Vortex Shedding Suppression: A Review on Modified Bluff Bodies
Abstract
:1. Introduction
2. Perforated Bluff Bodies
3. Permeable and Porous Mesh
4. Corner Modification
5. Wavy Cylinder
Author Contributions
Funding
Conflicts of Interest
References
- Chashechkin, Y.D.; Zagumennyi, I.V. Formation of waves, vortices and ligaments in 2D stratified flows around obstacles. Phys. Scr. 2019, 94, 054003. [Google Scholar] [CrossRef]
- Naumov, I.; Litvinov, I.V.; Mikkelsen, R.F.; Okulov, V.L. Experimental investigation of wake evolution behind a couple of flat discs in a hydrochannel. Thermophys. Aeromech. 2016, 23, 657–666. [Google Scholar] [CrossRef] [Green Version]
- Shin, B.; Kondo, M. Effect of Gap Ratio on the Wake behind Two Side-by-Side Flat Plates. J. Appl. Fluid Mech. 2019, 12, 1213–1222. [Google Scholar] [CrossRef]
- Gao, S.; Tao, L.; Tian, X.; Yang, J. Flow around an inclined circular disk. J. Fluid Mech. 2018, 851, 687–714. [Google Scholar] [CrossRef] [Green Version]
- Tian, X.; Hu, Z.; Lu, H.; Yang, J. Direct numerical simulations on the flow past an inclined circular disk. J. Fluids Struct. 2017, 72, 152–168. [Google Scholar] [CrossRef]
- Hacışevki, H.; Teimourian, A. Interacting wakes of a narrow and a wide flat plate in tandem arrangement. Fluid Dyn. Res. 2016, 48, 015505. [Google Scholar] [CrossRef]
- Teimourian, A.; Hacisevki, H.; Bahrami, A. Experimental study on flow past two inclined flat plates in tandem arrangement. J. Wind Eng. Ind. Aerodyn. 2017, 169, 1–11. [Google Scholar] [CrossRef]
- Schmidt, H.-J.; Woszidlo, R.; Nayeri, C.N.; Paschereit, C.O. The effect of flow control on the wake dynamics of a rectangular bluff body in ground proximity. Exp. Fluids 2018, 59, 1–16. [Google Scholar] [CrossRef]
- Li, D.; Yang, Q.; Ma, X.; Dai, G. Free surface characteristics of flow around two side-by-side circular cylinders. J. Mar. Sci. Eng. 2018, 6, 75. [Google Scholar] [CrossRef] [Green Version]
- Dou, B.; Yang, Z.; Guala, M.; Qu, T.; Lei, L.; Zeng, P. Comparison of Different Driving Modes for the Wind Turbine Wake in Wind Tunnels. Energies 2020, 13, 1915. [Google Scholar] [CrossRef] [Green Version]
- Zou, L.; Wang, K.; Jiang, Y.; Wang, A.; Sun, T. Wind tunnel test on the effect of solidity on near wake instability of vertical-axis wind turbine. J. Mar. Sci. Eng. 2020, 8, 365. [Google Scholar] [CrossRef]
- Wang, K.; Zou, L.; Wang, A.; Zhao, P.; Jiang, Y. Wind tunnel study on wake instability of twin H-rotor vertical-axis turbines. Energies 2020, 13, 4310. [Google Scholar] [CrossRef]
- Chen, Z.; Kim, B.; Lee, D.-E. Aerodynamic Characteristics and Lateral Displacements of a Set of Two Buildings in a Linked Tall Building System. Sensors 2021, 21, 4046. [Google Scholar] [CrossRef] [PubMed]
- Çuhadaroğlu, B.; Akansu, Y.E.; Turhal, A.Ö. An experimental study on the effects of uniform injection through one perforated surface of a square cylinder on some aerodynamic parameters. Exp. Therm. Fluid Sci. 2007, 31, 909–915. [Google Scholar] [CrossRef]
- Çuhadaroğlu, B.; Turan, O. Numerical simulation of turbulent flow around a square cylinder with uniform injection or suction and heat transfer. Numer. Heat Transf. Part A Appl. 2009, 55, 163–184. [Google Scholar] [CrossRef]
