Investigating and Analyzing the Influence of a Solar Power Plant’s Life Cycle on the Depletion of Natural Materials and Mineral Resources
Abstract
:1. Introduction
1.1. Background
1.2. Literature Review
1.3. Research Contribution
2. Materials and Methods
2.1. Plan of Analysis
2.2. Post-Consumer Development
2.3. Object of Analysis
2.4. Methodology
3. Results
3.1. Preface
3.2. Research Results
4. Summary and Discussion
4.1. Assessed Impact Categories
4.2. Conclusions
4.3. Main Recommendations
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Leda, P.; Idzikowski, A.; Piasecka, I.; Bałdowska-Witos, P.; Cierlicki, T.; Zawada, M. Management of Environmental Life Cycle Impact Assessment of a Photovoltaic Power Plant on the Atmosphere, Water, and Soil Environment. Energies 2023, 16, 4230. [Google Scholar] [CrossRef]
- McLellan, B. Sustainable Future for Human Security: Society, Cities and Governance. In Sustainable Future for Human Security: Society, Cities and Governance; Springer: Berlin/Heidelberg, Germany, 2017; pp. 1–384. [Google Scholar]
- PV Report—EC BREC Instytut Energetyki Odnawialnej | Fotowoltaika. Available online: https://ieo.pl/en/pv-report?start=1 (accessed on 14 September 2024).
- Espejo-Marín, C.; Aparicio-Guerrero, A.E. La Producción de Electricidad Con Energía Solar Fotovoltaica En España En El Siglo XXI. Rev. De Estud. Andal. 2020, 39, 66–93. [Google Scholar] [CrossRef]
- Schultz, H.S.; Carvalho, M. Design, Greenhouse Emissions, and Environmental Payback of a Photovoltaic Solar Energy System. Energies 2022, 15, 6098. [Google Scholar] [CrossRef]
- Navothna, B.; Thotakura, S. Analysis on Large-Scale Solar PV Plant Energy Performance–Loss–Degradation in Coastal Climates of India. Front. Energy Res. 2022, 10, 857948. [Google Scholar] [CrossRef]
- Leda, P.; Kruszelnicka, W.; Leda, A.; Piasecka, I.; Kłos, Z.; Tomporowski, A.; Flizikowski, J.; Opielak, M. Life Cycle Analysis of a Photovoltaic Power Plant Using the CED Method. Energies 2023, 16, 8098. [Google Scholar] [CrossRef]
- Piasecka, I.; Bałdowska-Witos, P.; Piotrowska, K.; Tomporowski, A. Eco-Energetical Life Cycle Assessment of Materials and Components of Photovoltaic Power Plant. Energies 2020, 13, 1385. [Google Scholar] [CrossRef]
- Fthenakis, V.M.; Kim, H.C. Life Cycle Assessment of High-Concentration Photovoltaic Systems. Prog. Photovolt. Res. Appl. 2013, 21, 379–388. [Google Scholar] [CrossRef]
- Zarzavilla, M.; Quintero, A.; Abellán, M.A.; Serrano, F.L.; Austin, M.C.; Tejedor-Flores, N. Comparison of Environmental Impact Assessment Methods in the Assembly and Operation of Photovoltaic Power Plants: A Systematic Review in the Castilla—La Mancha Region. Energies 2022, 15, 1926. [Google Scholar] [CrossRef]
- Corcelli, F.; Ripa, M.; Ulgiati, S. End-of-Life Treatment of Crystalline Silicon Photovoltaic Panels. An Emergy-Based Case Study. J. Clean. Prod. 2017, 161, 1129–1142. [Google Scholar] [CrossRef]
- Fthenakis, V. Life Cycle Assessment of Photovoltaics. Photovolt. Sol. Energy 2016, 33, 646–657. [Google Scholar] [CrossRef]
- Alsema, E.A. Energy Pay-Back Time and CO2 Emissions of PV Systems. Prog. Photovolt. Res. Appl. 2000, 8, 17–25. [Google Scholar] [CrossRef]
