Textile Materials for Wireless Energy Harvesting
Abstract
:1. Introduction
2. Comparison of Various Ambient Energy Harvesting Techniques for Powering Wearable Electronics
3. Major Milestones in Wireless Power Transfer and Wireless Energy Harvesting
4. Principles of Wireless Energy Harvesting
4.1. Antennas
4.2. Impedance Matching Networks
4.3. Rectification Circuits
4.4. Loads
5. Textile Materials for Wireless Energy Harvesting
5.1. Electrically Insulating and Condcutive Textile Materials
5.2. Textile-Based Antennas
5.3. Textile-Based Impedance Matching Networks
5.4. Textile-Based Rectification Circuits
6. Current Research Mainstream and Future Perspectives
7. Conclusions
Funding
Conflicts of Interest
References
- Yamada, Y. Textile-Integrated Polymer Optical Fibers for Healthcare and Medical Applications. Biomed. Phys. Eng. Express 2020, 6, 062001. [Google Scholar] [CrossRef]
- Yamada, Y.; Suh, M. Textile Materials for Mobile Health: Opportunities and Challenges. In Proceedings of the Presented at the WTiN Innovate Textile & Apparel Virtual Trade Show, Online, 15–30 October 2020. [Google Scholar]
- Quandt, B.M.; Boesel, L.F.; Rossi, R.M. Polymer Optical Fibres in Healthcare: Solutions, Applications and Implications. A Perspective. Polym. Int. 2018, 67, 1150–1154. [Google Scholar] [CrossRef]
- Winterhalter, C.A.; Teverovsky, J.; Wilson, P.; Slade, J.; Horowitz, W.; Tierney, E.; Sharma, V. Development of Electronic Textiles to Support Networks, Communications, and Medical Applications in Future U.S. Military Protective Clothing Systems. IEEE Trans. Inf. Technol. Biomed. 2005, 9, 402–406. [Google Scholar] [CrossRef]
- Haagenson, T.; Noghanian, S.; Leon, P.d.; Chang, Y. Textile Antennas for Spacesuit Applications: Design, Simulation, Manufacturing, and Testing of Textile Patch Antennas for Spacesuit Applications. IEEE Antennas Propag. Mag. 2015, 57, 64–73. [Google Scholar] [CrossRef]
- Hartman, K.; Westecott, E.; Colpitts-Campbell, I.; Faber, J.R.; Shao, Y.; Luginbuhl, C.; Prior, O.; Laroia, M. Textile Game Controllers: Exploring Affordances of E-Textile Techniques as Applied to Alternative Game Controllers. In Proceedings of the Fifteenth International Conference on Tangible, Embedded, and Embodied Interaction, Salzburg, Austria, 14–17 February 2021; Association for Computing Machinery: New York, NY, USA, 2021; pp. 1–14. [Google Scholar]
- Yin, L.; Kim, K.N.; Lv, J.; Tehrani, F.; Lin, M.; Lin, Z.; Moon, J.-M.; Ma, J.; Yu, J.; Xu, S.; et al. A Self-Sustainable Wearable Multi-Modular E-Textile Bioenergy Microgrid System. Nat. Commun. 2021, 12, 1542. [Google Scholar] [CrossRef]
- Dolez, P.I. Energy Harvesting Materials and Structures for Smart Textile Applications: Recent Progress and Path Forward. Sensors 2021, 21, 6297. [Google Scholar] [CrossRef] [PubMed]
- Hambling, D. The Overloaded Soldier: Why U.S. Infantry Now Carry More Weight Than Ever. Available online: https://www.popularmechanics.com/military/research/a25644619/soldier-weight/ (accessed on 9 July 2022).
- Zhang, Y.; Bai, W.; Cheng, X.; Ren, J.; Weng, W.; Chen, P.; Fang, X.; Zhang, Z.; Peng, H. Flexible and Stretchable Lithium-Ion Batteries and Supercapacitors Based on Electrically Conducting Carbon Nanotube Fiber Springs. Angew. Chem. Int. Ed. 2014, 53, 14564–14568. [Google Scholar] [CrossRef] [PubMed]
- Kamalinejad, P.; Mahapatra, C.; Sheng, Z.; Mirabbasi, S.; Leung, V.C.M.; Guan, Y.L. Wireless Energy Harvesting for the Internet of Things. IEEE Commun. Mag. 2015, 53, 102–108. [Google Scholar] [CrossRef] [Green Version]
- Tran, L.-G.; Cha, H.-K.; Park, W.-T. RF Power Harvesting: A Review on Designing Methodologies and Applications. Micro Nano Syst. Lett. 2017, 5, 14. [Google Scholar] [CrossRef] [Green Version]
- Shafique, K.; Khawaja, B.A.; Khurram, M.D.; Sibtain, S.M.; Siddiqui, Y.; Mustaqim, M.; Chattha, H.T.; Yang, X. Energy Harvesting Using a Low-Cost Rectenna for Internet of Things (IoT) Applications. IEEE Access 2018, 6, 30932–30941. [Google Scholar] [CrossRef]
- Hande, A.; Polk, T.; Walker, W.; Bhatia, D. Indoor Solar Energy Harvesting for Sensor Network Router Nodes. Microprocess. Microsyst. 2007, 31, 420–432. [Google Scholar] [CrossRef]
- Tran, T.V.; Chung, W.-Y. High-Efficient Energy Harvester with Flexible Solar Panel for a Wearable Sensor Device. IEEE Sens. J. 2016, 16, 9021–9028. [Google Scholar] [CrossRef]
- Zhang, S.; Bick, M.; Xiao, X.; Chen, G.; Nashalian, A.; Chen, J. Leveraging Triboelectric Nanogenerators for Bioengineering. Matter 2021, 4, 845–887. [Google Scholar] [CrossRef]
- Perez, M.; Boisseau, S.; Gasnier, P.; Willemin, J.; Geisler, M.; Reboud, J.L. A Cm Scale Electret-Based Electrostatic Wind Turbine for Low-Speed Energy Harvesting Applications. Smart Mater. Struct. 2016, 25, 045015. [Google Scholar] [CrossRef]
- Beeby, S.P.; Torah, R.N.; Tudor, M.J.; Glynne-Jones, P.; O’Donnell, T.; Saha, C.R.; Roy, S. A Micro Electromagnetic Generator for Vibration Energy Harvesting. J. Micromech. Microeng. 2007, 17, 1257–1265. [Google Scholar] [CrossRef]
- Potnuru, A.; Tadesse, Y. Characterization of Pyroelectric Materials for Energy Harvesting from Human Body. Integr. Ferroelectr. 2014, 150, 23–50. [Google Scholar] [CrossRef]
- Leonov, V.; Vullers, R.J.M. Wearable Thermoelectric Generators for Body-Powered Devices. J. Electron. Mater. 2009, 38, 1491–1498. [Google Scholar] [CrossRef]
- Lee, F.Y.; Navid, A.; Pilon, L. Pyroelectric Waste Heat Energy Harvesting Using Heat Conduction. Appl. Therm. Eng. 2012, 37, 30–37. [Google Scholar] [CrossRef]
- Qin, Y.; Wang, X.; Wang, Z.L. Microfibre–Nanowire Hybrid Structure for Energy Scavenging. Nature 2008, 451, 809–813. [Google Scholar] [CrossRef]
- Wagih, M.; Hilton, G.S.; Weddell, A.S.; Beeby, S. Broadband Millimeter-Wave Textile-Based Flexible Rectenna for Wearable Energy Harvesting. IEEE Trans. Microw. Theory Tech. 2020, 68, 4960–4972. [Google Scholar] [CrossRef]
- Lopez-Garde, J.-M.; Del-Rio-Ruiz, R.; Legarda, J.; Rogier, H. 2 × 2 Textile Rectenna Array with Electromagnetically Coupled Microstrip Patch Antennas in the 2.4 GHz WiFi Band. Electronics 2021, 10, 1447. [Google Scholar] [CrossRef]
- Al-Husseini, M.; Haskou, A.; Rishani, N.; Kabalan, K.Y. Textile-Based Rectennas. In Innovation in Wearable and Flexible Antennas; Khaleel, H., Ed.; WIT Press: Southampton, UK, 2015; Volume 1, pp. 187–215. ISBN 978-1-84564-987-6. [Google Scholar]
- Goncalves, R.; Carvalho, N.B.; Pinho, P.; Loss, C.; Salvado, R. Textile Antenna for Electromagnetic Energy Harvesting for GSM900 and DCS1800 Bands. In Proceedings of the 2013 IEEE Antennas and Propagation Society International Symposium (APSURSI), Orlando, FL, USA, 7–13 July 2013; pp. 1206–1207. [Google Scholar]
- Tsolis, A.; Whittow, W.G.; Alexandridis, A.A.; Vardaxoglou, J.C. Embroidery and Related Manufacturing Techniques for Wearable Antennas: Challenges and Opportunities. Electronics 2014, 3, 314–338. [Google Scholar] [CrossRef] [Green Version]