- Çuhadaroglu, B. A numerical study on turbulent flow around a square cylinder with uniform injection or suction. Int. J. Numer. Methods Heat Fluid Flow 2009, 19, 708–727. [Google Scholar] [CrossRef]
- Turhal, A.Ö.; Çuhadaroğlu, B. The effects of surface injection through a perforated square cylinder on some aerodynamic parameters. Exp. Therm. Fluid Sci. 2010, 34, 725–735. [Google Scholar] [CrossRef]
- Sohankar, A.; Khodadadi, M.; Rangraz, E. Control of fluid flow and heat transfer around a square cylinder by uniform suction and blowing at low Reynolds numbers. Comput. Fluids 2015, 109, 155–167. [Google Scholar] [CrossRef]
- Saha, A.K.; Shrivastava, A. Suppression of vortex shedding around a square cylinder using blowing. Sadhana 2015, 40, 769–785. [Google Scholar] [CrossRef] [Green Version]
- Teimourian, A.; Hacişevki, H.; Bahrami, A. Experimental study on suppression of vortex street behind perforated square cylinder. J. Theor. Appl. Mech. 2017, 55, 1397–1408. [Google Scholar] [CrossRef] [Green Version]
- Castro, I. Wake characteristics of two-dimensional perforated plates normal to an air-stream. J. Fluid Mech. 1971, 46, 599–609. [Google Scholar] [CrossRef]
- Firat, E.; Ozkan, G.M.; Akilli, H. PIV measurements in the near wakes of hollow cylinders with holes. Exp. Fluids 2017, 58, 39. [Google Scholar] [CrossRef]
- Durhasan, T.; Pinar, E.; Ozkan, G.M.; Aksoy, M.M.; Akilli, H.; Sahin, B. PIV measurement downstream of perforated cylinder in deep water. Eur. J. Mech. B Fluids 2018, 72, 225–234. [Google Scholar] [CrossRef]
- Molin, B. Hydrodynamic modeling of perforated structures. Appl. Ocean Res. 2011, 33, 1–11. [Google Scholar] [CrossRef]
- Pinar, E.; Ozkan, G.M.; Durhasan, T.; Aksoy, M.M.; Akilli, H.; Sahin, B. Flow structure around perforated cylinders in shallow water. J. Fluids Struct. 2015, 55, 52–63. [Google Scholar] [CrossRef]
- Gözmen, B.; Akilli, H.; Şahin, B. Vortex control of cylinder wake by permeable cylinder. J. Fac. Eng. Archit. 2013, 28, 77–85. [Google Scholar]
- Ozkan, G.M.; Oruc, V.; Akilli, H.; Sahin, B. Flow around a cylinder surrounded by a permeable cylinder in shallow water. Exp. Fluids 2012, 53, 1751–1763. [Google Scholar] [CrossRef]
- Cicolin, M.M.; Freire, C.M.; Assi, G.R. Suppression of the vortex-induced vibration of a circular cylinder with permeable meshes. In Fluids Engineering Division Summer Meeting; American Society of Mechanical Engineers: Chicago, IL, USA, 2014. [Google Scholar]
- Durhasan, T.; Pinar, E.; Ozkan, G.M.; Akilli, H.; Sahin, B. The effect of shroud on vortex shedding mechanism of cylinder. Appl. Ocean Res. 2019, 84, 51–61. [Google Scholar] [CrossRef]
- Mimeau, C.; Cottet, G.-H.; Mortazavi, I. Passive flow control around a semi-circular cylinder using porous coatings. Int. J. Flow Control 2014, 6, 43–50. [Google Scholar]
- Liu, H.; Wei, J. On the role of surface permeability for the control of flow around a circular cylinder. J. Vibroeng. 2016, 18, 5406–5415. [Google Scholar] [CrossRef]
- Kwok, K.; Wilhelm, P.; Wilkie, B. Effect of edge configuration on wind-induced response of tall buildings. Eng. Struct. 1988, 10, 135–140. [Google Scholar] [CrossRef]
