Optimization of Process Parameters for Methylene Blue Dye Removal Using “Eriobotrya Japonica” Grains via Box-Behnken Design Based on Response Surface Methodology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Adsorbent: Eriobotrya Japonica Seeds
2.2. Batch Adsorption Experiments
2.3. RSM Statistical Analysis Method
2.4. Model of Experimental Data
3. Data and Interpretations
3.1. Sample Characterization
3.1.1. Fourier-Transform Infrared Spectroscopy (FTIR)
3.1.2. Scanning Electron Microscopy (SEM)
3.1.3. Energy Dispersive X-Ray Analysis (EDX)
3.2. RSM Modeling
3.3. Response Surface (3D)
3.4. RSM Optimization
3.5. Kinetic Study
3.6. Isotherm Study
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sharma, Y.C.; Uma, S.N. Upadhyay, An economically viable removal of methylene blue by adsorption on activated carbon prepared from rice husk. Can. J. Chem. Eng. 2011, 89, 377–383. [Google Scholar] [CrossRef]
- Ben Mansour, H.; Boughzala, O.; Dridi, D.; Barillier, D.; Chekir-Ghedira, L.; Mosrati, R. Textiles dyes as a source of wastewater contamination: Screening of the toxicity and treatment methods. J. Water Sci. 2011, 24, 209–238. [Google Scholar]
- Othmani, B.; Gamelas, J.A.F.; Rasteiro, M.G.; Khadhraoui, M. Characterization of Two Cactus Formulation-Based Flocculants and Investigation on Their Flocculating Ability for Cationic and Anionic Dyes Removal. Polymers 2020, 12, 1964. [Google Scholar] [CrossRef] [PubMed]
- Abbaz, M.; Abaaaki, R.; El Haouti, R.; Et-Taleb, S.; Ez-Zahery, M.; Lhanafi, S.; El Alem, N. Removal of methylene blue from aqueous solution by adsorption onto the sand titaniferous. J. Mater. Environ. Sci. 2014, 5, 2418–2425. [Google Scholar]
- Khumalo, N.P.; Vilakati, G.D.; Mhlanga, S.D.; Kuvarega, A.T.; Mamba, B.B.; Li, J.; Derrick, S.; Dlamini, D.S. Dual-functional ultrafiltration nanoenabled PSf/PVA membrane for the removal of Congo red dye. J. Water Process Eng. 2019, 31, 100878. [Google Scholar] [CrossRef]
- Farah, M.; Addar, F.Z.; Kitanou, S.; Belfaquir, M.; Tahaikt, M.; Taky, M.; Elmidaoui, A. Leachate treatment by ceramic ultrafiltration membranes: Fouling mechanisms identification. Desalination Water Treat. 2023, 316, 755–768. [Google Scholar] [CrossRef]
- Núñez, J.; Yeber, M.; Cisternas, N.; Thibaut, R.; Medina, P.; Carrasco, C. Application of electrocoagulation for the efficient pollutants removal to reuse the treated wastewater in the dyeing process of the textile industry. J. Hazard. Mater. 2019, 371, 705–711. [Google Scholar] [CrossRef]
- Nippatla, N.; Philip, L. Electrocoagulation-Floatation assisted pulsed power plasma technology for the complete mineralization of potentially toxic dyes and real textile wastewater. Process Saf. Environ. Prot. 2019, 125, 143–156. [Google Scholar] [CrossRef]