- Honan, G.; Gekakis, N.; Hassanalieragh, M.; Nadeau, A.; Sharma, G.; Soyata, T. Energy Harvesting and Buffering for Cyber-Physical Systems: A Review. In Cyber-Physical Systems: A Computational Perspective; Siddesh, G.M., Deka, G.C., Srinivasa, K.G., Patnaik, L.M., Eds.; CRC Press: Boca Raton, FL, USA, 2015; pp. 210–237. ISBN 978-0-429-07616-9. [Google Scholar]
- Zhang, N.; Chen, J.; Huang, Y.; Guo, W.; Yang, J.; Du, J.; Fan, X.; Tao, C. A Wearable All-Solid Photovoltaic Textile. Adv. Mater. 2016, 28, 263–269. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Kim, T.W.; Guo, T.; Li, F. Wearable Ultra-Lightweight Solar Textiles Based on Transparent Electronic Fabrics. Nano Energy 2017, 32, 367–373. [Google Scholar] [CrossRef]
- Ku, M.-L.; Li, W.; Chen, Y.; Liu, K.J.R. Advances in Energy Harvesting Communications: Past, Present, and Future Challenges. IEEE Commun. Surv. Tutor. 2016, 18, 1384–1412. [Google Scholar] [CrossRef]
- Satharasinghe, A.; Hughes-Riley, T.; Dias, T. Wearable and Washable Photovoltaic Fabrics. In Proceedings of the 36th European Photovoltaic Solar Energy Conference and Exhibition, Marseille, France, 9–13 September 2019; pp. 42–45. [Google Scholar]
- Sugino, K.; Ikeda, Y.; Yonezawa, S.; Gennaka, S.; Kimura, M.; Fukawa, T.; Inagaki, S.; Konosu, Y.; Tanioka, A.; Matsumoto, H. Development of Fiber and Textile-Shaped Organic Solar Cells for Smart Textiles. J. Fiber Sci. Technol. 2017, 73, 336–342. [Google Scholar] [CrossRef] [Green Version]
- Satharasinghe, A.; Hughes-Riley, T.; Dias, T. An Investigation of a Wash-durable Solar Energy Harvesting Textile. Prog. Photovolt. Res. Appl. 2020, 28, 578–592. [Google Scholar] [CrossRef] [Green Version]
- Mokhtari, F.; Spinks, G.M.; Fay, C.; Cheng, Z.; Raad, R.; Xi, J.; Foroughi, J. Wearable Electronic Textiles from Nanostructured Piezoelectric Fibers. Adv. Mater. Technol. 2020, 5, 1900900. [Google Scholar] [CrossRef]
- Lee, M.; Chen, C.-Y.; Wang, S.; Cha, S.N.; Park, Y.J.; Kim, J.M.; Chou, L.-J.; Wang, Z.L. A Hybrid Piezoelectric Structure for Wearable Nanogenerators. Adv. Mater. 2012, 24, 1759–1764. [Google Scholar] [CrossRef]
- Li, S.; Zhong, Q.; Zhong, J.; Cheng, X.; Wang, B.; Hu, B.; Zhou, J. Cloth-Based Power Shirt for Wearable Energy Harvesting and Clothes Ornamentation. ACS Appl. Mater. Interfaces 2015, 7, 14912–14916. [Google Scholar] [CrossRef]
- Somkuwar, V.U.; Pragya, A.; Kumar, B. Structurally Engineered Textile-Based Triboelectric Nanogenerator for Energy Harvesting Application. J. Mater. Sci. 2020, 55, 5177–5189. [Google Scholar] [CrossRef]
- Li, X.; Sun, Y. WearETE: A Scalable Wearable E-Textile Triboelectric Energy Harvesting System for Human Motion Scavenging. Sensors 2017, 17, 2649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, Y.; Zhang, Q.; Jin, W.; Jing, Y.; Chen, X.; Han, X.; Bao, Q.; Liu, Y.; Wang, X.; Wang, S.; et al. Carbon Nanotube Yarn Based Thermoelectric Textiles for Harvesting Thermal Energy and Powering Electronics. J. Mater. Chem. A 2020, 8, 2984–2994. [Google Scholar] [CrossRef]
- Sun, T.; Zhou, B.; Zheng, Q.; Wang, L.; Jiang, W.; Snyder, G.J. Stretchable Fabric Generates Electric Power from Woven Thermoelectric Fibers. Nat. Commun. 2020, 11, 572. [Google Scholar] [CrossRef] [Green Version]
- Mitcheson, P.D.; Yeatman, E.M. Energy Harvesting for Pervasive Computing. PerAda Mag. 2008, 1–3. [Google Scholar] [CrossRef]
- Pillai, V.; Heinrich, H.; Dieska, D.; Nikitin, P.V.; Martinez, R.; Rao, K.V.S. An Ultra-Low-Power Long Range Battery/Passive RFID Tag for UHF and Microwave Bands with a Current Consumption of 700 NA at 1.5 V. IEEE Trans. Circuits Syst. Regul. Pap. 2007, 54, 1500–1512. [Google Scholar] [CrossRef]
- Chen, W.; Che, W.; Yan, N.; Tan, X.; Min, H. Ultra-Low Power Truly Random Number Generator for RFID Tag. Wirel. Pers. Commun. 2011, 59, 85–94. [Google Scholar] [CrossRef]
- Chang, Y.F.; Chen, C.S.; Zhou, H. Smart Phone for Mobile Commerce. Comput. Stand. Interfaces 2009, 31, 740–747. [Google Scholar] [CrossRef]
- Danbatta, S.J.; Varol, A. Comparison of Zigbee, Z-Wave, Wi-Fi, and Bluetooth Wireless Technologies Used in Home Automation. In Proceedings of the 2019 7th International Symposium on Digital Forensics and Security (ISDFS), Barcelos, Portugal, 10–12 June 2019; pp. 1–5. [Google Scholar]
- Kim, S.; Cho, N.; Song, S.; Kim, D.; Kim, K.; Yoo, H. A Sub 1V 96 ΜW Fully Operational Digital Hearing Aid Chip with Internal Status Controller. In Proceedings of the 32nd European Solid-State Circuits Conference, Montreaux, Switzerland, 19–21 September 2006; pp. 231–234. [Google Scholar]
- Jiang, F. Investigation of Solar Energy for Photovoltaic Application in Singapore. In Proceedings of the 2007 International Power Engineering Conference (IPEC 2007), Singapore, 3–6 December 2007; pp. 86–89. [Google Scholar]
- Duan, Y.; Zhao, G.; Liu, X.; Ma, J.; Chen, S.; Song, Y.; Pi, X.; Yu, X.; Yang, D.; Zhang, Y.; et al. Low-Temperature Processed Tantalum/Niobium Co-Doped TiO2 Electron Transport Layer for High-Performance Planar Perovskite Solar Cells. Nanotechnology 2021, 32, 245201. [Google Scholar] [CrossRef]
- Huang, J.; Zhou, Y.; Ning, Z.; Gharavi, H. Wireless Power Transfer and Energy Harvesting: Current Status and Future Prospects. IEEE Wirel. Commun. 2019, 26, 163–169. [Google Scholar] [CrossRef] [PubMed]
- Montero, K.L.; Laurila, M.-M.; Mäntysalo, M. Effect of Electrode Structure on the Performance of Fully Printed Piezoelectric Energy Harvesters. IEEE J. Flex. Electron. 2022, 1, 24–31. [Google Scholar] [CrossRef]
- Niu, X.; Jia, W.; Qian, S.; Zhu, J.; Zhang, J.; Hou, X.; Mu, J.; Geng, W.; Cho, J.; He, J.; et al. High-Performance PZT-Based Stretchable Piezoelectric Nanogenerator. ACS Sustain. Chem. Eng. 2019, 7, 979–985. [Google Scholar] [CrossRef]
- Chang, C.; Tran, V.H.; Wang, J.; Fuh, Y.-K.; Lin, L. Direct-Write Piezoelectric Polymeric Nanogenerator with High Energy Conversion Efficiency. Nano Lett. 2010, 10, 726–731. [Google Scholar] [CrossRef]
- González, J.L.; Rubio, A.; Moll, F. Human Powered Piezoelectric Batteries to Supply Power to Wearable Electronic Devices. Int. J. Soc. Mater. Eng. Resour. 2002, 10, 34–40. [Google Scholar] [CrossRef]
- Zhang, X.-S.; Brugger, J.; Kim, B. A Silk-Fibroin-Based Transparent Triboelectric Generator Suitable for Autonomous Sensor Network. Nano Energy 2016, 20, 37–47. [Google Scholar] [CrossRef]
- Zhu, G.; Zhou, Y.S.; Bai, P.; Meng, X.S.; Jing, Q.; Chen, J.; Wang, Z.L. A Shape-Adaptive Thin-Film-Based Approach for 50% High-Efficiency Energy Generation Through Micro-Grating Sliding Electrification. Adv. Mater. 2014, 26, 3788–3796. [Google Scholar] [CrossRef]
- Lin, Z.; Chen, J.; Li, X.; Zhou, Z.; Meng, K.; Wei, W.; Yang, J.; Wang, Z.L. Triboelectric Nanogenerator Enabled Body Sensor Network for Self-Powered Human Heart-Rate Monitoring. ACS Nano 2017, 11, 8830–8837. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Wang, H.; Cheng, X.; Li, G.; Chen, X.; Chen, H.; Miao, L.; Zhang, X.; Zhang, H. High-Efficiency Self-Charging Smart Bracelet for Portable Electronics. Nano Energy 2019, 55, 29–36. [Google Scholar] [CrossRef]
