Hormones and Signaling Pathways Involved in the Stimulation of Leydig Cell Steroidogenesis
Abstract
:1. Introduction
2. Main Factors Involved in the Stimulation of Leydig Cells
2.1. Luteinizing Hormone
2.1.1. cAMP-Dependent Protein Kinase
2.1.2. Calcium
Calcium/Calmodulin-Dependent Protein Kinase I
2.1.3. Protein Kinase C
2.1.4. Extracellular Signal-Regulated Kinase
2.1.5. Protein Kinase B
2.2. Growth Hormone (GH)
Janus Kinase
2.3. Prolactin
2.4. Growth Factors
2.4.1. Insulin Family of Growth Factors
Insulin
Insulin-like Growth Factor 1
2.4.2. Fibroblast Growth Factor 9
2.4.3. Epidermal Growth Factor (EGF) Family
2.5. Vitamin D
2.6. Osteocalcin
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zirkin, B.R.; Papadopoulos, V. Leydig cells: Formation, function, and regulation. Biol. Reprod. 2018, 99, 101–111. [Google Scholar] [CrossRef] [Green Version]
- Shen, W.-J.; Azhar, S.; Kraemer, F.B. Lipid droplets and steroidogenic cells. Exp. Cell Res. 2016, 340, 209–214. [Google Scholar] [CrossRef] [Green Version]
- Narayan, P.; Ulloa-Aguirre, A.; Dias, J.A. Chapter 2—Gonadotropin hormones and their receptors. In Yen & Jaffe’s Reproductive Endocrinology–Physiology, Pathophysiology, and Clinical Management, 8th ed.; Strauss, J.F., III, Barbieri, R.L., Eds.; Elsevier: Philadelphia, PA, USA, 2019; pp. 25–57.e15. ISBN 978-0-323-47912-7. [Google Scholar]
- Dufau, M.L. The luteinizing hormone receptor. Annu. Rev. Physiol. 1998, 60, 461–496. [Google Scholar] [CrossRef] [PubMed]
- Cattanach, B.M.; Iddon, C.A.; Charlton, H.M.; Chiappa, S.A.; Fink, G. Gonadotrophin-releasing hormone deficiency in a mutant mouse with hypogonadism. Nature 1977, 269, 338–340. [Google Scholar] [CrossRef] [PubMed]
- Baker, P.J.; O’Shaughnessy, P.J. Role of gonadotrophins in regulating numbers of Leydig and Sertoli cells during fetal and postnatal development in mice. Reproduction 2001, 122, 227–234. [Google Scholar] [CrossRef] [PubMed]
- Lei, Z.M.; Mishra, S.; Zou, W.; Xu, B.; Foltz, M.; Li, X.; Rao, C.V. Targeted disruption of luteinizing hormone/human chorionic gonadotropin receptor gene. Mol. Endocrinol. 2001, 15, 184–200. [Google Scholar] [CrossRef]
- Zhang, F.P.; Poutanen, M.; Wilbertz, J.; Huhtaniemi, I. Normal prenatal but arrested postnatal sexual development of luteinizing hormone receptor knockout (LuRKO) mice. Mol. Endocrinol. 2001, 15, 172–183. [Google Scholar] [CrossRef]
- Ma, X.; Dong, Y.; Matzuk, M.M.; Kumar, T.R. Targeted disruption of luteinizing hormone β-subunit leads to hypogonadism, defects in gonadal steroidogenesis, and infertility. Proc. Natl. Acad. Sci. USA 2004, 101, 17294–17299. [Google Scholar] [CrossRef]
- Pakarainen, T.; Zhang, F.P.; Mäkelä, S.; Poutanen, M.; Huhtaniemi, I. Testosterone replacement therapy induces spermatogenesis and partially restores fertility in luteinizing hormone receptor knockout mice. Endocrinology 2005, 146, 596–606. [Google Scholar] [CrossRef] [Green Version]
- Narayan, P. Genetic Models for the Study of Luteinizing Hormone Receptor Function. Front. Endocrinol. 2015, 6, 152. [Google Scholar] [CrossRef] [Green Version]
- Latronico, A.; Arnhold, I.P. Inactivating mutations of the human luteinizing hormone receptor in both sexes. Semin. Reprod. Med. 2012, 30, 382–386. [Google Scholar] [CrossRef] [PubMed]
- Clayton, R.N. Gonadotrophin receptors. Baillière’s Clin. Endocrinol. Metab. 1996, 10, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, F.; Bechtel, P.J.; Krebs, E.G. Concentrations of cyclic AMP dependent protein kinase subunits in various tissues. J. Biol. Chem. 1977, 252, 1441–1447. [Google Scholar] [CrossRef] [PubMed]