- Frankl, P.; Masini, A.; Gamberale, M.; Toccaceli, D. Simplified Life-Cycle Analysis of PV Systems in Buildings: Present Situation and Future Trends. Prog. Photovolt. Res. Appl. 1998, 6, 137–146. [Google Scholar] [CrossRef]
- Fthenakis, V.M.; Kim, H.C. Greenhouse-Gas Emissions from Solar Electric- and Nuclear Power: A Life-Cycle Study. Energy Policy 2007, 35, 2549–2557. [Google Scholar] [CrossRef]
- Dones, R.; Frischknecht, R. Life-Cycle Assessment of Photovoltaic Systems: Results of Swiss Studies on Energy Chains Background and Methodology. Prog. Photovolt. Res. Appl. 1998, 6, 117–125. [Google Scholar] [CrossRef]
- Kato, K.; Hibino, T.; Komoto, K.; Ihara, S.; Yamamoto, S.; Fujihara, H. A Life-Cycle Analysis on Thin-Film CdS/CdTe PV Modules. Sol. Energy Mater. Sol. Cells 2001, 67, 279–287. [Google Scholar] [CrossRef]
- Alsema, E. Energy Requirements of Thin-Film Solar Cell Modules—A Review. Renew. Sustain. Energy Rev. 1998, 2, 387–415. [Google Scholar] [CrossRef]
- Fthenakis, V.; Alsema, E. Photovoltaics Energy Payback Times, Greenhouse Gas Emissions and External Costs: 2004–Early 2005 Status. Prog. Photovolt. Res. Appl. 2006, 14, 275–280. [Google Scholar] [CrossRef]
- Ito, M.; Kato, K.; Sugihara, H.; Kichimi, T.; Song, J.; Kurokawa, K. A Preliminary Study on Potential for Very Large-Scale Photovoltaic Power Generation (VLS-PV) System in the Gobi Desert from Economic and Environmental Viewpoints. Sol. Energy Mater. Sol. Cells 2003, 75, 507–517. [Google Scholar] [CrossRef]
- Ito, M.; Kato, K.; Komoto, K.; Kichimi, T.; Kurokawa, K. A Comparative Study on Cost and Life-Cycle Analysis for 100 MW Very Large-Scale PV (VLS-PV) Systems in Deserts Using m-Si, a-Si, CdTe, and CIS Modules. Prog. Photovolt. Res. Appl. 2008, 16, 17–30. [Google Scholar] [CrossRef]
- Nomura, N.; Inaba, A.; Tonooka, Y.; Akai, M. Life-Cycle Emission of Oxidic Gases from Power-Generation Systems. Appl Energy 2001, 68, 215–227. [Google Scholar] [CrossRef]
- Oliver, M.; Jackson, T. The Evolution of Economic and Environmental Cost for Crystalline Silicon Photovoltaics. Energy Policy 2000, 28, 1011–1021. [Google Scholar] [CrossRef]
- Cocco, D.; Lecis, L.; Micheletto, D. Life Cycle Assessment of an Integrated PV-ACAES System. Energies 2023, 16, 1430. [Google Scholar] [CrossRef]
- Sobaszek, Ł.; Piasecka, I.; Flizikowski, J.; Tomporowski, A.; Sokolovskij, E.; Bałdowska-Witos, P. Environmentally Oriented Analysis of Benefits and Expenditures in the Life Cycle of a Wind Power Plant. Materials 2023, 16, 538. [Google Scholar] [CrossRef] [PubMed]
- Mannheim, V.; Kruszelnicka, W. Energy-Model and Life Cycle-Model for Grinding Processes of Limestone Products. Energies 2022, 15, 3816. [Google Scholar] [CrossRef]
- Mannheim, V.; Nehéz, K.; Brbhan, S.; Bencs, P. Primary Energy Resources and Environmental Impacts of Various Heating Systems Based on Life Cycle Assessment. Energies 2023, 16, 6995. [Google Scholar] [CrossRef]
- Li, W.; Jin, R.; Ma, X.; Zhang, G. Capacity Optimal Allocation Method and Frequency Division Energy Management for Hybrid Energy Storage System Considering Grid-Connected Requirements in Photovoltaic System. Energies 2023, 16, 4154. [Google Scholar] [CrossRef]