- Tamura, T.; Miyagi, T.; Kitagishi, T. Numerical prediction of unsteady pressures on a square cylinder with various corner shapes. J. Wind Eng. Ind. Aerodyn. 1998, 74, 531–542. [Google Scholar] [CrossRef]
- Tamura, T.; Miyagi, T. The effect of turbulence on aerodynamic forces on a square cylinder with various corner shapes. J. Wind Eng. Ind. Aerodyn. 1999, 83, 135–145. [Google Scholar] [CrossRef]
- Hu, J.; Zhou, Y.; Dalton, C. Effects of the corner radius on the near wake of a square prism. Exp. Fluids 2006, 40, 106. [Google Scholar] [CrossRef]
- Miran, S.; Sohn, C.H. Numerical study of the rounded corners effect on flow past a square cylinder. Int. J. Numer. Methods Heat Fluid Flow 2015, 25, 686–702. [Google Scholar] [CrossRef]
- Dalton, C.; Zheng, W. Numerical solutions of a viscous uniform approach flow past square and diamond cylinders. J. Fluids Struct. 2003, 18, 455–465. [Google Scholar] [CrossRef]
- Ambreen, T.; Kim, M.-H. Flow and heat transfer characteristics over a square cylinder with corner modifications. Int. J. Heat Mass Transf. 2018, 117, 50–57. [Google Scholar] [CrossRef]
- He, G.S.; Li, N.; Wang, J.J. Drag reduction of square cylinders with cut-corners at the front edges. Exp. Fluids 2014, 55, 1745. [Google Scholar] [CrossRef]
- Ueda, Y.; Kurata, M.; Kida, T.; Iguchi, M. Visualization of flow past a square prism with cut-corners at the front-edge. J. Vis. 2009, 12, 383–391. [Google Scholar] [CrossRef]
- Kurata, M.; Ueda, Y.; Kida, T.; Iguchi, M. Drag reduction due to cut-corners at the front-edge of a rectangular cylinder with the length-to-breadth ratio being less than or equal to unity. J. Fluids Eng. 2009, 131, 064501. [Google Scholar] [CrossRef]
- Kurata, M.; Hirakawa, K.; Yasutomi, Z.; Kida, T. Effect of cutout at front edges to drag reduction of square prism. Trans. Jpn. Aeronaut. Space Sci. 1999, 47, 174–181. [Google Scholar]
- Igarashi, T. Drag reduction of a rectangular cylinder with small rectangular cutout at its edges normal to air-stream. In Proceedings of the Annual Meeting, Japan Society of Fluid Mechanics, Tokyo, Japan, 27–29 September 2005. [Google Scholar]
- Mola, A.; Bordonaro, G.; Haji, M.R. Low-frequency variations of force coefficients on square cylinders with sharp and rounded corners. J. Struct. Eng. 2009, 135, 828–835. [Google Scholar] [CrossRef] [Green Version]
- Carassale, L.; Freda, A.; Marrè-Brunenghi, M. Experimental investigation on the aerodynamic behavior of square cylinders with rounded corners. J. Fluids Struct. 2014, 44, 195–204. [Google Scholar] [CrossRef]
- Miran, S.; Sohn, C.H. Influence of incidence angle on the aerodynamic characteristics of square cylinders with rounded corners. Int. J. Numer. Methods Heat Fluid Flow 2016, 26, 269–283. [Google Scholar] [CrossRef]
- Tong, J.C.K.; Sparrow, E.M.; Minkowycz, W.J.; Abraham, J.P. A new archive of heat transfer coefficients from square and chamfered cylinders at angles of attack in crossflow. Int. J. Therm. Sci. 2016, 105, 218–223. [Google Scholar] [CrossRef]
- Lam, K.; Lin, Y. Large eddy simulation of flow around wavy cylinders at a subcritical Reynolds number. Int. J. Heat Fluid Flow 2008, 29, 1071–1088. [Google Scholar] [CrossRef]