- Leonov, V. Human Machine and Thermoelectric Energy Scavenging for Wearable Devices. ISRN Renew. Energy 2011, 2011, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Nozariasbmarz, A.; Kishore, R.A.; Poudel, B.; Saparamadu, U.; Li, W.; Cruz, R.; Priya, S. High Power Density Body Heat Energy Harvesting. ACS Appl. Mater. Interfaces 2019, 11, 40107–40113. [Google Scholar] [CrossRef] [PubMed]
- Lv, J.-R.; Ma, J.-L.; Dai, L.; Yin, T.; He, Z.-Z. A High-Performance Wearable Thermoelectric Generator with Comprehensive Optimization of Thermal Resistance and Voltage Boosting Conversion. Appl. Energy 2022, 312, 118696. [Google Scholar] [CrossRef]
- Enescu, D. Thermoelectric Energy Harvesting: Basic Principles and Applications. In Green Energy Advances; Enescu, D., Ed.; IntechOpen: London, UK, 2019; ISBN 978-1-78984-199-2. [Google Scholar]
- Thielen, M.; Sigrist, L.; Magno, M.; Hierold, C.; Benini, L. Human Body Heat for Powering Wearable Devices: From Thermal Energy to Application. Energy Convers. Manag. 2017, 131, 44–54. [Google Scholar] [CrossRef] [Green Version]
- Guo, L.; Gu, X.; Chu, P.; Hemour, S.; Wu, K. Collaboratively Harvesting Ambient Radiofrequency and Thermal Energy. IEEE Trans. Ind. Electron. 2020, 67, 3736–3746. [Google Scholar] [CrossRef]
- Pinuela, M.; Mitcheson, P.D.; Lucyszyn, S. Ambient RF Energy Harvesting in Urban and Semi-Urban Environments. IEEE Trans. Microw. Theory Tech. 2013, 61, 2715–2726. [Google Scholar] [CrossRef]
- Sherazi, H.H.R.; Zorbas, D.; O’Flynn, B. A Comprehensive Survey on RF Energy Harvesting: Applications and Performance Determinants. Sensors 2022, 22, 2990. [Google Scholar] [CrossRef]
- Monti, G.; Corchia, L.; Tarricone, L. UHF Wearable Rectenna on Textile Materials. IEEE Trans. Antennas Propag. 2013, 61, 3869–3873. [Google Scholar] [CrossRef]
- Adami, S.-E.; Proynov, P.; Hilton, G.S.; Yang, G.; Zhang, C.; Zhu, D.; Li, Y.; Beeby, S.P.; Craddock, I.J.; Stark, B.H. A Flexible 2.45-GHz Power Harvesting Wristband with Net System Output from −24.3 dBm of RF Power. IEEE Trans. Microw. Theory Tech. 2018, 66, 380–395. [Google Scholar] [CrossRef] [Green Version]
- Khalifa, S.; Lan, G.; Hassan, M.; Hu, W.; Seneviratne, A. Human Context Detection from Kinetic Energy Harvesting Wearables. In Examining Developments and Applications of Wearable Devices in Modern Society; Silva, S.E.D., Oliveira, R.A.R., Loureiro, A.A.F., Eds.; IGI Global: Hershey, PA, USA, 2018; pp. 107–133. ISBN 978-1-5225-3290-3. [Google Scholar]
- Yang, B.; Xiong, Y.; Ma, K.; Liu, S.; Tao, X. Recent Advances in Wearable Textile-based Triboelectric Generator Systems for Energy Harvesting from Human Motion. EcoMat 2020, 2, e12054. [Google Scholar] [CrossRef]
- Goldsmid, H. Bismuth Telluride and Its Alloys as Materials for Thermoelectric Generation. Materials 2014, 7, 2577–2592. [Google Scholar] [CrossRef] [Green Version]
- Xu, B.; Zhang, J.; Yu, G.; Ma, S.; Wang, Y.; Wang, Y. Thermoelectric Properties of Monolayer Sb2Te3. J. Appl. Phys. 2018, 124, 165104. [Google Scholar] [CrossRef]
- Chen, X.; Yang, J.; Wu, T.; Li, L.; Luo, W.; Jiang, W.; Wang, L. Nanostructured Binary Copper Chalcogenides: Synthesis Strategies and Common Applications. Nanoscale 2018, 10, 15130–15163. [Google Scholar] [CrossRef]
- Chen, X.-Q.; Fan, S.-J.; Han, C.; Wu, T.; Wang, L.-J.; Jiang, W.; Dai, W.; Yang, J.-P. Multiscale Architectures Boosting Thermoelectric Performance of Copper Sulfide Compound. Rare Met. 2021, 40, 2017–2025. [Google Scholar] [CrossRef]
- Mulla, R.; Rabinal, M.H.K. Copper Sulfides: Earth-Abundant and Low-Cost Thermoelectric Materials. Energy Technol. 2019, 7, 1800850. [Google Scholar] [CrossRef]
- Dennler, G.; Chmielowski, R.; Jacob, S.; Capet, F.; Roussel, P.; Zastrow, S.; Nielsch, K.; Opahle, I.; Madsen, G.K.H. Are Binary Copper Sulfides/Selenides Really New and Promising Thermoelectric Materials? Adv. Energy Mater. 2014, 4, 1301581. [Google Scholar] [CrossRef]
- Lund, A.; Tian, Y.; Darabi, S.; Müller, C. A Polymer-Based Textile Thermoelectric Generator for Wearable Energy Harvesting. J. Power Sources 2020, 480, 228836. [Google Scholar] [CrossRef]
- Rathore, S.S.; Singh, A.; Kumar, P.; Alam, N.; Sahu, M.K.; Sanjay, R. Review of Exhaust Gas Heat Recovery Mechanism for Internal Combustion Engine Using Thermoelectric Principle; SAE Technical Paper No. 2018-01-1363; SAE: Warrendale, PA, USA, 2018. [Google Scholar]
- Kim, Y.; Lund, A.; Noh, H.; Hofmann, A.I.; Craighero, M.; Darabi, S.; Zokaei, S.; Park, J.I.; Yoon, M.; Müller, C. Robust PEDOT:PSS Wet-Spun Fibers for Thermoelectric Textiles. Macromol. Mater. Eng. 2020, 305, 1900749. [Google Scholar] [CrossRef] [Green Version]
- Zhu, S.; Fan, Z.; Feng, B.; Shi, R.; Jiang, Z.; Peng, Y.; Gao, J.; Miao, L.; Koumoto, K. Review on Wearable Thermoelectric Generators: From Devices to Applications. Energies 2022, 15, 3375. [Google Scholar] [CrossRef]
- Jaziri, N.; Boughamoura, A.; Müller, J.; Mezghani, B.; Tounsi, F.; Ismail, M. A Comprehensive Review of Thermoelectric Generators: Technologies and Common Applications. Energy Rep. 2020, 6, 264–287. [Google Scholar] [CrossRef]
- Kanaujia, B.K.; Singh, N.; Kumar, S. Rectenna: Wireless Energy Harvesting System, Advances in Sustainability Science and Technology; Springer: Singapore, 2021; ISBN 9789811625350. [Google Scholar]
- Ibrahim, H.H.; Singh, M.J.; Al-Bawri, S.S.; Ibrahim, S.K.; Islam, M.T.; Alzamil, A.; Islam, M.S. Radio Frequency Energy Harvesting Technologies: A Comprehensive Review on Designing, Methodologies, and Potential Applications. Sensors 2022, 22, 4144. [Google Scholar] [CrossRef]
- Vital, D.; Bhardwaj, S.; Volakis, J.L. Textile-Based Large Area RF-Power Harvesting System for Wearable Applications. IEEE Trans. Antennas Propag. 2020, 68, 2323–2331. [Google Scholar] [CrossRef]
- Brown, W.C. The History of Wireless Power Transmission. Sol. Energy 1996, 56, 3–21. [Google Scholar] [CrossRef]
- Javaid, E.M.A.; Bhatti, D.K.L.; Raza, E.Z.; Ilyas, E.U. Wireless Power Transmission “A Potential Idea for Future”. Int. J. Sci. Eng. Res. 2015, 6, 6. [Google Scholar]
- Donchev, E.; Pang, J.S.; Gammon, P.M.; Centeno, A.; Xie, F.; Petrov, P.K.; Breeze, J.D.; Ryan, M.P.; Riley, D.J.; McN, N. The Rectenna Device: From Theory to Practice (a Review). MRS Energy Sustain. 2014, 1, 1. [Google Scholar] [CrossRef] [Green Version]
- Massey, P.J. Mobile Phone Fabric Antennas Integrated within Clothing. IET 2001, 1, 344–347. [Google Scholar]
- Vallozzi, L.; Hertleer, C.; Rogier, H. Latest Developments in the Field of Textile Antennas. In Smart Textiles and Their Applications; Koncar, V., Ed.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 599–626. ISBN 978-0-08-100574-3. [Google Scholar]
- Brown, W.C. The History of the Development of the Rectenna; NASA: Houston, TX, USA, 1980; p. 10.