- Li, Q.; Monticelli, C.; Zanelli, A. Life Cycle Assessment of Organic Solar Cells and Perovskite Solar Cells with Graphene Transparent Electrodes. Renew Energy 2022, 195, 906–917. [Google Scholar] [CrossRef]
- Li, Q.; Li, T.; Kutlu, A.; Zanelli, A. Life Cycle Cost Analysis and Life Cycle Assessment of ETFE Cushion Integrated Transparent Organic/Perovskite Solar Cells: Comparison with PV Glazing Skylight. J. Build. Eng. 2024, 87, 109140. [Google Scholar] [CrossRef]
- Mao, D.; Yang, S.; Ma, L.; Ma, W.; Yu, Z.; Xi, F.; Yu, J. Overview of Life Cycle Assessment of Recycling End-of-Life Photovoltaic Panels: A Case Study of Crystalline Silicon Photovoltaic Panels. J. Clean. Prod. 2024, 434, 140320. [Google Scholar] [CrossRef]
- Li, Q.; Monticelli, C.; Kutlu, A.; Zanelli, A. Feasibility of Textile Envelope Integrated Flexible Photovoltaic in Europe: Carbon Footprint Assessment and Life Cycle Cost Analysis. J. Clean. Prod. 2023, 430, 139716. [Google Scholar] [CrossRef]
- Elnozahy, A.; Abd-Elbary, H.; Abo-Elyousr, F.K. Efficient Energy Harvesting from PV Panel with Reinforced Hydrophilic Nano-Materials for Eco-Buildings. Energy Built Environ. 2024, 5, 393–403. [Google Scholar] [CrossRef]
- Li, Q.; Monticelli, C.; Kutlu, A.; Zanelli, A. Environmental Performance Analysis of Textile Envelope Integrated Flexible Photovoltaic Using Life Cycle Assessment Approach. J. Build. Eng. 2024, 89, 109348. [Google Scholar] [CrossRef]
- Duan, Y.; Guo, F.; Gardy, J.; Xu, G.; Li, X.; Jiang, X. Life Cycle Assessment of Polysilicon Photovoltaic Modules with Green Recycling Based on the ReCiPe Method. Renew Energy 2024, 236, 121407. [Google Scholar] [CrossRef]
- Muteri, V.; Cellura, M.; Curto, D.; Franzitta, V.; Longo, S.; Mistretta, M.; Parisi, M.L. Review on Life Cycle Assessment of Solar Photovoltaic Panels. Energies 2020, 13, 252. [Google Scholar] [CrossRef]
- Ren, M.; Ghasemi, R.; Khalkhali, M.; Mo, W. Dynamics of Large-Scale Solar PV Adoption Feedback Effects: A Technical, Economic, and Environmental Assessment. Resour. Conserv. Recycl. 2024, 205, 107571. [Google Scholar] [CrossRef]
- Ludin, N.A.; Mustafa, N.I.; Hanafiah, M.M.; Ibrahim, M.A.; Asri Mat Teridi, M.; Sepeai, S.; Zaharim, A.; Sopian, K. Prospects of Life Cycle Assessment of Renewable Energy from Solar Photovoltaic Technologies: A Review. Renew. Sustain. Energy Rev. 2018, 96, 11–28. [Google Scholar] [CrossRef]
- Palz, W.; Zibetta, H. Energy Pay-Back Time of Photovoltaic Modules. Int. J. Sol. Energy 1991, 10, 211–216. [Google Scholar] [CrossRef]
- Shiva, G.; Ashish, S. Photovoltaic Solar Energy Conversion: Technologies Applications and Environmental Impacts; Academic Press: Cambridge, MA, USA, 2020; p. 452. [Google Scholar]
- Chen, W.; Lei, Y. The Impacts of Renewable Energy and Technological Innovation on Environment-Energy-Growth Nexus: New Evidence from a Panel Quantile Regression. Renew Energy 2018, 123, 1–14. [Google Scholar] [CrossRef]
- Recykling Paneli Fotowoltaicznych. Jak Wygląda Utylizacja Modułów?: Columbus Energy. Available online: https://columbusenergy.pl/blog/recykling-paneli-fotowoltaicznych/ (accessed on 6 October 2024).
- LCIA: The ReCiPe Model | RIVM. Available online: https://www.rivm.nl/en/life-cycle-assessment-lca/recipe (accessed on 14 September 2024).