- Lam, K.; Lin, Y.F.; Zou, L.; Liu, Y. The effect of wavy surface on vortex shedding from an inclined cylinder in turbulent flow. In Proceedings of the Nineteenth International Offshore and Polar Engineering Conference, Osaka, Japan, 21–26 June 2009. [Google Scholar]
- Lam, K.; Lin, Y. Effects of wavelength and amplitude of a wavy cylinder in cross-flow at low Reynolds numbers. J. Fluid Mech. 2009, 620, 195–220. [Google Scholar] [CrossRef] [Green Version]
- Lam, K.; Lin, Y.F.; Zou, L.; Liu, Y. Numerical study of flow patterns and force characteristics for square and rectangular cylinders with wavy surfaces. J. Fluids Struct. 2012, 28, 359–377. [Google Scholar] [CrossRef]
- Shen, S.; Miao, W.; Hong, L.U.; Lin, Z. The numerical and experimental investigations of the near wake behind a modified square stay-cable. J. Hydrodyn. Ser. B 2016, 28, 897–904. [Google Scholar] [CrossRef]
- Lin, Z.; Lin, Y.-F. Force reduction of flow around a sinusoidal wavy cylinder. J. Hydrodyn. Ser. B 2009, 21, 308–315. [Google Scholar]
- Zou, L.; Hu, Y.; Xu, H.B.; Lu, H.; Wang, M. Characteristics of Flow around a Modified Square Prism. Appl. Mech. Mater. 2015, 723, 190–193. [Google Scholar] [CrossRef]
- Assi, G.R.; Bearman, P.W. Vortex-induced vibration of a wavy elliptic cylinder. J. Fluids Struct. 2018, 80, 1–21. [Google Scholar] [CrossRef]
- New, T.; Shi, S.; Liu, Y. Cylinder-wall interference effects on finite-length wavy cylinders at subcritical Reynolds number flows. Exp. Fluids 2013, 54, 1601. [Google Scholar] [CrossRef]
- Darekar, R.; Sherwin, S. Flow past a bluff body with a wavy stagnation face. J. Fluids Struct. 2001, 15, 587–596. [Google Scholar] [CrossRef]
- Lee, S.-J.; Nguyen, A.-T. Experimental investigation on wake behind a wavy cylinder having sinusoidal cross-sectional area variation. Fluid Dyn. Res. 2007, 39, 292. [Google Scholar] [CrossRef]
- Lam, K.; Wang, F.; So, R. Three-dimensional nature of vortices in the near wake of a wavy cylinder. J. Fluids Struct. 2004, 19, 815–833. [Google Scholar] [CrossRef]
- Lam, K.; Wang, F.H.; Li, J.Y.; So, R.M.C. Experimental investigation of the mean and fluctuating forces of wavy (varicose) cylinders in a cross-flow. J. Fluids Struct. 2004, 19, 321–334. [Google Scholar] [CrossRef]
- Tammisola, O. Optimal wavy surface to suppress vortex shedding using second-order sensitivity to shape changes. Eur. J. Mech. B Fluids 2017, 62, 139–148. [Google Scholar] [CrossRef] [Green Version]
Researchers | Flow Control | Re | TI | Technique | Measurements | Bluff Body | BR |
---|---|---|---|---|---|---|---|
Castro [21] | Passive | 2.5 × 104–9.0 × 104 | - | CTA | St, U | FP | - |
Çuhadaroğlu, Akansu [14] | Active | 10,000–24,000 | 1.2–1.5% | PT | CP, CD, U | SC | - |
Çuhadaroğlu and Turan [15] | Active | 21,400 | - | Num | St, CD | SC | - |
Çuhadaroglu [16] | Active | - | - | Num | St, CD, CL | SC | - |
Turhal and Çuhadaroğlu [17] | Active | 10,000–24,000 | 1.2–1.5% | PT, CTA | St, CP, CD | SC | 6.5%, 9.2% |
Sohankar, Khodadadi [18] | Active | 70–150 | - | Num | St, CP, CD, CL | SC | 5% |
Saha and Shrivastava [19] | Active | 100 | - | Num | St, U, CD | SC | 5% |
Pinar, Ozkan [25] | Passive | 10,000 | 1% | PIV | U | CC | 10% |