- Awad, A.M.; Jalab, R.; Benamor, A.; Nasser, M.S.; Ba-Abbad, M.M.; El Naas, M.; Mohammad, A.W. Adsorption of organic pollutants by nanomaterial-based adsorbents: An overview. J. Mol. Liq. 2020, 301, 112335. [Google Scholar] [CrossRef]
- Kshirsagar, A.S.; Gautam, A.; Khanna, P.K. Efficient photo-catalytic oxidative degradation of organic dyes using CuInSe2/TiO2 hybrid hetero-nanostructures. J. Photochem. Photobiol. A Chem. 2017, 349, 73–90. [Google Scholar] [CrossRef]
- Venkatesh, S.; Venkatesh, K.; Quaff, A.R. Dye decomposition by combined ozonation and anaerobic treatment: Cost effective technology. J. Appl. Res. Technol. 2017, 15, 340–345. [Google Scholar] [CrossRef]
- Salehi, I.; Shirani, M.; Semnani, A.; Hassani, M.; Habibollahi, S. Comparative Study Between Response Surface Methodology and Artificial Neural Network for Adsorption of Crystal Violet on Magnetic Activated Carbon. Arab. J. Sci. Eng. 2016, 41, 2611–2621. [Google Scholar] [CrossRef]
- Naderi, P.; Shirani, M.; Semnani, A.; Goli, A. Efficient removal of crystal violet from aqueous solutions with Centaurea stem as a novel biodegradable bioadsorbent using response surface methodology and simulated annealing: Kinetic, isotherm and thermodynamic studies. Ecotoxicol. Environ. Saf. 2018, 163, 372–381. [Google Scholar] [CrossRef]
- Farah, M.; Addar, F.Z.; Touir, J.; Moussout, H.; Belfaquir, M.; Tahaikt, M.; Taky, M.; Elmidaoui, A. Treatment of highly saline effluents laden with organic pollutants using ceramic ultrafiltration membranes and application to leachate treatment. Desalin. Water Treat. 2024, 317, 100260. [Google Scholar] [CrossRef]
- Karunakaran, A.; Chaturvedi, A.; Ali, J.; Singh, R.; Agarwal, S.; Garg, M.C. Response surface methodology-based modeling and optimization of chromium removal using spiral-wound reverse-osmosis membrane setup. Int. J. Environ. Sci. Technol. 2022, 19, 5999–6010. [Google Scholar] [CrossRef]
- Ferreira, S.L.C.; Bruns, R.E.; Ferreira, H.S.; Matos, G.D.; David, J.M.; Brandão, G.C.; da Silva, E.G.P.; Portugal, L.A.; Reis, P.S.D.; Souza, A.S.; et al. Box-Behnken design: An alternative for the optimization of analytical methods. Anal. Chim. Acta 2007, 597, 179–186. [Google Scholar] [CrossRef]
- Bouhlal, F.; Labjar, N.; Abdoun, F.; Mazkour, A.; Serghini-Idrissi, M.; Mahi, M.E.; Lotfi, E.M.; Hajjaji, S.E. Electrochemical and Thermodynamic Investigation on Corrosion Inhibition of C38 Steel in 1 M Hydrochloric Acid Using the Hydro-Alcoholic Extract of Used Coffee Grounds. Int. J. Corros. 2020, 2020, 4045802. [Google Scholar] [CrossRef]
- Bouiti, K.; Al-sharabi, H.A.; Bouhlal, F.; Labjar, N.; Dahrouch, A.; El Mahi, M.; Lotfi, E.M.; El Otmani, B.; Benabdallah, G.A.; El Hajjaj, S. Use of the ethanolic extract from Eriobotrya Japonica seeds as a corrosion inhibitor of C38 in a 1 M HCl medium. Int. J. Corros. Scale Inhib. 2022, 11, 1319–1334. [Google Scholar] [CrossRef]