- Taylor, S.S.; Zheng, J.; Radzio-Andzelm, E.; Knighton, D.R.; Ten Eyck, L.F.; Sowadski, J.M.; Herberg, F.W.; Yonemoto, W.M. cAMP-dependent protein kinase defines a family of enzymes. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1993, 340, 315–324. [Google Scholar] [CrossRef]
- Walsh, D.A.; Perkins, J.P.; Krebs, E.G. An adenosine 3′,5′-monophosphate-dependant protein kinase from rabbit skeletal muscle. J. Biol. Chem. 1968, 243, 3763–3765. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.A.; DeClue, J.E.; Ratner, N. cAMP-dependent protein kinase a is required for Schwann cell growth: Interactions between the cAMP and neuregulin/tyrosine kinase pathways. J. Neurosci. Res. 1997, 49, 236–247. [Google Scholar] [CrossRef]
- London, E.; Stratakis, C.A. The regulation of PKA signaling in obesity and in the maintenance of metabolic health. Pharmacol. Ther. 2022, 237, 108113. [Google Scholar] [CrossRef]
- Keryer, G.; Alsat, E.; Taskén, K.; Evain-Brion, D. Cyclic AMP-dependent protein kinases and human trophoblast cell differentiation in vitro. J. Cell Sci. 1998, 111, 995–1004. [Google Scholar] [CrossRef]
- Amato, S.F.; Nakajima, K.; Hirano, T.; Chiles, T.C. Transcriptional regulation of the junB gene in B lymphocytes: Role of protein kinase A and a membrane Ig-regulated protein phosphatase. J. Immunol. 1997, 159, 4676–4685. [Google Scholar] [CrossRef]
- Pariset, C.; Feinberg, J.; Dacheux, J.L.; Oyen, O.; Jahnsen, T.; Weinman, S. Differential expression and subcellular localization for subunits of cAMP-dependent protein kinase during ram spermatogenesis. J. Cell Biol. 1989, 109, 1195–1205. [Google Scholar] [CrossRef]
- Baum, B.J.; Colpo, F.T.; Filburn, C.R. Characterization and relationship to exocrine secretion of rat parotid gland cyclic AMP-dependent protein kinase. Arch. Oral Biol. 1981, 26, 333–337. [Google Scholar] [CrossRef] [PubMed]
- Hincke, M.T.; Soor, S.K. Stimulation of rat parotid secretion by cAMP analogues that synergistically activate the type II isoenzyme of the cAMP-dependent protein kinase. Arch. Oral Biol. 1992, 37, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Cadd, G.; McKnight, G.S. Distinct patterns of cAMP-dependent protein kinase gene expression in mouse brain. Neuron 1989, 3, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Skålhegg, B.S.; Huang, Y.; Su, T.; Idzerda, R.L.; Stanley McKnight, G.; Burton, K.A. Mutation of the Cα subunit of PKA leads to growth retardation and sperm dysfunction. Mol. Endocrinol. 2002, 16, 630–639. [Google Scholar] [CrossRef] [Green Version]
- Veugelers, M.; Wilkes, D.; Burton, K.; McDermott, D.A.; Song, Y.; Goldstein, M.M.; La Perle, K.; Vaughan, C.J.; O’Hagan, A.; Bennett, K.R.; et al. Comparative PRKAR1A genotype–phenotype analyses in humans with Carney complex and prkar1a haploinsufficient mice. Proc. Natl. Acad. Sci. USA 2004, 101, 14222–14227. [Google Scholar] [CrossRef]
- Stratakis, C.A. Mutations of the gene encoding the protein kinase A type I-alpha regulatory subunit (PRKAR1A) in patients with the “complex of spotty skin pigmentation, myxomas, endocrine overactivity, and schwannomas” (Carney complex). Ann. N. Y. Acad. Sci. 2002, 968, 3–21. [Google Scholar] [CrossRef]
- Tremblay, J.J.; Viger, R.S. Transcription factor GATA-4 is activated by phosphorylation of serine 261 via the cAMP/protein kinase A signaling pathway in gonadal cells. J. Biol. Chem. 2003, 278, 22128–22135. [Google Scholar] [CrossRef] [Green Version]