Firat, Ozkan [22] | Passive | 6900 | 4.5% | PIV | St, U | CC | 7.4% |
Teimourian, Hacişevki [20] | Passive | 18,500 | 0.6% | CTA | St, U | SC | 5% |
Durhasan, Pinar [23] | Passive | 10,000 | - | PIV | U | CC | - |
Researchers | Flow Control | Reynolds Number | Technique | Bluff Body | Measurements |
---|---|---|---|---|---|
Ozkan and Oruc [27] | Passive | 8.5 × 103 | PIV | CC | U |
Gözmen and Akilli [26] | Passive | 5.0 × 103 | PIV | CC | U, St |
Cicolin and Freire [28] | Passive | 103–104 | PIV, FV | CC | U, St |
Mimeau and Cottet [30] | Passive | 550, 3000 | DNS | SCC | - |
Liu and Wei [31] | Passive | 4.7 × 104 | LES | CC | - |
Durhasan and Pinar [29] | Passive | 5.0 × 103 | PIV, FV | CC | U, CD |
Researchers | Flow Control | Reynolds Number | TI | Technique | Measurements |
---|---|---|---|---|---|
Kwok and Wilhelm [32] | CC | - | - | CTA | U |
Tamura and Miyagi [33] | RC, CC | 104–106 | 0.5% | PS, Num | CD, CL, CP, St |
Tamura and Miyagi [34] | RC, CC | 3.0 × 104 | 6.5%, 14% | CTA, FB | CD, CL, St |
Dalton and Zheng [37] | RC | 250, 1000 | - | Num | CD, CL, CP, St |
Hu and Zhou [35] | RC | 2600, 6000 | 0.4% | PIV, LDA, FV | St, U |
Mola and Bordonaro [44] | RC | 105 | 1% | Num | CD, CL, St |
Carassale, Freda [45] | RC | 1.7 × 104, 2.3 × 105 | 0.2%, 5% | PS, FB | CD, CL, CP, St |
He and Li [39] | RC, CC, CU | 1035 | 8% | PIV | U, St |
Miran and Sohn [36] | RC | 500 | - | Num | CD, CL, St |
Tong and Sparrow [47] | CC | 3.0 × 104 –2.3 × 106 | - | Num | Num |
Miran and Sohn [46] | RC | 500 | - | Num | CD, CL, St |
Ueda and Kurata [40] | CU | 200–10,000 | 1% | FV, Num | U |
Kurata and Ueda [41] | CU | 5.0 × 104 –7.0 × 104 | 0.8%, 1.2% | CTA, FB | CD, St |
Ambreen and Kim [38] | RC, CC, CU | 55–200 | - | Num | CD, CL, CP, St |
Researchers | Technique | Reynolds Number | TI | Bluff Body |
---|---|---|---|---|
Darekar and Sherwin [57] | Num | 10–500 | - | SC |
Lee and Nguyen [58] | Exp | 5.0 × 103–2.0 × 104 | 0.08% | CC |
Lam and Lin [48] | Num | 3000 | - | CC |
Lin and Lin [53] | Exp, Num | 3000 | - | CC |
Lam and Lin [49] | Num | 3900 | - | CC |
Lam and Lin [50] | Num | 100 | - | CC |
Lam and Wang [59] | Exp | 200–9000 | 0.2% | CC |
Lam and Wang [60] | Exp | 1.53 × 104–5.05 × 104 | 0.2% | CC |
Lam and Lin [51] | Num | 100–5000 | - | SC |
New and Shi [56] | Exp | 2700 | 2% | CC |
Zou and Hu [54] | Exp, Num | 600, 5900 | - | SC |
Shen and Miao [52] | Exp, Num | 100–22,000 | - | SC |
Tammisola [61] | Num | 50–100 | - | CC |
Assi and Bearman [55] | Exp | 1500–15,000 | 3% | EC |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teimourian, A.; Teimourian, H. Vortex Shedding Suppression: A Review on Modified Bluff Bodies. Eng 2021, 2, 325-339. https://doi.org/10.3390/eng2030021
Teimourian A, Teimourian H. Vortex Shedding Suppression: A Review on Modified Bluff Bodies. Eng. 2021; 2(3):325-339. https://doi.org/10.3390/eng2030021
Chicago/Turabian StyleTeimourian, Amir, and Hanifa Teimourian. 2021. "Vortex Shedding Suppression: A Review on Modified Bluff Bodies" Eng 2, no. 3: 325-339. https://doi.org/10.3390/eng2030021
APA StyleTeimourian, A., & Teimourian, H. (2021). Vortex Shedding Suppression: A Review on Modified Bluff Bodies. Eng, 2(3), 325-339. https://doi.org/10.3390/eng2030021