- Bharathi, R.A.; Varthanan, P.A.; Mathew, K.M. Experimental investigation of process parameters in wire electrical discharge machining by response surface methodology on IS 2062 steel. Appl. Mech. Mater. 2014, 550, 53–61. [Google Scholar] [CrossRef]
- Doughmi, O.; Farah, M.; Addar, F.Z.; Hsini, A.; Tahaikt, M.; Shaim, A. Use of oak acorns adsorbent and response surface methodology for removal of crystal violet from aqueous solution. Int. J. Environ. Anal. Chem. 2025, 105, 1354–1372. [Google Scholar] [CrossRef]
- Ahmadi, S.; Ahmadi, S.; Mesbah, M.; Igwegbe, C.A.; Ezeliora, C.D.; Osagie, C.; Khan, N.A.; Dotto, G.L.; Salari, M.; Dehghani, M.H. Sono electro-chemical synthesis of LaFeO3 nanoparticles for the removal of fluoride: Optimization and modeling using RSM, ANN and GA tools. J. Environ. Chem. Eng. 2021, 9, 105320. [Google Scholar] [CrossRef]
- Lebkiri, I.; Abbou, B.; Kadiri, L.; Ouass, A.; Essaadaoui, Y.; Habssaoui, A.; Lebkiri, A. Removal of methylene blue dye from aqueous solution using a superabsorbant hydrogel the polyacrylamide: Isotherms and kinetic studies. Mediterr. J. Chem. 2019, 9, 337–346. [Google Scholar] [CrossRef]
- Kadiri, L.; Lebkiri, A.; Rifi, E.H.; Ouass, A.; Essaadaoui, Y.; Lebkiri, I.; Hamad, H. Kinetic studies of adsorption of Cu (II) from aqueous solution by coriander seeds (Coriandrum sativum). In Proceedings of the EPJ Web of Conferences, Sofia, Bulgaria, 9–13 July 2018; Volume 37, p. 02005. [Google Scholar] [CrossRef]
- Abbou, B.; Lebkiri, I.; Ouaddari, H.; Kadiri, L.; Ouass, A.; Habssaoui, A.; Lebkiri, A.; Rifi, E.H. Removal of Cd(II), Cu(II), and Pb(II) by adsorption onto natural clay: A kinetic and thermodynamic study. Turk. J. Chem. 2021, 45, 362–376. [Google Scholar] [CrossRef]
- Elmoubarki, R.; Mahjoubi, F.Z.; Tounsadi, H.; Moustadraf, J.; Abdennouri, M.; Zouhri, A.; El Albani, A.; Barka, N. Adsorption of textile dyes on raw and decanted Moroccan clays: Kinetics, equilibrium and thermodynamics. Water Resour. Ind. 2015, 9, 16–29. [Google Scholar] [CrossRef]
- Malek, N.N.A.; Jawad, A.H.; Abdulhameed, A.S.; Ismail, K.; Hameed, B.H. New magnetic Schiff’s base-chitosan-glyoxal/fly ash/Fe3O4 biocomposite for the removal of anionic azo dye: An optimized process. Int. J. Biol. Macromol. 2020, 146, 530–539. [Google Scholar] [CrossRef]
- AJawad, H.; Mohammed, I.A.; Abdulhameed, A.S. Tuning of Fly Ash Loading into Chitosan-Ethylene Glycol Diglycidyl Ether Composite for Enhanced Removal of Reactive Red 120 Dye: Optimization Using the Box–Behnken Design. J. Polym. Environ. 2020, 28, 2720–2733. [Google Scholar]