- ISO 14000. Available online: https://wiedza.pkn.pl/web/wiedza-normalizacyjna/zarzadzanie-srodowiskowe (accessed on 17 October 2024).
- Huijbregts, M.A.J.; Steinmann, Z.J.N.; Elshout, P.M.F.; Stam, G.; Verones, F.; Vieira, M.; Zijp, M.; Hollander, A.; van Zelm, R. ReCiPe2016: A Harmonised Life Cycle Impact Assessment Method at Midpoint and Endpoint Level. Int. J. Life Cycle Assess. 2017, 22, 138–147. [Google Scholar] [CrossRef]
- ISO 14040 and ISO 14044. Available online: https://www.dqsglobal.com/pl-pl/certyfikacja/iso-14040-i-14044-przeglad-ocen-cyklu-zycia (accessed on 17 October 2024).
- Zintegrowana Platforma Edukacyjna. Available online: https://zpe.gov.pl/a/zasoby-wody-i-ich-ochrona/D7npMF5Lo (accessed on 14 September 2024).
- Górka, K. Zasoby Naturalne Jako Czynnik Rozwoju Społeczno-Gospodarczego. Gospod. W Prakt. I Teor. 2014, 36, 35–51. [Google Scholar] [CrossRef]
Bill of Materials | ||
---|---|---|
Material Name | Mass | Unit |
Aluminum | 85,120 | kg |
Steel | 82,000 | kg |
Solar glass | 79,230 | kg |
Copper | 5000 | kg |
Others | 9264 | kg |
No | Element of a Technical Object | Photovoltaic Power Plant | ||
---|---|---|---|---|
Waste Scenario | Landfill | Recycling | ||
Substance | Emission Area | |||
1 | Water | Water | −1.90 × 105 | −1.90 × 105 |
2 | Water, cooling, unspecified natural origin | Raw materials | 2.16 × 103 | 1.47 × 103 |
3 | Water, lake | Raw materials | 1.21 × 101 | 1.77 × 101 |
4 | Water, river | Raw materials | 3.30 × 102 | 2.61 × 102 |
5 | Water, turbine use, unspecified natural origin | Raw materials | 8.94 × 105 | −1.25 × 105 |
6 | Water, unspecified natural origin | Raw materials | 5.87 × 102 | 5.73 × 102 |
7 | Water, well | Raw materials | 6.21 × 101 | 6.80 × 101 |
8 | Remaining substances | Raw materials | 1.78 × 102 | 4.76 × 101 |
Total | 7.08 × 105 | −3.13 × 105 |
No | Element of a Technical Object | Photovoltaic Power Plant | ||
---|---|---|---|---|
Waste Scenario | Landfill | Recycling | ||
Substance | Emission Area | |||
1 | Water | Water | −1.96 × 104 | −1.96 × 104 |
2 | Water, cooling, unspecified natural origin | Raw materials | 2.29 × 102 | 1.63 × 102 |
3 | Water, lake | Raw materials | 1.19 × 100 | 1.74 × 100 |
4 | Water, river | Raw materials | 3.25 × 101 | 2.62 × 101 |
5 | Water, turbine use, unspecified natural origin | Raw materials | 8.91 × 104 | −1.14 × 104 |
6 | Water, unspecified natural origin | Raw materials | 5.80 × 101 | 5.66 × 101 |
7 | Water, well | Raw materials | 6.06 × 100 | 6.75 × 100 |
8 | Remaining substances | Raw materials | 2.32 × 101 | 1.02 × 101 |
Total | 6.99 × 104 | −3.08 × 104 |
No | Element of a Technical Object | Photovoltaic Power Plant | ||
---|---|---|---|---|
Waste Scenario | Landfill | Recycling | ||
Substance | Emission Area | |||
1 | Water | Water | −1.39 × 100 | −1.37 × 100 |
2 | Water, cooling, unspecified natural origin | Raw materials | 1.33 × 10−2 | 1.06 × 10−2 |
3 | Water, lake | Raw materials | 5.32 × 10−5 | 7.80 × 10−5 |
4 | Water, river | Raw materials | 2.31 × 10−3 | 2.00 × 10−3 |