- Pierre, K.J.; Tremblay, J.J. Differential response of transcription factors to activated kinases in steroidogenic and non-steroidogenic cells. Int. J. Mol. Sci. 2022, 23, 13153. [Google Scholar] [CrossRef]
- Costa, R.R.; Varanda, W.A.; Franci, C.R. A calcium-induced calcium release mechanism supports luteinizing hormone-induced testosterone secretion in mouse Leydig cells. Am. J. Physiol. Cell Physiol. 2010, 299, 316–323. [Google Scholar] [CrossRef] [Green Version]
- Patergnani, S.; Danese, A.; Bouhamida, E.; Aguiari, G.; Previati, M.; Pinton, P.; Giorgi, C. Various aspects of calcium signaling in the regulation of apoptosis, autophagy, cell proliferation, and cancer. Int. J. Mol. Sci. 2020, 21, 8323. [Google Scholar] [CrossRef]
- Koch, G.L. The endoplasmic reticulum and calcium storage. Bioessays 1990, 12, 527–531. [Google Scholar] [CrossRef] [PubMed]
- Berridge, M.J.; Lipp, P.; Bootman, M.D. The versatility and universality of calcium signalling. Nat. Rev. Mol. Cell Biol. 2000, 1, 11–21. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, M.H.F.; Cooke, B.A. The role of Ca2+ in steroidogenesis in Leydig cells. Biochem. J. 1986, 236, 45–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sullivan, M.H.; Cooke, B.A. The effect of calcium on the potentiation of LH-stimulated steroidogenesis and inhibition of LH-stimulated cyclic AMP production by LHRH agonist (ICI 118630) in rat Leydig cells. Mol. Cell. Endocrinol. 1984, 34, 17–22. [Google Scholar] [CrossRef] [PubMed]
- Abdou, H.S.; Villeneuve, G.; Tremblay, J.J. The calcium signaling pathway regulates leydig cell steroidogenesis through a transcriptional cascade involving the nuclear receptor NR4A1 and the steroidogenic acute regulatory protein. Endocrinology 2013, 154, 511–520. [Google Scholar] [CrossRef] [Green Version]
- Beghi, S.; Furmanik, M.; Jaminon, A.; Veltrop, R.; Rapp, N.; Wichapong, K.; Bidar, E.; Buschini, A.; Schurgers, L.J. Calcium signalling in heart and vessels: Role of calmodulin and downstream calmodulin-pependent protein kinases. Int. J. Mol. Sci. 2022, 23, 16139. [Google Scholar] [CrossRef]
- Martin, L.J.; Boucher, N.; Brousseau, C.; Tremblay, J.J. The orphan nuclear receptor NUR77 regulates hormone-induced StAR transcription in Leydig cells through cooperation with Ca2+/calmodulin-dependent protein kinase I. Mol. Endocrinol. 2008, 22, 2021–2037. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.C.; Kwon, Y.G.; Lawrence, D.S.; Edelman, A.M. A requirement of hydrophobic and basic amino acid residues for substrate recognition by Ca2+/calmodulin-dependent protein kinase Ia. Proc. Natl. Acad. Sci. USA 1994, 91, 6413–6417. [Google Scholar] [CrossRef]
- Picciotto, M.R.; Nastiuk, K.L.; Nairn, A.C. Structure, regulation, and function of calcium/calmodulin-dependent protein kinase I. Adv. Pharmacol. 1996, 36, 251–275. [Google Scholar] [CrossRef]
- Haribabu, B.; Hook, S.S.; Selbert, M.A.; Goldstein, E.G.; Tomhave, E.D.; Edelman, A.M.; Snyderman, R.; Means, A.R. Human calcium-calmodulin dependent protein kinase I: cDNA cloning, domain structure and activation by phosphorylation at threonine-177 by calcium-calmodulin dependent protein kinase I kinase. EMBO J. 1995, 14, 3679–3686. [Google Scholar] [CrossRef]
- Tremblay, J.J. Molecular regulation of steroidogenesis in endocrine Leydig cells. Steroids 2015, 103, 3–10. [Google Scholar] [CrossRef] [PubMed]
- de Mattos, K.; Viger, R.S.; Tremblay, J.J. Transcription factors in the regulation of Leydig cell gene expression and function. Front. Endocrinol. 2022, 13, 881309. [Google Scholar] [CrossRef] [PubMed]