- Wireless Power Transmission. Design and Optimization of Passive UHF RFID Systems; Curty, J.-P., Declercq, M., Dehollain, C., Joehl, N., Eds.; Springer: Boston, MA, USA, 2007; pp. 3–15. ISBN 978-0-387-44710-0. [Google Scholar]
- Saleem, H. Review of Various Aspects of Radio Frequency IDentification (RFID) Technology. IOSR J. Comput. Eng. 2012, 8, 6. [Google Scholar] [CrossRef]
- Cardullo, M.; Parks, W. Transponder Apparatus and System. U.S. Patent 3713148A, 23 January 1973. [Google Scholar]
- Susnea, I.; Vasiliu, G. On Using Passive RFID Tags to Control Robots for Path Following. Stud. Inform. Control 2011, 20, 157–162. [Google Scholar] [CrossRef] [Green Version]
- Gupta, B.B.; Quamara, M. A Taxonomy of Various Attacks on Smart Card–Based Applications and Countermeasures. Concurr. Comput. Pract. Exp. 2021, 33, 1. [Google Scholar] [CrossRef]
- Guthery, S.B. Java Card: Internet Computing on a Smart Card. IEEE Internet Comput. 1997, 1, 57–59. [Google Scholar] [CrossRef]
- Mou, X.; Sun, H. Wireless Power Transfer: Survey and Roadmap. In Proceedings of the 2015 IEEE 81st Vehicular Technology Conference (VTC Spring), Glasgow, UK, 11–14 May 2015; pp. 1–5. [Google Scholar]
- Li, S.; Mi, C.C. Wireless Power Transfer for Electric Vehicle Applications. IEEE J. Emerg. Sel. Top. Power Electron. 2015, 3, 4–17. [Google Scholar] [CrossRef]
- Triviño, A.; González-González, J.M.; Aguado, J.A. Wireless Power Transfer Technologies Applied to Electric Vehicles: A Review. Energies 2021, 14, 1547. [Google Scholar] [CrossRef]
- Mahesh, A.; Chokkalingam, B.; Mihet-Popa, L. Inductive Wireless Power Transfer Charging for Electric Vehicles–A Review. IEEE Access 2021, 9, 137667–137713. [Google Scholar] [CrossRef]
- Haerinia, M.; Shadid, R. Wireless Power Transfer Approaches for Medical Implants: A Review. Signals 2020, 1, 209–229. [Google Scholar] [CrossRef]
- Locher, I.; Klemm, M.; Kirstein, T.; Trster, G. Design and Characterization of Purely Textile Patch Antennas. IEEE Trans. Adv. Packag. 2006, 29, 777–788. [Google Scholar] [CrossRef] [Green Version]
- Salonen, P.; Hurme, L. A Novel Fabric WLAN Antenna for Wearable Applications. In Proceedings of the IEEE Antennas and Propagation Society International Symposium. Digest. Held in Conjunction with: USNC/CNC/URSI North American Radio Sci. Meeting (Cat. No.03CH37450), Columbus, OH, USA, 22–27 June 2003; Volume 2, pp. 700–703. [Google Scholar]
- Salonen, P.; Rahmat-Samii, Y.; Hurme, H.; Kivikoski, M. Dual-Band Wearable Textile Antenna. In Proceedings of the IEEE Antennas and Propagation Society Symposium, Monterey, CA, USA, 20–25 June 2004; IEEE: Monterey, CA, USA, 2004; Volume 1, pp. 463–466. [Google Scholar]
- Klemm, M.; Locher, I.; Troster, G. A Novel Circularly Polarized Textile Antenna for Wearable Applications. Eur. Conf. Wirel. Technol. 2004, 4, 285–288. [Google Scholar]
- Mukai, Y.; Suh, M. Design and Characterization of a Cotton Fabric Antenna for On-Body Thermotherapy. J. Ind. Text. 2022, 51, 1627S–1644S. [Google Scholar] [CrossRef]
- Salvado, R.; Loss, C.; Gonçalves, R.; Pinho, P. Textile Materials for the Design of Wearable Antennas: A Survey. Sensors 2012, 12, 15841–15857. [Google Scholar] [CrossRef] [Green Version]
- Mukai, Y.; Bharambe, V.T.; Adams, J.J.; Suh, M. Effect of Bending and Padding on the Electromagnetic Performance of a Laser-Cut Fabric Patch Antenna. Text. Res. J. 2019, 89, 2789–2801. [Google Scholar] [CrossRef]
- Mukai, Y.; Bharambe, V.T.; Adams, J.J.; Suh, M. Effect of Bending and Padding on the Electromagnetic Performance of a Laser-Cut Woven Fabric Patch Antenna. In Proceedings of the Textiles Research Open House, Raleigh, NC, USA, 16 April 2018. [Google Scholar]
- Johnson, M.; Patel, H.; Tikoo, P.; D’britto, J. Survey on Antennas and Their Types. Int. J. Sci. Technol. Eng. 2017, 3, 9. [Google Scholar]
- Carr, J.J.; Hippisley, G. Practical Antenna Handbook, 5th ed.; McGraw-Hill/TAB Electronics: New York, NY, USA, 2012; ISBN 978-0-07-163959-0. [Google Scholar]
- Nguyen, S.H.; Ellis, N.; Amirtharajah, R. Powering Smart Jewelry Using an RF Energy Harvesting Necklace. In Proceedings of the 2016 IEEE MTT-S International Microwave Symposium (IMS), San Francisco, CA, USA, 22–27 May 2016; pp. 1–4. [Google Scholar]
- Ullah, A.; Keshavarz, R.; Abolhasan, M.; Lipman, J.; Esselle, K.P.; Shariati, N. A Review on Antenna Technologies for Ambient RF Energy Harvesting and Wireless Power Transfer: Designs, Challenges and Applications. IEEE Access 2022, 10, 17231–17267. [Google Scholar] [CrossRef]
- Balanis, C.A. Antenna Theory: Analysis and Design, 4th ed.; Wiley: Hoboken, NJ, USA, 2016. [Google Scholar]
- Zhang, G.; Li, C.; Zhang, X.; Zhang, J.; Chen, L.; Liu, F. Optimized Sleeve Monopole Antenna for Detection of Electrostatic Discharge Radiation of Spacecraft Solar Array. Rev. Sci. Instrum. 2019, 90, 015008. [Google Scholar] [CrossRef]
- Losito, O.; Dimiccoli, V. Travelling Planar Wave Antenna for Wireless Communications. In Wireless Communications and Networks—Recent Advances; Eksim, A., Ed.; InTech: Rijeka, Croatia, 2012; ISBN 978-953-51-0189-5. [Google Scholar]
- Alex-Amor, A.; Palomares-Caballero, Á.; Fernández-González, J.M.; Padilla, P.; Marcos, D.; Sierra-Castañer, M.; Esteban, J. RF Energy Harvesting System Based on an Archimedean Spiral Antenna for Low-Power Sensor Applications. Sensors 2019, 19, 1318. [Google Scholar] [CrossRef] [Green Version]
- Ma, Q.; Ray, L.; Haider, M.R. A Miniaturized Spiral Antenna for Energy Harvesting of Implantable Medical Devices. In Proceedings of the 8th International Conference on Electrical and Computer Engineering, Dhaka, Bangladesh, 20–22 December 2014; pp. 180–183. [Google Scholar]
- Roy, S.; Tiang, J.J.; Roslee, M.B.; Ahmed, M.T.; Kouzani, A.Z.; Mahmud, M.A.P. Quad-Band Rectenna for Ambient Radio Frequency (RF) Energy Harvesting. Sensors 2021, 21, 7838. [Google Scholar] [CrossRef]
- Song, C.; Huang, Y.; Carter, P.; Zhou, J.; Yuan, S.; Xu, Q.; Kod, M. A Novel Six-Band Dual CP Rectenna Using Improved Impedance Matching Technique for Ambient RF Energy Harvesting. IEEE Trans. Antennas Propag. 2016, 64, 3160–3171. [Google Scholar] [CrossRef] [Green Version]
- Ren, R.; Huang, J.; Sun, H. Investigation of Rectenna’s Bandwidth for RF Energy Harvesting. In Proceedings of the 2020 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), Suzhou, China, 29–31 July 2020; pp. 1–2. [Google Scholar]
- González, F.J.; Boreman, G.D. Comparison of Dipole, Bowtie, Spiral and Log-Periodic IR Antennas. Infrared Phys. Technol. 2005, 46, 418–428. [Google Scholar] [CrossRef]