- Abdulhameed, A.S.; Mohammad, A.T.; Jawad, A.H. Application of response surface methodology for enhanced synthesis of chitosan tripolyphosphate/TiO2 nanocomposite and adsorption of reactive orange 16 dye. J. Clean Prod. 2019, 232, 43–56. [Google Scholar] [CrossRef]
- Gao, X.; Guo, C.; Hao, J.; Zhao, Z.; Long, H.; Li, M. Adsorption of heavy metal ions by sodium alginate based adsorbent-a review and new perspectives. Int. J. Biol. Macromol. 2020, 164, 4423–4434. [Google Scholar] [CrossRef]
- Wu, H.; Wang, W.; Huang, Y.; Han, G.; Yang, S.; Su, S.; Sana, H.; Peng, W.; Cao, Y.; Liu, J. Comprehensive evaluation on a prospective precipitation-flotation process for metal-ions removal from wastewater simulants. J. Hazard. Mater. 2019, 371, 592–602. [Google Scholar] [CrossRef]
- Konicki, W.; Aleksandrzak, M.; Mijowska, E. Equilibrium, kinetic and thermodynamic studies on adsorption of cationic dyes from aqueous solutions using graphene oxide. Chem. Eng. Res. Des. 2017, 123, 35–49. [Google Scholar] [CrossRef]
- Alírio, E.R.; Silva, C.M. What’s wrong with Lager green pseudo first order model for adsorption kinetics? Chem. Eng. J. 2016, 306, 1138–1142. [Google Scholar]
- Magdy, Y.H.; Altaher, H. Kinetic analysis of the adsorption of dyes from high strength wastewater on cement kiln dust. J. Environ. Chem. Eng. 2018, 6, 834–841. [Google Scholar] [CrossRef]
- Jawad, A.H.; Abdulhameed, A.S.; Mastuli, M.S. Acid-factionalized biomass material for methylene blue dye removal: A comprehensive adsorption and mechanism study. J. Taibah Univ. Sci. 2020, 14, 305–313. [Google Scholar] [CrossRef]
- Bayomie, O.S.; Kandeel, H.; Shoeib, T.; Yang, H.; Youssef, N.; El-Sayed, M.M.H. Novel approach for effective removal of methylene blue dye from water using fava bean peel waste. Sci. Rep. 2020, 10, 7824. [Google Scholar] [CrossRef] [PubMed]
- Shakoor, S.; Nasar, A. Removal of methylene blue dye from artificially contaminated water using citrus limetta peel waste as a very low cost adsorbent. J. Taiwan Inst. Chem. Eng. 2016, 66, 154–163. [Google Scholar] [CrossRef]
- Postai, D.L.; Demarchi, C.A.; Zanatta, F.; Melo, D.C.C.; Rodrigues, C.A. Adsorption of rhodamine B and methylene blue dyes using waste of seeds of Aleurites moluccana, a low cost adsorbent. Alex. Eng. J. 2016, 55, 1713–1723. [Google Scholar] [CrossRef]
- Aldabagh, I.S.; Saad, D.N.; Ahmed, E.I. Removal of methylene blue from aqueous solution by green Synthesized silicon dioxide Nanoparticles using Sunflower Husk. Chem. Eng. J. Adv. 2024, 18, 100608. [Google Scholar] [CrossRef]
- Alouani, M.; Alehyen, S.; Achouri, M.; Taibi, M. Removal of Cationic Dye–methylene Blue-from Aqueous Solution by Adsorption on Fly Ash-based Geopolymer. J. Mater. Environ. Sci. 2018, 9, 32–46. [Google Scholar]
The Main Characteristics of Methylene Blue | |
---|---|
IUPAC name | Bis-(dimethylamino)-3,7 phenazathionium chloride-ethanol |