- Morris, J.K.; Richards, J.S. Luteinizing hormone induces prostaglandin endoperoxide synthase-2 and luteinization in vitro by A-kinase and C-kinase pathways. Endocrinology 1995, 136, 1549–1558. [Google Scholar] [CrossRef] [PubMed]
- Clemens, M.J.; Trayner, I.; Menaya, J. The role of protein kinase C isoenzymes in the regulation of cell proliferation and differentiation. J. Cell Sci. 1992, 103, 881–887. [Google Scholar] [CrossRef]
- Chen, J.-L.; Lin, H.H.; Kim, K.-J.; Lin, A.; Ou, J.-H.J.; Ann, D.K. PKC delta signaling: A dual role in regulating hypoxic stress-induced autophagy and apoptosis. Autophagy 2009, 5, 244–246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gerbino, A.; De Zio, R.; Russo, D.; Milella, L.; Milano, S.; Procino, G.; Pusch, M.; Svelto, M.; Carmosino, M. Role of PKC in the regulation of the human kidney chloride channel ClC-Ka. Sci. Rep. 2020, 10, 10268. [Google Scholar] [CrossRef]
- Garcia-Concejo, A.; Larhammar, D. Protein kinase C family evolution in jawed vertebrates. Dev. Biol. 2021, 479, 77–90. [Google Scholar] [CrossRef]
- Kawano, T.; Inokuchi, J.; Eto, M.; Murata, M.; Kang, J.H. Activators and inhibitors of protein kinase c (Pkc): Their applications in clinical trials. Pharmaceutics 2021, 13, 1748. [Google Scholar] [CrossRef]
- Kang, J.H.; Toita, R.; Kim, C.W.; Katayama, Y. Protein kinase C (PKC) isozyme-specific substrates and their design. Biotechnol. Adv. 2012, 30, 1662–1672. [Google Scholar] [CrossRef]
- Manna, P.R.; Soh, J.W.; Stocco, D.M. The involvement of specific PKC isoenzymes in phorbol ester-mediated regulation of steroidogenic acute regulatory protein expression and steroid synthesis in mouse leydig cells. Endocrinology 2011, 152, 313–325. [Google Scholar] [CrossRef] [Green Version]
- Pelosin, J.M.; Ricouart, A.; Sergheraert, C.; Benahmed, M.; Chambaz, E.M. Expression of protein kinase C isoforms in various steroidogenic cell types. Mol. Cell. Endocrinol. 1991, 75, 149–155. [Google Scholar] [CrossRef]
- Manna, P.R.; Huhtaniemi, I.T.; Stocco, D.M. Mechanisms of protein kinase C signaling in the modulation of 3′,5′-cyclic adenosine monophosphate-mediated steroidogenesis in mouse gonadal cells. Endocrinology 2009, 150, 3308–3317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jo, Y.; King, S.R.; Khan, S.A.; Stocco, D.M. Involvement of protein kinase C and cyclic adenosine 3′,5′-monophosphate-dependent kinase in steroidogenic acute regulatory protein expression and steroid biosynthesis in Leydig cells. Biol. Reprod. 2005, 73, 244–255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manna, P.R.; Jo, Y.; Stocco, D.M. Regulation of Leydig cell steroidogenesis by extracellular signal-regulated kinase 1/2: Role of protein kinase A and protein kinase C signaling. J. Endocrinol. 2007, 193, 53–63. [Google Scholar] [CrossRef] [PubMed]
- Esteban-Villarrubia, J.; Soto-Castillo, J.J.; Pozas, J.; Román-Gil, M.S.; Orejana-Martín, I.; Torres-Jiménez, J.; Carrato, A.; Alonso-Gordoa, T.; Molina-Cerrillo, J. Tyrosine kinase receptors in oncology. Int. J. Mol. Sci. 2020, 21, 8529. [Google Scholar] [CrossRef]
- Roux, P.P.; Blenis, J. ERK and p38 MAPK-activated protein kinases: A family of protein kinases with diverse biological functions. Microbiol. Mol. Biol. Rev. 2004, 68, 320–344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roskoski, R. ERK1/2 MAP kinases: Structure, function, and regulation. Pharmacol. Res. 2012, 66, 105–143. [Google Scholar] [CrossRef]