5 | Water, turbine use, unspecified natural origin | Raw materials | 4.49 × 100 | −3.16 × 10−2 |
6 | Water, unspecified natural origin | Raw materials | 2.71 × 10−3 | 2.67 × 10−3 |
7 | Water, well | Raw materials | 4.61 × 10−4 | 6.94 × 10−4 |
8 | Remaining substances | Raw materials | 2.42 × 10−3 | 1.54 × 10−3 |
Total | 3.12 × 100 | −1.38 × 100 |
No | Element of a Technical Object | Photovoltaic Power Plant | ||
---|---|---|---|---|
Waste Scenario | Landfill | Recycling | ||
Substance | Emission Area | |||
1 | Coal, hard | Raw materials | 9.01 × 103 | 2.93 × 105 |
2 | Gas, natural/m3 | Raw materials | 4.65 × 104 | 3.53 × 104 |
3 | Oil, crude | Raw materials | 6.62 × 105 | 1.85 × 104 |
4 | Remaining substances | Raw materials | −4.55 × 10−13 | −4.55 × 10−13 |
Total | 1.22 × 105 | 5.67 × 104 |
No | Element of a Technical Object | Photovoltaic Power Plant | ||
---|---|---|---|---|
Waste Scenario | Landfill | Recycling | ||
Substance | Emission Area | |||
1 | Aluminum | Raw materials | 5.51 × 103 | −1.79 × 103 |
2 | Chromium | Raw materials | 1.08 × 102 | 1.07 × 102 |
3 | Cobalt | Raw materials | 2.34 × 103 | 2.34 × 103 |
4 | Copper | Raw materials | 7.87 × 103 | 7.87 × 103 |
5 | Gallium | Raw materials | 6.20 × 10−4 | 3.90 × 10−3 |
6 | Gold | Raw materials | 6.17 × 102 | 7.07 × 102 |
7 | Iron | Raw materials | 7.67 × 103 | 7.63 × 103 |
8 | Nickel | Raw materials | 1.21 × 104 | 1.21 × 104 |
9 | Platinum | Raw materials | 2.23 × 101 | 2.23 × 101 |
10 | Silicon | Raw materials | 8.22 × 103 | 8.22 × 103 |
11 | Silver | Raw materials | 1.50 × 103 | 1.50 × 103 |
12 | Titanium | Raw materials | 1.11 × 10−1 | 1.11 × 10−1 |
13 | Zinc | Raw materials | 7.31 × 100 | 7.30 × 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leda, P.; Piasecka, I.; Leda, A.; Szala, G.; Tomporowski, A.; Walichnowska, P.; Bałdowska-Witos, P.; Kruszelnicka, W. Investigating and Analyzing the Influence of a Solar Power Plant’s Life Cycle on the Depletion of Natural Materials and Mineral Resources. Eng 2024, 5, 2695-2708. https://doi.org/10.3390/eng5040141
Leda P, Piasecka I, Leda A, Szala G, Tomporowski A, Walichnowska P, Bałdowska-Witos P, Kruszelnicka W. Investigating and Analyzing the Influence of a Solar Power Plant’s Life Cycle on the Depletion of Natural Materials and Mineral Resources. Eng. 2024; 5(4):2695-2708. https://doi.org/10.3390/eng5040141
Chicago/Turabian StyleLeda, Patryk, Izabela Piasecka, Anna Leda, Grzegorz Szala, Andrzej Tomporowski, Patrycja Walichnowska, Patrycja Bałdowska-Witos, and Weronika Kruszelnicka. 2024. "Investigating and Analyzing the Influence of a Solar Power Plant’s Life Cycle on the Depletion of Natural Materials and Mineral Resources" Eng 5, no. 4: 2695-2708. https://doi.org/10.3390/eng5040141
APA StyleLeda, P., Piasecka, I., Leda, A., Szala, G., Tomporowski, A., Walichnowska, P., Bałdowska-Witos, P., & Kruszelnicka, W. (2024). Investigating and Analyzing the Influence of a Solar Power Plant’s Life Cycle on the Depletion of Natural Materials and Mineral Resources. Eng, 5(4), 2695-2708. https://doi.org/10.3390/eng5040141