- Nagarjun, R.; George, G.; Thiripurasundari, D.; Poonkuzhali, R.; Alex, Z.C. Design of a Triple Band Planar Bow-Tie Antenna for Wearable Applications. In Proceedings of the 2013 IEEE Conference on Information and Communication Technologies, Thuckalay, India, 11–12 April 2013; pp. 1185–1189. [Google Scholar]
- Kwiatkowski, E.; Estrada, J.A.; López-Yela, A.; Popović, Z. Broadband RF Energy-Harvesting Arrays. Proc. IEEE 2022, 110, 74–88. [Google Scholar] [CrossRef]
- El-Nady, S.; Zamel, H.; Hendy, M.; Attiya, A.; Zekry, A. Performance Enhancement of End-Fire Bow-Tie Antenna by Using Zero Index Metamaterial. In Proceedings of the 2017 Progress in Electromagnetics Research Symposium—Fall (PIERS—FALL), Singapore, 19–22 November 2017; pp. 1895–1900. [Google Scholar]
- Kenyon, C.; Fazi, C. Analysis of a UHF Log-Periodic Antenna; Defense Technical Information Center: Fort Belvoir, VA, USA, 2012. [Google Scholar]
- Dubrovka, F.F.; Lytvyn, M.M.; Lytvyn, S.M.; Martynyuk, S.Y.; Ryabkin, Y.V.; Vtorov, O.O. Ultrawideband Log-Periodic Dipole Antenna Arrays for the Frequency Range 0.7–12 GHz. In Proceedings of the 2005 5th International Conference on Antenna Theory and Techniques, Kyiv, Ukraine, 24–27 May 2005; pp. 110–115. [Google Scholar]
- Malisuwan, S.; Tiamnara, N.; Suriyakrai, N. Design of Antennas for a Rectenna System of Wireless Power Transfer in the LTE/WLAN Frequency Band. J. Clean Energy Technol. 2017, 5, 42–46. [Google Scholar] [CrossRef] [Green Version]
- Shrestha, S.; Noh, S.-K.; Choi, D.-Y. Comparative Study of Antenna Designs for RF Energy Harvesting. Int. J. Antennas Propag. 2013, 2013, 385260. [Google Scholar] [CrossRef] [Green Version]
- Mrnka, M.; Vasina, P.; Kufa, M.; Hebelka, V.; Raida, Z. The RF Energy Harvesting Antennas Operating in Commercially Deployed Frequency Bands: A Comparative Study. Int. J. Antennas Propag. 2016, 2016, 7379624. [Google Scholar] [CrossRef] [Green Version]
- Seimeni, M.A.; Tsolis, A.; Alexandridis, A.A.; Pantelopoulos, S.A. Mitigation of End-User’s Exposure to EMF of Wearable Antennas through Ground-Plane Interventions. In Proceedings of the Loughborough Antennas & Propagation Conference (LAPC 2018), Loughborough, UK, 12–13 November 2018; pp. 99–104. [Google Scholar]
- Seimeni, M.A.; Tsolis, A.; Alexandridis, A.A.; Pantelopoulos, S.A. Human Exposure to EMFs from Wearable Textile Patch Antennas: Experimental Evaluation of the Ground-Plane Effect. Prog. Electromagn. Res. B 2021, 92, 71–89. [Google Scholar] [CrossRef]
- Balanis, C.A. Advanced Engineering Electromagnetics, 2nd ed.; Wiley: Hoboken, NJ, USA, 2012; ISBN 978-0-470-58948-9. [Google Scholar]
- Bancroft, R. Microstrip and Printed Antenna Design, 4th ed.; SciTech Publishing: Raleigh, NC, USA, 2009; ISBN 978-1-61353-115-0. [Google Scholar]
- Mukai, Y. Inkjet-Printed Wearable Antennas for Hyperthermia Treatment. Master’s Thesis, North Carolina State University, Raleigh, NC, USA, 2016. [Google Scholar]
- Wagih, M.; Weddell, A.S.; Beeby, S. Millimeter-Wave Textile Antenna for on-Body RF Energy Harvesting in Future 5G Networks. In Proceedings of the 2019 IEEE Wireless Power Transfer Conference (WPTC), London, UK, 18–21 June 2019; pp. 245–248. [Google Scholar]
- Potti, D.; Mohammed, G.N.A.; Savarimuthu, K.; Narendhiran, S.; Rajamanickam, G. An Ultra-wideband Rectenna Using Optically Transparent Vivaldi Antenna for Radio Frequency Energy Harvesting. Int. J. RF Microw. Comput.-Aided Eng. 2020, 30, e22362. [Google Scholar] [CrossRef]
- Kanaya, H.; Tsukamaoto, S.; Hirabaru, T.; Kanemoto, D.; Pokharel, R.K.; Yoshida, K. Energy Harvesting Circuit on a One-Sided Directional Flexible Antenna. IEEE Microw. Wirel. Compon. Lett. 2013, 23, 164–166. [Google Scholar] [CrossRef]
- Palazzi, V.; Kalialakis, C.; Alimenti, F.; Mezzanotte, P.; Roselli, L.; Collado, A.; Georgiadis, A. Performance Analysis of a Ultra-Compact Low-Power Rectenna in Paper Substrate for RF Energy Harvesting. In Proceedings of the 2017 IEEE Topical Conference on Wireless Sensors and Sensor Networks (WiSNet), Phoenix, AZ, USA, 15–18 January 2017; pp. 65–68. [Google Scholar]
- Eid, A.; Costantine, J.; Tawk, Y.; Ramadan, A.H.; Abdallah, M.; ElHajj, R.; Awad, R.; Kasbah, I.B. An Efficient RF Energy Harvesting System. In Proceedings of the 2017 11th European Conference on Antennas and Propagation (EUCAP), Paris, France, 19–24 March 2017; pp. 896–899. [Google Scholar]
- Li, W.-W.; Qin, Z.-Z.; Chen, S.-J.; Zhang, L.; Liu, Q.-H. A Wideband Printed Slot Antenna with Harmonic Suppression. Microw. Opt. Technol. Lett. 2018, 60, 1946–1952. [Google Scholar] [CrossRef]
- Song, C.; Huang, Y.; Zhou, J.; Carter, P.; Yuan, S.; Xu, Q.; Fei, Z. Matching Network Elimination in Broadband Rectennas for High-Efficiency Wireless Power Transfer and Energy Harvesting. IEEE Trans. Ind. Electron. 2017, 64, 3950–3961. [Google Scholar] [CrossRef] [Green Version]
- Trikolikar, A.; Lahudkar, S. A Review on Different Parameters Considered for Improvement in Power Conversion Efficiency of Rectenna. In Proceedings of the 2nd International Conference on Communications and Cyber Physical Engineering (ICCCE 2019); Kumar, A., Mozar, S., Eds.; Springer: Singapore, 2020; Volume 570, pp. 79–85. ISBN 9789811387142. [Google Scholar]
- Pozar, D.M. Microwave Engineering, 4th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2011; ISBN 978-0-470-63155-3. [Google Scholar]
- Necibi, O.; Guesmi, C.; Gharsallah, A. A New 30 GHz AMC/PRS RFID Reader Antenna with Circular Polarization. Int. J. Adv. Comput. Sci. Appl. 2017, 8, 35–45. [Google Scholar] [CrossRef]
- Sharma, S.; Tripathi1, C.C.; Rishi, R. Impedance Matching Techniques for Microstrip Patch Antenna. Indian J. Sci. Technol. 2017, 10, 1–16. [Google Scholar] [CrossRef]
- Kusama, Y.; Isozaki, R. Compact and Broadband Microstrip Band-Stop Filters with Single Rectangular Stubs. Appl. Sci. 2019, 9, 248. [Google Scholar] [CrossRef] [Green Version]
- Cansiz, M.; Altinel, D.; Kurt, G.K. Efficiency in RF Energy Harvesting Systems: A Comprehensive Review. Energy 2019, 174, 292–309. [Google Scholar] [CrossRef]
- Wing, A.H.; Eisenstein, J. Single- and Double-Stub Impedance Matching. J. Appl. Phys. 1944, 15, 615–622. [Google Scholar] [CrossRef]
- Araii, H.; Durnan, G.J.; Saito, S. A Dual Element Patch Array Antenna Structure with Microstrip Triple Stub Matching. In Proceedings of the IEEE Antennas and Propagation Society International Symposium. Digest. Held in conjunction with: USNC/CNC/URSI North American Radio Sci. Meeting (Cat. No.03CH37450), Columbus, OH, USA, 22–27 June 2003; Volume 4, pp. 528–531. [Google Scholar]