- Plotnikov, A.; Zehorai, E.; Procaccia, S.; Seger, R. The MAPK cascades: Signaling components, nuclear roles and mechanisms of nuclear translocation. Biochim. Biophys. Acta-Mol. Cell Res. 2011, 1813, 1619–1633. [Google Scholar] [CrossRef] [Green Version]
- Shiraishi, K.; Ascoli, M. Lutropin/choriogonadotropin stimulate the proliferation of primary cultures of rat leydig cells through a pathway that involves activation of the extracellularly regulated kinase 1/2 cascade. Endocrinology 2007, 148, 3214–3225. [Google Scholar] [CrossRef] [Green Version]
- Yamashita, S.; Tai, P.; Charron, J.; Ko, C.M.; Ascoli, M. The leydig cell MEK/ERK pathway is critical for maintaining a functional population of adult leydig cells and for fertility. Mol. Endocrinol. 2011, 25, 1211–1222. [Google Scholar] [CrossRef] [Green Version]
- Manna, P.R.; Stocco, D.M. The role of specific mitogen-activated protein kinase signaling cascades in the regulation of steroidogenesis. J. Signal Transduct. 2011, 2011, 821615. [Google Scholar] [CrossRef] [Green Version]
- Matzkin, M.E.; Yamashita, S.; Ascoli, M. The ERK1/2 pathway regulates testosterone synthesis by coordinately regulating the expression of steroidogenic genes in Leydig cells. Mol. Cell. Endocrinol. 2013, 370, 130–137. [Google Scholar] [CrossRef] [Green Version]
- Hirakawa, T.; Ascoli, M. The lutropin/choriogonadotropin receptor-induced phosphorylation of the extracellular signal-regulated kinases in Leydig cells is mediated by a protein kinase A-dependent activation of ras. Mol. Endocrinol. 2003, 17, 2189–2200. [Google Scholar] [CrossRef]
- Martinat, N.; Crépieux, P.; Reiter, E.; Guillou, F. Extracellular signal-regulated kinases (ERK) 1,2 are required for luteinizing hormone (LH)-induced steroidogenesis in primary Leydig cells and control steroidogenic acute regulatory (StAR) expression. Reprod. Nutr. Dev. 2005, 45, 101–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, Q.; Wiese, R.J.; Bueno, O.F.; Dai, Y.-S.; Markham, B.E.; Molkentin, J.D. The transcription factor GATA4 is activated by extracellular signal-regulated kinase 1- and 2-mediated phosphorylation of serine 105 in cardiomyocytes. Mol. Cell. Biol. 2001, 21, 7460–7469. [Google Scholar] [CrossRef] [Green Version]
- Bergeron, F.; Boulende Sab, A.; Bouchard, M.F.; Taniguchi, H.; Souchkova, O.; Brousseau, C.; Tremblay, J.J.; Pilon, N.; Viger, R.S. Phosphorylation of GATA4 serine 105 but not serine 261 is required for testosterone production in the male mouse. Andrology 2019, 7, 357–372. [Google Scholar] [CrossRef]
- Coffer, P.J.; Woodgett, J.R. Molecular cloning and characterisation of a novel putative protein-serine kinase related to the cAMP-dependent and protein kinase C families. Eur. J. Biochem. 1991, 201, 475–481. [Google Scholar] [CrossRef] [PubMed]
- Jones, P.F.; Jakubowicz, T.; Hemmings, B.A. Molecular cloning of a second form of rac protein kinase. Mol. Biol. Cell 1991, 2, 1001–1009. [Google Scholar] [CrossRef] [Green Version]
- Jones, P.F.; Jakubowicz, T.; Pitossi, F.J.; Maurer, F.; Hemmings, B.A. Molecular cloning and identification of a serine/threonine protein kinase of the second-messenger subfamily. Proc. Natl. Acad. Sci. USA 1991, 88, 4171–4175. [Google Scholar] [CrossRef]
- Bellacosa, A.; Testa, J.R.; Staal, S.P.; Tsichlis, P.N. A retroviral oncogene, akt, encoding a serine-threonine kinase containing an SH2-like region. Science 1991, 254, 274–277. [Google Scholar] [CrossRef] [PubMed]
