2025, 6(1), 3; https://doi.org/10.3390/jne6010003 - 17 Jan 2025
Viewed by 493
Abstract
A novel concept of cold neutron source employing chessboard or staircase assemblies of high-aspect-ratio rectangular para-hydrogen moderators with well-developed and practically fully illuminated surfaces of the individual moderators is proposed. An analytic approach for calculating the brightness of para-hydrogen moderators is introduced. Because [...] Read more.
A novel concept of cold neutron source employing chessboard or staircase assemblies of high-aspect-ratio rectangular para-hydrogen moderators with well-developed and practically fully illuminated surfaces of the individual moderators is proposed. An analytic approach for calculating the brightness of para-hydrogen moderators is introduced. Because the brightness gain originates from a near-surface effect resulting from the prevailing single-collision process during thermal-to-cold neutron conversion, high-aspect-ratio rectangular cold moderators offer a significant increase, up to a factor of 10, in cold neutron brightness compared to a voluminous moderator. The obtained results are in excellent agreement with MCNP calculations. The chessboard or staircase assemblies of such moderators facilitate the generation of wide neutron beams with simultaneously higher brightness and intensity compared to a para-hydrogen-based cold neutron source made of a single moderator (either flat or voluminous) of the same cross-section. Analytic model calculations indicate that gains of up to approximately 2.5 in both brightness and intensity can be achieved compared to a source made of a single moderator of the same width. However, these gains are affected by details of the moderator–reflector assembly and should be estimated through dedicated Monte Carlo simulations, which can only be conducted for a particular neutron source and are beyond the scope of this general study. The gain reduction in our study, from a higher value to 2.5, is mostly caused by these two factors: the limited volume of the high-density thermal neutron region surrounding the reactor core or spallation target, which restricts the total length of the moderator assembly, and the finite width of moderator walls. The relatively large length of moderator assemblies results in a significant increase in pulse duration at short pulse neutron sources, making their straightforward use very problematic, though some applications are not excluded. The concept of “low-dimensionality” in moderators is explored, demonstrating that achieving a substantial increase in brightness necessitates moderators to be low-dimensional both geometrically, implying a high aspect ratio, and physically, requiring the moderator’s smallest dimension to be smaller than the characteristic scale of moderator medium (about the mean free path for thermal neutrons). This explains why additional compression of the moderator along the longest direction, effectively giving it a tube-like shape, does not result in a significant brightness increase comparable to the flattening of the moderator. Full article
Show Figures

Figure 1

28 pages, 11065 KiB  
Article
Economic Optimization of a Hybrid Power Plant with Nuclear, Solar, and Thermal Energy Conversion to Electricity
by Stylianos A. Papazis
J. Nucl. Eng. 2025, 6(1), 2; https://doi.org/10.3390/jne6010002 - 26 Dec 2024
Viewed by 716
Abstract
This research presents a new solution for optimizing the economics of energy produced by a hybrid power generation plant that converts nuclear, solar, and thermal energy into electricity while operating under load-following conditions. To achieve the benefits of cleaner electricity with minimal production [...] Read more.
This research presents a new solution for optimizing the economics of energy produced by a hybrid power generation plant that converts nuclear, solar, and thermal energy into electricity while operating under load-following conditions. To achieve the benefits of cleaner electricity with minimal production costs, multi-criteria management decisions are applied. The investigation of a hybrid system combining nuclear, solar, and thermal energy generation demonstrates the impact of such technology on the optimal price of generated energy; the introduction of nuclear reactors in hybrid systems reduces the cost of electricity production compared to the equivalent cost of energy produced by solar systems and compared to fossil fuel thermal systems. This method can be applied to hybrid energy systems with nuclear, solar, and thermal power generation plants of various sizes and configurations, making it a useful tool for engineers, researchers, and managers in the energy sector. Full article
Show Figures

Figure 1

17 pages, 4774 KiB  
Article
Risk Contextualization for Nuclear Systems
by Gueorgui Petkov
J. Nucl. Eng. 2025, 6(1), 1; https://doi.org/10.3390/jne6010001 - 25 Dec 2024
Viewed by 472
Abstract
Risk management strives to reach the standards of theoretical systematicity and empirical precision achieved in natural science models. To this end, a set of risk-informed and performance-based standards was developed in the form of statistically validated measures. The set enables the systematic extraction [...] Read more.
Risk management strives to reach the standards of theoretical systematicity and empirical precision achieved in natural science models. To this end, a set of risk-informed and performance-based standards was developed in the form of statistically validated measures. The set enables the systematic extraction by deterministic and probabilistic analysis of potentially objective risk assessments and well-defined decisions. However, much of the data and models are subjectively influenced by the uncertainty of the context in which they are related and derived. Current risk analysis contains a large amount of risk-related information, but without the context of the models, its results lack sufficient predictive and explanatory power to be a solid basis for decisions. Therefore, to model the entire site of a multi-unit nuclear power plant as an integrated system connecting facility and activity, it is necessary to consider not only the technological conditions, but also the entire site context, including human, organizational, and environmental factors. An interface tool for dynamic deterministic-probabilistic safety analysis should be used to contextualize and complement existing risk indicators, but not to replace them. This article presents the possibilities of risk contextualization for nuclear systems through the symptom-based context quantification procedure of the Performance Evaluation Teamwork method. Full article
(This article belongs to the Special Issue Reliability Analysis and Risk Assessment of Nuclear Systems)
Show Figures

Figure 1

Previous Issue
Back to TopTop