- Silicon Laboratories Inc. AN1275: Impedance Matching Network Architectures; Silicon Laboratories Inc.: Austin, TX, USA, 2022. [Google Scholar]
- Aravinth Kumar, A.R.; Singh, S.G.; Dutta, A. Analytical Design Technique for Real-to-real Single- and Dual-frequency Impedance Matching Networks in Lossy Passive Environment. IET Microw. Antennas Propag. 2018, 12, 1013–1020. [Google Scholar] [CrossRef]
- Kim, S.; Cho, J.-H.; Hong, S.-K. A Full Wave Voltage Multiplier for RFID Transponders. IEICE Trans. Commun. 2008, E91-B, 388–391. [Google Scholar] [CrossRef]
- Krishnachaitanya, P.; Pushpalatha, A. RF Energy Harvesting and Wireless Power Transfer. In Proceedings of the 2015 IEEE 15th Mediterranean Microwave Symposium (MMS), Lecce, Italy, 30 November–2 December 2015. [Google Scholar]
- Seah, W.K.G.; Tan, Y.K.; Chan, A.T.S. Research in Energy Harvesting Wireless Sensor Networks and the Challenges Ahead. In Autonomous Sensor Networks, Springer Series on Chemical Sensors and Biosensors; Filippini, D., Ed.; Springer: Berlin, Germany, 2012; Volume 13, pp. 73–93. ISBN 978-3-642-34647-7. [Google Scholar]
- Gao, Y.; Xie, C.; Zheng, Z. Textile Composite Electrodes for Flexible Batteries and Supercapacitors: Opportunities and Challenges. Adv. Energy Mater. 2021, 11, 2002838. [Google Scholar] [CrossRef]
- Ghouri, A.S.; Aslam, R.; Siddiqui, M.S.; Sami, S.K. Recent Progress in Textile-Based Flexible Supercapacitor. Front. Mater. 2020, 7, 58. [Google Scholar] [CrossRef]
- Xue, Q.; Sun, J.; Huang, Y.; Zhu, M.; Pei, Z.; Li, H.; Wang, Y.; Li, N.; Zhang, H.; Zhi, C. Recent Progress on Flexible and Wearable Supercapacitors. Small 2017, 13, 1701827. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Zhang, Y.; Zhang, J.; Sun, X.; Peng, H. Energy Harvesting and Storage in 1D Devices. Nat. Rev. Mater. 2017, 2, 17023. [Google Scholar] [CrossRef]
- Rais, N.H.M.; Soh, P.J.; Malek, F.; Ahmad, S.; Hashim, N.B.M.; Hall, P.S. A Review of Wearable Antenna. In Proceedings of the 2009 Loughborough antennas & propagation conference, Loughborough, UK, 16–17 November 2009. [Google Scholar]
- Mukai, Y.; Suh, M. Development of a Conformal Woven Fabric Antenna for Wearable Breast Hyperthermia. Fash. Text. 2021, 8, 7. [Google Scholar] [CrossRef]
- Mukai, Y.; Suh, M. Conformal Cotton Antenna for Wearable Thermotherapy. In Proceedings of the Fiber Society’s Spring 2019 Conference, Hong Kong, China, 21–23 May 2019. [Google Scholar]
- Mukai, Y.; Suh, M. Development of a Conformal Textile Antenna for Thermotherapy. In Proceedings of the Fiber Society’s Fall 2018 Technical Meeting and Conference, Davis, CA, USA, 29–31 October 2018. [Google Scholar]
- Morton, W.E.; Hearle, J.W.S. Physical Properties of Textile Fibres; Woodhead Publishing: Boca Raton, FL, USA, 2008; ISBN 978-1-84569-220-9. [Google Scholar]
- Yamada, Y. Dielectric Properties of Textile Materials: Analytical Approximations and Experimental Measurements—A Review. Textiles 2022, 2, 50–80. [Google Scholar] [CrossRef]
- Mukai, Y. Dielectric Properties of Cotton Fabrics and Their Applications. Ph.D. Thesis, North Carolina State University, Raleigh, NC, USA, 2019. [Google Scholar]
- Bal, K.; Kothari, V.K. Permittivity of Woven Fabrics: A Comparison of Dielectric Formulas for Air-Fiber Mixture. IEEE Trans. Dielectr. Electr. Insul. 2010, 17, 881–889. [Google Scholar] [CrossRef]
- Mukherjee, P.K.; Das, S. Improved Analysis of the Dielectric Properties of Textile Materials. J. Text. Inst. 2021, 112, 1890–1895. [Google Scholar] [CrossRef]
- Loss, C.; Gonçalves, R.; Pinho, P.; Salvado, R. Influence of Some Structural Parameters on the Dielectric Behavior of Materials for Textile Antennas. Text. Res. J. 2018, 89, 1131–1143. [Google Scholar] [CrossRef]
- Mukai, Y.; Suh, M. Relationships between Structure and Microwave Dielectric Properties in Cotton Fabrics. Mater. Res. Express 2020, 7, 015105. [Google Scholar] [CrossRef] [Green Version]
- Mukai, Y.; Suh, M. Structure-Microwave Dielectric Property Relationship in Cotton Fabrics. In Proceedings of the Techtextil North America 2019, Raleigh, NC, USA, 26–28 February 2019. [Google Scholar]
- Jiyong, H.; Hongyan, J.; Huating, T.; Huan, B.; Hong, H.; Yaya, Z.; Xudong, Y. Influence of Woven Fabric Specification and Yarn Constitutions on the Dielectric Properties at Ultrahigh Frequency. Mater. Res. Express 2017, 4, 116308. [Google Scholar] [CrossRef]
- Hertleer, C.; Laere, A.V.; Rogier, H.; Langenhove, L.V. Influence of Relative Humidity on Textile Antenna Performance. Text. Res. J. 2010, 80, 177–183. [Google Scholar] [CrossRef]
- Lin, C.-H.; Chiu, C.-W.; Gong, J.-Y. A Wearable Rectenna to Harvest Low-Power RF Energy for Wireless Healthcare Applications. In Proceedings of the 2018 11th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), Beijing, China, 13–15 October 2018. [Google Scholar]
- Kuang, Y.; Yao, L.; Luan, H.; Yu, S.; Zhang, R.; Qiu, Y. Effects of Weaving Structures and Parameters on the Radiation Properties of Three-Dimensional Fabric Integrated Microstrip Antennas. Text. Res. J. 2017, 88, 2182–2189. [Google Scholar] [CrossRef]
- Xu, F.; Zhu, H.; Ma, Y.; Qiu, Y. Electromagnetic Performance of a Three-Dimensional Woven Fabric Antenna Conformal with Cylindrical Surfaces. Text. Res. J. 2017, 87, 147–154. [Google Scholar] [CrossRef]
- Obrzut, J.; Emiroglu, C.D.; Pazmino, B.A.; Douglas, J.F.; Gilman, J.W. Characterization of Dielectric Properties and Moisture Uptake of Cellulose Nanocrystals Using Non-Contact Microwave Cavity. In Proceedings of the 2016 International Conference on Nanotechnology and Renewable Materials, Grenoble, France, 13–16 June 2016. [Google Scholar]
- Lebaudy, P.; Estel, L.; Ledoux, A. Microwave Heating of Poly(Ethylene Terephthalate) Bottle Preforms Used in the Thermoforming Process. J. Appl. Polym. Sci. 2008, 108, 2408–2414. [Google Scholar] [CrossRef]
- Azlan, A.A.; Badrun, M.K.A.B.H.; Ali, M.T.; Awang, Z.; Saad, Z.B.; Awang, A.H.B. A Comparative Study of Material Leucaena Leucocephala Stem Wood Plastic Composite (WPC) Substrate with FR4 Substrate throughout Single Patch Antenna Design. Prog. Electromagn. Res. B 2014, 59, 151–166. [Google Scholar] [CrossRef] [Green Version]
- Rogers Corporation. RT/Duroid® 5870 /5880 High Frequency Laminates. Available online: https://rogerscorp.com/-/media/project/rogerscorp/documents/advanced-electronics-solutions/english/data-sheets/rt-duroid-5870---5880-data-sheet.pdf (accessed on 11 August 2022).