- Manning, B.D.; Cantley, L.C. AKT/PKB signaling: Navigating downstream. Cell 2007, 129, 1261–1274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alessi, D.R.; Andjelkovic, M.; Caudwell, B.; Cron, P.; Morrice, N.; Cohen, P.; Hemmings, B.A. Mechanism of activation of protein kinase B by insulin and IGF-1. EMBO J. 1996, 15, 6541–6551. [Google Scholar] [CrossRef]
- Li, W.; Amri, H.; Huang, H.; Wu, C.; Papadopoulos, V. Gene and protein profiling of the response of MA-10 Leydig tumor cells to human chorionic gonadotropin. J. Androl. 2004, 25, 900–913. [Google Scholar] [CrossRef] [PubMed]
- Chesnokova, V.; Melmed, S. Non-pituitary GH regulation of the tissue microenvironment. Endocr. Relat. Cancer 2023, 30, e230028. [Google Scholar] [CrossRef]
- Bramley, T.A.; Menzies, G.S.; McNeilly, A.S.; Friesen, H.G. Receptors for lactogenic hormones in the ovine corpus luteum. I: A major discrepancy in the specific binding of radiolabelled ovine prolactin and human growth hormone. J. Endocrinol. 1987, 113, 365–374. [Google Scholar] [CrossRef]
- Bresson, J.L.; Jeay, S.; Gagnerault, M.C.; Kayser, C.; Beressi, N.; Wu, Z.; Kinet, S.; Dardenne, M.; Postel-Vinay, M.C. Growth hormone (GH) and prolactin receptors in human peripheral blood mononuclear cells: Relation with age and GH-binding protein. Endocrinology 1999, 140, 3203–3209. [Google Scholar] [CrossRef]
- Ipsa, E.; Cruzat, V.F.; Kagize, J.N.; Yovich, J.L.; Keane, K.N. Growth hormone and insulin-like growth factor action in reproductive tissues. Front. Endocrinol. 2019, 10, 777. [Google Scholar] [CrossRef] [PubMed]
- Dosouto, C.; Calaf, J.; Polo, A.; Haahr, T.; Humaidan, P. Growth hormone and reproduction: Lessons learned from animal models and clinical trials. Front. Endocrinol. 2019, 10, 404. [Google Scholar] [CrossRef]
- Lobie, P.E.; Breipohl, W.; Aragón, J.G.; Waters, M.J. Cellular localization of the growth hormone receptor/ binding protein in the male and female reproductive systems. Endocrinology 1990, 126, 2214–2221. [Google Scholar] [CrossRef]
- Hull, K.L.; Harvey, S. Growth hormone and reproduction: A review of endocrine and autocrine/paracrine interactions. Int. J. Endocrinol. 2014, 2014, 234014. [Google Scholar] [CrossRef]
- Chandrashekar, V.; Bartke, A.; Coschigano, K.T.; Kopchick, J.J. Pituitary and testicular function in growth hormone receptor gene knockout mice. Endocrinology 1999, 140, 1082–1088. [Google Scholar] [CrossRef]
- Chandrashekar, V.; Bartke, A.; Awoniyi, C.A.; Tsai-Morris, C.H.; Dufau, M.L.; Russell, L.D.; Kopchick, J.J. Testicular endocrine function in GH receptor gene disrupted mice. Endocrinology 2001, 142, 3443–3450. [Google Scholar] [CrossRef]
- Keene, D.E.; Suescun, M.O.; Bostwick, M.G.; Chandrashekar, V.; Bartke, A.; Kopchick, J.J. Puberty is delayed in male growth hormone receptor gene-disrupted mice. J. Androl. 2002, 23, 661–668. [Google Scholar]
- Bartlett, J.M.; Charlton, H.M.; Robinson, I.C.; Nieschlag, E. Pubertal development and testicular function in the male growth hormone-deficient rat. J. Endocrinol. 1990, 126, 193–201. [Google Scholar] [CrossRef]
- Maran, R.R.M.; Sivakumar, R.; Ravisankar, B.; Valli, G.; Ravichandran, K.; Arunakaran, J.; Aruldhas, M.M. Growth hormone directly stimulates testosterone and oestradiol secretion by rat Leydig cells in vitro and modulates the effects of LH and T3. Endocr. J. 2000, 47, 111–118. [Google Scholar] [CrossRef] [Green Version]
- Hébert-Mercier, P.O.; Bergeron, F.; Robert, N.M.; Mehanovic, S.; Pierre, K.J.; Mendoza-Villarroel, R.E.; de Mattos, K.; Brousseau, C.; Tremblay, J.J. Growth hormone-induced STAT5B regulates star gene expression through a cooperation with cJUN in mouse MA-10 Leydig cells. Endocrinology 2022, 163, bqab267. [Google Scholar] [CrossRef] [PubMed]