Synonym | Basic Blue 9 |
Indice color | 52,015 |
Chemical formula | C16H18N3SCl |
Molecular mass | 319.85 g/mol |
pKa | 3.8 |
Melting temperature | 180 °C |
Solubility | 50 g/L (water) and 10 g/L (ethanol) |
Factor | Name | Units | Min | Max |
---|---|---|---|---|
A | Adsorbent dose | Mg | 5 | 50 |
B | IC | mg/L | 5 | 50 |
C | pH | - | 2 | 12 |
Run | Factor 1 A: Adsorbent Dose (mg) | Factor 2 B: IC (ppm) | Factor 3 C: pH | Eriobotrya Japonica Seed Waste | |
---|---|---|---|---|---|
Response 1: RW (Y1) TR (%) | Response 1: EW (Y2) TR (%) | ||||
1 | 50 | 27.5 | 2 | 26.67 | 26.67 |
2 | 50 | 27.5 | 12 | 92.98 | 94.23 |
3 | 5 | 27.5 | 2 | 12.12 | 12.12 |
4 | 27.5 | 5 | 12 | 97.31 | 98.34 |
5 | 5 | 27.5 | 12 | 81.52 | 84.13 |
6 | 27.5 | 27.5 | 7 | 87.02 | 83.45 |
7 | 27.5 | 27.5 | 7 | 87.02 | 83.45 |
8 | 27.5 | 50 | 2 | 51.67 | 51.67 |
9 | 27.5 | 27.5 | 7 | 87.02 | 83.45 |
10 | 50 | 50 | 7 | 90.51 | 87.99 |
11 | 27.5 | 5 | 2 | 18.75 | 19.45 |
12 | 5 | 5 | 7 | 73.21 | 71.4 |
13 | 5 | 50 | 7 | 83.67 | 79.67 |
14 | 27.5 | 27.5 | 7 | 87.02 | 83.45 |
15 | 27.5 | 27.5 | 7 | 87.02 | 83.45 |
16 | 27.5 | 50 | 12 | 87.59 | 89.7 |
17 | 50 | 5 | 7 | 98.98 | 98.71 |
NonLinear Models | Expression | Characteristic Parameters | |
---|---|---|---|
Kinetic models | Pseudo-first-order model | qe (mg/g) qt (mg/g) k1 (min−1) | |
Pseudo-second-order model | qe (mg/g) qt (mg/g) k2 (g/mg·min) | ||
Isotherm models | Freundlich model | Qe (mg/g) Kf (min−1) | |
Langmuir model | Qm (mg/g) Qe (mg/g) KL |
Source | Sum of Squares | Df | Mean Square | F-Value | p-Value | |
---|---|---|---|---|---|---|
Model | 12,481.9 | 9 | 1386.88 | 82.26 | <0.0001 | Significant |
A—adsorbent dose | 429.54 | 1 | 429.54 | 25.48 | 0.0015 | |
B—IC | 79.32 | 1 | 79.32 | 4.7 | 0.0667 | |
C—Ph | 7824.38 | 1 | 7824.38 | 464.09 | <0.0001 | |
AB | 89.59 | 1 | 89.59 | 5.31 | 0.0546 | |
AC | 2.39 | 1 | 2.39 | 0.1416 | 0.7179 | |
BC | 454.54 | 1 | 454.54 | 26.96 | 0.0013 | |
A2 | 125.87 | 1 | 125.87 | 7.47 | 0.0292 | |
B2 | 106.95 | 1 | 106.95 | 6.34 | 0.0399 | |
C2 | 3355.51 | 1 | 3355.51 | 199.03 | <0.0001 | |
Residual | 118.02 | 7 | 16.86 | |||
Lack of fit | 118.02 | 3 | 39.34 | |||
Pure error | 0 | 4 | 0 | |||
Cor total | 12,599.92 | 16 |
Source | Sum of Squares | Df | Mean Square | F-Value | p-Value | |
---|---|---|---|---|---|---|
Model | 11,980.38 | 9 | 1331.15 | 56.85 | <0.0001 | Significant |
A—adsorbent dose | 454.21 | 1 | 454.21 | 19.4 | 0.0031 | |
B—IC | 55.81 | 1 | 55.81 | 2.38 | 0.1665 | |
C—pH | 8223.39 | 1 | 8223.39 | 351.23 | <0.0001 | |
AB | 90.16 | 1 | 90.16 | 3.85 | 0.0905 | |
AC | 4.95 | 1 | 4.95 | 0.2114 | 0.6596 | |
BC | 417.38 | 1 | 417.38 | 17.83 | 0.0039 | |
A2 | 95.2 | 1 | 95.2 | 4.07 | 0.0836 | |
B2 | 139.09 | 1 | 139.09 | 5.94 | 0.0449 | |