- Atalie, D.; Gideon, R.K.; Ferede, A.; Tesinova, P.; Lenfeldova, I. Tactile Comfort and Low-Stress Mechanical Properties of Half-Bleached Knitted Fabrics Made from Cotton Yarns with Different Parameters. J. Nat. Fibers 2021, 18, 1699–1711. [Google Scholar] [CrossRef]
- Wang, H.; Memon, H. (Eds.) Cotton Science and Processing Technology: Gene, Ginning, Garment and Green Recycling; Springer: Singapore, 2020; ISBN 9789811591686. [Google Scholar]
- Thangaselvi, E.; Jeyanthi, K.M.A. Implementation of Flexible Denim Nickel Copper Rip Stop Textile Antenna for Medical Application. Clust. Comput. 2019, 22, 635–645. [Google Scholar] [CrossRef]
- Wagih, M.; Hilton, G.S.; Weddell, A.S.; Beeby, S. 5G-Enabled E-Textiles Based on a Low-Profile Millimeter-Wave Textile Antenna. Eng. Proc. 2022, 15, 13. [Google Scholar]
- Stoppa, M.; Chiolerio, A. Wearable Electronics and Smart Textiles: A Critical Review. Sensors 2014, 14, 11957–11992. [Google Scholar] [CrossRef] [Green Version]
- Varnaitė-Žuravliova, S.; Kavaliauskienė, L.; Baltušnikaitė, J.; Valasevičiūtė, L.; Verbienė, R. Investigation of Shielding Properties of Yarns, Twisted with Metal Wire. Mater. Sci. 2014, 20, 73–78. [Google Scholar] [CrossRef] [Green Version]
- Mikulić, D.; Šopp, E.; Bonefačić, D.; Šipuš, Z. Textile Slotted Waveguide Antennas for Body-Centric Applications. Sensors 2022, 22, 1046. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.; Subhani, K.; Rasheed, A.; Ashraf, M.; Afzal, A.; Ramzan, B.; Sarwar, Z. Development of Conductive Fabrics by Using Silver Nanoparticles for Electronic Applications. J. Electron. Mater. 2020, 49, 1330–1337. [Google Scholar] [CrossRef]
- Hu, L.; Pasta, M.; La Mantia, F.; Cui, L.; Jeong, S.; Deshazer, H.D.; Choi, J.W.; Han, S.M.; Cui, Y. Stretchable, Porous, and Conductive Energy Textiles. Nano Lett. 2010, 10, 708–714. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Shang, S.; Li, L.; Tao, X.-M.; Yan, F. Vapor Phase Polymerization of 3,4-Ethylenedioxythiophene on Flexible Substrate and Its Application on Heat Generation. Polym. Adv. Technol. 2011, 22, 1049–1055. [Google Scholar] [CrossRef]
- Kazani, I.; Hertleer, C.; De Mey, G.; Guxho, G.; Van Langenhove, L. Dry Cleaning of Electroconductive Layers Screen Printed on Flexible Substrates. Text. Res. J. 2013, 83, 1541–1548. [Google Scholar] [CrossRef]
- Shahariar, H.; Soewardiman, H.; Muchler, C.; Adams, J.; Jur, J. Porous Textile Antenna Designs for Improved Wearability. Smart Mater. Struct. 2018, 27, 045008. [Google Scholar] [CrossRef]
- Singh, R.K.; Michel, A.; Nepa, P.; Salvatore, A. Wearable Dual-Band Quasi-Yagi Antenna for UHF-RFID and 2.4 GHz Applications. IEEE J. Radio Freq. Identif. 2020, 4, 420–427. [Google Scholar] [CrossRef]
- Haynes, W.M. CRC Handbook of Chemistry and Physics; CRC Press: Boca Raton, FL, USA, 2016; ISBN 978-1-4987-5429-3. [Google Scholar]
- Shirakawa, H.; Louis, E.J.; MacDiarmid, A.G.; Chiang, C.K.; Heeger, A.J. Synthesis of Electrically Conducting Organic Polymers: Halogen Derivatives of Polyacetylene, (CH)x. J. Chem. Soc. Chem. Commun. 1977, 16, 578–580. [Google Scholar] [CrossRef]
- Singha, K.; Kumar, J.; Pandit, P. Recent Advancements in Wearable & Smart Textiles: An Overview. Mater. Today Proc. 2019, 16, 1518–1523. [Google Scholar] [CrossRef]
- Mirabedini, A.; Foroughi, J.; Wallace, G.G. Developments in Conducting Polymer Fibres: From Established Spinning Methods toward Advanced Applications. RSC Adv. 2016, 6, 44687–44716. [Google Scholar] [CrossRef] [Green Version]
- Grancarić, A.M.; Jerković, I.; Koncar, V.; Cochrane, C.; Kelly, F.M.; Soulat, D.; Legrand, X. Conductive Polymers for Smart Textile Applications. J. Ind. Text. 2018, 48, 612–642. [Google Scholar] [CrossRef]
- Xu, R.; Wei, J.; Guo, F.; Cui, X.; Zhang, T.; Zhu, H.; Wang, K.; Wu, D. Highly Conductive, Twistable and Bendable Polypyrrole–Carbon Nanotube Fiber for Efficient Supercapacitor Electrodes. RSC Adv. 2015, 5, 22015–22021. [Google Scholar] [CrossRef]
- Lepró, X.; Lima, M.D.; Baughman, R.H. Spinnable Carbon Nanotube Forests Grown on Thin, Flexible Metallic Substrates. Carbon 2010, 48, 3621–3627. [Google Scholar] [CrossRef]
- Sengupta, J. Carbon Nanotube Fabrication at Industrial Scale. In Handbook of Nanomaterials for Industrial Applications; Hussain, C.M., Ed.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 172–194. ISBN 978-0-12-813351-4. [Google Scholar]
- Al-Maqdasi, Z.; Hajlane, A.; Renbi, A.; Ouarga, A.; Chouhan, S.S.; Joffe, R. Conductive Regenerated Cellulose Fibers by Electroless Plating. Fibers 2019, 7, 38. [Google Scholar] [CrossRef]
- Yu, D.; Mu, S.; Liu, L.; Wang, W. Preparation of Electroless Silver Plating on Aramid Fiber with Good Conductivity and Adhesion Strength. Colloids Surf. Physicochem. Eng. Asp. 2015, 483, 53–59. [Google Scholar] [CrossRef]
- Kirstein, T. Multidisciplinary Know-How for Smart-Textiles Developers; Woodhead Publishing Limited: Cambridge, UK, 2013; ISBN 978-0-85709-342-4. [Google Scholar]
- Schwarz, A.; Hakuzimana, J.; Gasana, E.; Westbroek, P.; Van Langenhove, L. Gold Coated Polyester Yarn. In Proceedings of the 3rd International Conference on Smart Materials, Structures and Systems, Sicily, Italy, 8–13 June 2008; pp. 47–51. [Google Scholar]
- Xu, F.; Zhang, K.; Qiu, Y. Light-Weight, High-Gain Three-Dimensional Textile Structural Composite Antenna. Compos. Part B Eng. 2020, 185, 107781. [Google Scholar] [CrossRef]
- Choudhry, N.A.; Shekhar, R.; Rasheed, A.; Arnold, L.; Wang, L. Effect of Conductive Thread and Stitching Parameters on the Sensing Performance of Stitch-Based Pressure Sensors for Smart Textile Applications. IEEE Sens. J. 2022, 22, 6353–6363. [Google Scholar] [CrossRef]
- Ruppert-Stroescu, M.; Balasubramanian, M. Effects of Stitch Classes on the Electrical Properties of Conductive Threads. Text. Res. J. 2018, 88, 2454–2463. [Google Scholar] [CrossRef]
- Kiourti, A. Textile-Based Flexible Electronics for Wearable Applications: From Antennas to Batteries. In Proceedings of the 2018 2nd URSI Atlantic Radio Science Meeting (AT-RASC), Gran Canaria, Spain, 28 May–1 June 2018. [Google Scholar]
- Chaudhari, S.; Alharbi, S.; Zou, C.; Shah, H.; Harne, R.L.; Kiourti, A. A New Class of Reconfigurable Origami Antennas Based on E-Textile Embroidery. In Proceedings of the 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, Boston, MA, USA, 8–13 July 2018; pp. 183–184. [Google Scholar]
- Alharbi, S.; Chaudhari, S.; Inshaar, A.; Shah, H.; Zou, C.; Harne, R.L.; Kiourti, A. E-Textile Origami Dipole Antennas with Graded Embroidery for Adaptive RF Performance. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 2218–2222. [Google Scholar] [CrossRef]
- Adanur, S. Handbook of Weaving; CRC Press: Boca Raton, FL, USA, 2000; ISBN 978-1-58716-013-4. [Google Scholar]
- Spencer, D.J. Knitting Technology: A Comprehensive Handbook and Practical Guide, 3rd ed.; Woodhead Publishing Limited: Cambridge, UK, 2001; ISBN 978-1-85573-333-6. [Google Scholar]
- Kazan, I.; Hertleer, C.; De Mey, G.; Schwarz, A.; Guxho, G.; Van Langenhove, L. Electrical Conductive Textiles Obtained by Screen Printing. FIBRES Text. East. Eur. 2012, 1, 57–63. [Google Scholar]
- Cummins, G.; Desmulliez, M.P.Y. Inkjet Printing of Conductive Materials: A Review. Circuit World 2012, 38, 193–213. [Google Scholar] [CrossRef]
- Shahariar, H.; Kim, I.; Soewardiman, H.; Jur, J.S. Inkjet Printing of Reactive Silver Ink on Textiles. ACS Appl. Mater. Interfaces 2019, 11, 6208–6216. [Google Scholar] [CrossRef] [PubMed]
- Yao, L.; Qiu, Y. Design and Electromagnetic Properties of Conformal Single-Patch Microstrip Antennas Integrated into Three-Dimensional Orthogonal Woven Fabrics. Text. Res. J. 2015, 85, 561–567. [Google Scholar] [CrossRef]
- Xu, F.; Yao, L.; Zhao, D.; Jiang, M.; Qiu, Y. Effect of Weaving Direction of Conductive Yarns on Electromagnetic Performance of 3D Integrated Microstrip Antenna. Appl. Compos. Mater. 2013, 20, 827–838. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Chauraya, A.; Seager, R.; Vardaxoglou, Y.C.; Whittow, W.; Acti, T.; Dias, T. Fully Fabric Knitted Antennas for Wearable Electronics. In Proceedings of the 2013 USNC-URSI Radio Science Meeting (Joint with AP-S Symposium), Lake Buena Vista, FL, USA, 7–13 July 2013; p. 215. [Google Scholar]
- Song, L.; Zhang, B.; Zhang, D.; Rahmat-Samii, Y. Embroidery Electro-Textile Patch Antenna Modeling and Optimization Strategies with Improved Accuracy and Efficiency. IEEE Trans. Antennas Propag. 2022, 70, 6388–6400. [Google Scholar] [CrossRef]
- Zhang, S.; Chauraya, A.; Whittow, W.; Seager, R.; Acti, T.; Dias, T.; Vardaxoglou, Y. Repeatability of Embroidered Patch Antennas. In Proceedings of the 2013 Loughborough Antennas & Propagation Conference (LAPC), Loughborough, UK, 11–12 November 2013; pp. 140–144. [Google Scholar]
- Zhang, S.; Chauraya, A.; Whittow, W.; Seager, R.; Acti, T.; Dias, T.; Vardaxoglou, Y. Embroidered Wearable Antennas Using Conductive Threads with Different Stitch Spacings. In Proceedings of the 2012 Loughborough Antennas Propagation Conference (LAPC), Loughborough, UK, 12–13 November 2012. [Google Scholar]
- Kiourti, A.; Volakis, J. Colorful Textile Antennas Integrated into Embroidered Logos. J. Sens. Actuator Netw. 2015, 4, 371–377. [Google Scholar] [CrossRef] [Green Version]
- Gil, I.; Fernández-García, R.; Tornero, J.A. Embroidery Manufacturing Techniques for Textile Dipole Antenna Applied to Wireless Body Area Network. Text. Res. J. 2019, 89, 1573–1581. [Google Scholar] [CrossRef]
- Kapetanakis, T.N.; Pavec, M.; Ioannidou, M.P.; Nikolopoulos, C.D.; Baklezos, A.T.; Soukup, R.; Vardiambasis, I.O. Embroidered Βow-Tie Wearable Antenna for the 868 and 915 MHz ISM Bands. Electronics 2021, 10, 1983. [Google Scholar] [CrossRef]
- Roudjane, M.; Khalil, M.; Miled, A.; Messaddeq, Y. New Generation Wearable Antenna Based on Multimaterial Fiber for Wireless Communication and Real-Time Breath Detection. Photonics 2018, 5, 33. [Google Scholar] [CrossRef] [Green Version]
- Cupal, M.; Raida, Z. Slot Antennas Integrated into 3D Knitted Fabrics: 5.8 GHz and 24 GHz ISM Bands. Sensors 2022, 22, 2707. [Google Scholar] [CrossRef]
- Alhawari, A.R.H.; Saeidi, T.; Almawgani, A.H.M.; Hindi, A.T.; Alghamdi, H.; Alsuwian, T.; Awwad, S.A.B.; Imran, M.A. Wearable Metamaterial Dual-Polarized High Isolation UWB MIMO Vivaldi Antenna for 5G and Satellite Communications. Micromachines 2021, 12, 1559. [Google Scholar] [CrossRef] [PubMed]
- Johnson, A.D.; Nichols, M.W.; Venkatakrishnan, S.B.; Volakis, J.L. Reconfigurable Log-Periodic Dipole Array on Textile. IET Microw. Antennas Propag. 2020, 14, 1791–1794. [Google Scholar] [CrossRef]
- Estrada, J.A.; Kwiatkowski, E.; Lopez-Yela, A.; Borgonos-Garcia, M.; Segovia-Vargas, D.; Barton, T.; Popovic, Z. RF-Harvesting Tightly Coupled Rectenna Array Tee-Shirt with Greater Than Octave Bandwidth. IEEE Trans. Microw. Theory Tech. 2020, 68, 3908–3919. [Google Scholar] [CrossRef]
- Galoić, A.; Ivsic, B.; Bonefacic, D.; Bartolic, J. Wearable Energy Harvesting Using Wideband Textile Antennas. In Proceedings of the 2016 10th European Conference on Antennas and Propagation (EuCAP), Davos, Switzerland, 10–15 April 2016; pp. 1–5. [Google Scholar]
- Seymour, S. Fashionable Technology: The Intersection of Design, Fashion, Science, and Technology; Springer: Vienna, Austria, 2008; ISBN 978-3-211-74498-7. [Google Scholar]
Energy Category | Ambient Energy Source | Ambient Power Density | Harvesting Mechanism | Non-Textile Solution | Textile-Based Solution | ||
---|---|---|---|---|---|---|---|
Harvestable Power Density | Efficiency (%) | Harvestable Power Density | Efficiency (%) | ||||
Light energy | Outdoor (irect sun light) | 0.1 W/cm2 [48] | Photovoltaic cell | 15 mW/cm2 [14] | 19.44 [49] | 2.15–4.6 mW/cm2 [32,33,34] | 0.6–4.6 [29,30,33] |
Indoor light | 0.01–1.8 mW/cm2 [14,33,50] | 0.22 mW/cm2 [15] | 0.14 mW/cm2 [33] | ||||
Kinetic energy | Body motion | – | Piezoelectric generator | 7.8–81.25 μW/cm3 [51,52] | 0.5–50 [53,54] | 2–87 μW/cm3 [35,36] | 27–40 [35] |
Electrostatic generator | 50–193.6 μW/cm2 [55,56] | 50–69.3 [56,57,58] | 1.56–46.6 μW/cm2 [37,38,39] | 24.94 [39] | |||
Thermal Energy | Body heat (at rest) | 1–10 mW/cm2 [20,59] | Thermoelectric generator | 15.8–97.6 μW/cm2 [20,60,61] | 5–24 [62,63] | 5.15–7 μW/cm2 [40,41] | |
Wireless energy | Radiofrequency and microwave radiation | 0.00018–1 μW/cm2 [64,65] | Rectenna | 0.08 nW/cm2–1 μW/cm2 [66] | 30–88 [66] | – | 28.7–50 [24,67,68] |
Material | Construction | Characterization Frequency (GHz) | Relative Humidity (%) | Dielectric Constant | Loss Tangent | References | |
---|---|---|---|---|---|---|---|
Textile (fabric) | Cotton | Plain weave | ~2.45 | 80 ± 2.5 | 1.24–1.46 | – | [170] |
65 ± 5 | 1.24–1.43 | ||||||
50 ± 2.5 | 1.26–1.38 | ||||||
35 ± 2.5 | 1.21–1.35 | ||||||
20 ± 2.5 | 1.18–1.31 | ||||||
1.1 | 65 | 1.875–2.499 | 0.0950–0.1355 | [172] | |||
Twill weave | 2.45 | 1.71 | 0.020 | [173] | |||
1.1 | 65 | 1.858–1.940 | 0.1012–0.1053 | [172] | |||
Satin weave | 1.1 | 65 | 1.649 | 0.0859 | [172] | ||
Single jersey | ~2.45 | 80 ± 2.5 | 1.37–1.62 | – | [170] | ||
65 ± 5 | 1.35–1.59 | ||||||
50 ± 2.5 | 1.30–1.50 | ||||||
35 ± 2.5 | 1.28–1.47 | ||||||
20 ± 2.5 | 1.23–1.40 | ||||||
Polyester | Plain weave | 2.26 | – | 1.55 | 0.0087 | [108] | |
Fleece | 2.45 | – | 1.15 | 0.000 | [173] | ||
3D spacer knit | 2.25 | – | 1.10–1.13 | 0.004–0.018 | [169] | ||
Cordura® | – | 2.45 | – | 1.93 | 0.015 | [174] | |
Kevlar® | 3D orthogonal weave | 1.9 | – | 1.96 | 0.042 | [175] | |
E-glass | 3D orthogonal weave | 1.5 | – | 3.2 | 0.008 | [176] | |
Non -textile | Cellulose film | – | 7.3 | (Dry condition) | ~3.2 | ~0.03 | [177] |
Poly(ethylene terephthalate) | – | 2.45 | – | ~2.1–2.4 | ~0.016–0.04 * | [178] | |
Standard FR4 | – | 2.08–3.70 | – | 4.5 | 0.035 | [179] | |
Rogers RT/duroid® 5870 | – | 8–40 (dielectric constant) and 10 (loss tangent) | – | 2.33 | 0.0012 | [180] |
Material | Construction | Conductivity (S/m) | Sheet Resistance (Ω/Square) | References | |
---|---|---|---|---|---|
Textile (Fabric) | Copper/nickel-plated polyamide | Ripstop | 4.17 × 106 | 0.03 | [183] |
Silver/copper/nickel-plated polyamide | Ripstop | – | 0.009 | [187] | |
Silver-plated polyamide | Single jersey | 2.08 × 10−1 | – | [188] | |
Carbon-nanotube-coated cotton | Knit | 1.25 × 104 | <1 | [189] | |
PEDOT-coated polyester | Woven | – | 52 | [190] | |
Silver-printed polyester | Nonwoven | – | <0.025 | [191] | |
Silver-printed Evolon® | Nonwoven | 1.3 × 106 | – | [192] | |
Lycra® with silver yarn | Woven | – | 0.6 | [193] | |
Non-textile (Bulk material) | Silver | – | 6.3 × 107 * | – | [194] |
Copper | – | 6.0 × 107 * | – | [194] | |
Gold | – | 4.4 × 107 * | – | [194] | |
PEDOT | – | 1 × 105 | – | [190] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yamada, Y. Textile Materials for Wireless Energy Harvesting. Electron. Mater. 2022, 3, 301-331. https://doi.org/10.3390/electronicmat3040026
Yamada Y. Textile Materials for Wireless Energy Harvesting. Electronic Materials. 2022; 3(4):301-331. https://doi.org/10.3390/electronicmat3040026
Chicago/Turabian StyleYamada, Yusuke. 2022. "Textile Materials for Wireless Energy Harvesting" Electronic Materials 3, no. 4: 301-331. https://doi.org/10.3390/electronicmat3040026
APA StyleYamada, Y. (2022). Textile Materials for Wireless Energy Harvesting. Electronic Materials, 3(4), 301-331. https://doi.org/10.3390/electronicmat3040026