C2 | 2508.32 | 1 | 2508.32 | 107.13 | <0.0001 | |
Residual | 163.89 | 7 | 23.41 | |||
Lack of fit | 163.89 | 3 | 54.63 | |||
Pure error | 0 | 4 | 0 | |||
Cor total | 12,144.28 | 16 |
PFO | ||
Adsorbent | RW | EW |
Qe (mg/g) | 17.228 | 17.252 |
K1 (min−1) | 0.3103 | 0.5706 |
RMSE | 0.276 | 0.154 |
MSE | 0.076 | 0.024 |
SSE | 0.764 | 0.245 |
R2 | 0.9961 | 0.9971 |
PSO | ||
Qe (mg/g) | 17.228 | 17.252 |
K2 (g/mg·min) | 0.0524 | 0.208 |
RMSE | 0.349 | 0.154 |
MSE | 0.122 | 0.024 |
SSE | 1.227 | 0.243 |
R2 | 0.9973 | 0.9991 |
Langmuir | ||
Adsorbent | RW | EW |
Qm (mg/g) | 365.04 | 300 |
KL | 0.014 | 0.019 |
RMSE | 2.046 | 2.196 |
MSE | 4.187 | 4.824 |
SSE | 41.87 | 48.24 |
R2 | 0.936 | 0.931 |
Freundlich | ||
KF | 5.34 | 5.9 |
1/n | 0.934 | 0.933 |
RMSE | 2.048 | 2.135 |
MSE | 4.197 | 4.561 |
SSE | 41.97 | 45.61 |
R2 | 0.946 | 0.945 |
Adsorbent | Experimental Adsorption Capacity Qmax (mg/g) | Reference |
---|---|---|
Sulfuric-acid-treated coconut shell (SATCS) | 50.6 | [34] |
Fava bean peel waste (FBP) | 140 | [35] |
Citrus limetta peel (CLP) | 227.3 | [36] |
Waste seeds Aleurites moluccana (WAM) | 178 | [37] |
Nanoparticles (SFH-SiO2) | 70.16 | [38] |
Fly ash-based geopolymer (FAG) | 37.04 | [39] |
Raw and treated Eriobotrya Japonica seed waste | 365.04 and 300 | This study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belahrach, B.; Farah, M.; Belaoufi, Y.; Bensemlali, M.; Nasrellah, H.; Labjar, N.; Baraket, A.; Dahrouch, A.; El Hajjaji, S. Optimization of Process Parameters for Methylene Blue Dye Removal Using “Eriobotrya Japonica” Grains via Box-Behnken Design Based on Response Surface Methodology. Eng 2025, 6, 123. https://doi.org/10.3390/eng6060123
Belahrach B, Farah M, Belaoufi Y, Bensemlali M, Nasrellah H, Labjar N, Baraket A, Dahrouch A, El Hajjaji S. Optimization of Process Parameters for Methylene Blue Dye Removal Using “Eriobotrya Japonica” Grains via Box-Behnken Design Based on Response Surface Methodology. Eng. 2025; 6(6):123. https://doi.org/10.3390/eng6060123
Chicago/Turabian StyleBelahrach, Bouchra, Mohamed Farah, Youssef Belaoufi, Meyem Bensemlali, Hamid Nasrellah, Najoua Labjar, Abdoullatif Baraket, Abdelouahed Dahrouch, and Souad El Hajjaji. 2025. "Optimization of Process Parameters for Methylene Blue Dye Removal Using “Eriobotrya Japonica” Grains via Box-Behnken Design Based on Response Surface Methodology" Eng 6, no. 6: 123. https://doi.org/10.3390/eng6060123
APA StyleBelahrach, B., Farah, M., Belaoufi, Y., Bensemlali, M., Nasrellah, H., Labjar, N., Baraket, A., Dahrouch, A., & El Hajjaji, S. (2025). Optimization of Process Parameters for Methylene Blue Dye Removal Using “Eriobotrya Japonica” Grains via Box-Behnken Design Based on Response Surface Methodology. Eng, 6(6), 123. https://doi.org/10.3390/eng6060123