- Kanzaki, M.; Morris, P.L. Growth hormone regulates steroidogenic acute regulatory protein expression and steroidogenesis in Leydig cell progenitors. Endocrinology 1999, 140, 1681–1686. [Google Scholar] [CrossRef]
- Spiteri-Grech, J.; Nieschlag, E. The role of growth hormone and insulin-like growth factor I in the regulation of male reproductive function. Horm. Res. 1992, 38 (Suppl. S1), 22–27. [Google Scholar] [CrossRef] [PubMed]
- Huh, K.; Nah, W.H.; Xu, Y.; Park, M.J.; Gye, M.C. Effects of recombinant human growth hormone on the onset of puberty, leydig cell differentiation, spermatogenesis and hypothalamic kiss1 expression in immature male rats. World J. Mens Health 2021, 38, 381–388. [Google Scholar] [CrossRef]
- Hu, X.; Li, J.; Fu, M.; Zhao, X.; Wang, W. The JAK/STAT signaling pathway: From bench to clinic. Signal Transduct. Target. Ther. 2021, 6, 402. [Google Scholar] [CrossRef] [PubMed]
- Rane, S.G.; Reddy, E.P. Janus kinases: Components of multiple signaling pathways. Oncogene 2000, 19, 5662–5679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parganas, E.; Wang, D.; Stravopodis, D.; Topham, D.J.; Marine, J.C.; Teglund, S.; Vanin, E.F.; Bodner, S.; Colamonici, O.R.; van Deursen, J.M.; et al. Jak2 is essential for signaling through a variety of cytokine receptors. Cell 1998, 93, 385–395. [Google Scholar] [CrossRef] [Green Version]
- Rodig, S.J.; Meraz, M.A.; White, J.M.; Lampe, P.A.; Riley, J.K.; Arthur, C.D.; King, K.L.; Sheehan, K.C.; Yin, L.; Pennica, D.; et al. Disruption of the Jak1 gene demonstrates obligatory and nonredundant roles of the Jaks in cytokine-induced biologic responses. Cell 1998, 93, 373–383. [Google Scholar] [CrossRef] [Green Version]
- Neubauer, H.; Cumano, A.; Müller, M.; Wu, H.; Huffstadt, U.; Pfeffer, K. Jak2 deficiency defines an essential developmental checkpoint in definitive hematopoiesis. Cell 1998, 93, 397–409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dehkhoda, F.; Lee, C.M.M.; Medina, J.; Brooks, A.J. The growth hormone receptor: Mechanism of receptor activation, cell signaling, and physiological aspects. Front. Endocrinol. 2018, 9, 35. [Google Scholar] [CrossRef] [Green Version]
- Kanzaki, M.; Morris, P.L. Lactogenic hormone-inducible phosphorylation and gamma-activated site-binding activities of Stat5b in primary rat Leydig cells and MA-10 mouse Leydig tumor cells. Endocrinology 1998, 139, 1872–1882. [Google Scholar] [CrossRef]
- Chapin, R.E.; Ball, D.J.; Radi, Z.A.; Kumpf, S.W.; Koza-Taylor, P.H.; Potter, D.M.; Mark Vogel, W. Effects of the Janus kinase inhibitor, tofacitinib, on testicular Leydig cell hyperplasia and adenoma in rats, and on prolactin signaling in cultured primary rat Leydig cells. Toxicol. Sci. 2017, 155, 148–156. [Google Scholar] [CrossRef]
- Ocampo Daza, D.; Larhammar, D. Evolution of the growth hormone, prolactin, prolactin 2 and somatolactin family. Gen. Comp. Endocrinol. 2018, 264, 94–112. [Google Scholar] [CrossRef]
- Raut, S.; Deshpande, S.; Balasinor, N.H. Unveiling the role of prolactin and its receptor in male reproduction. Horm. Metab. Res. 2019, 51, 215–219. [Google Scholar] [CrossRef] [Green Version]
- Bex, F.J.; Bartke, A. Testicular LH binding in the hamster: Modification by photoperiod and prolactin. Endocrinology 1977, 100, 1223–1226. [Google Scholar] [CrossRef]
- Takase, M.; Tsutsui, K.; Kawashima, S. Effects of PRL and FSH on LH binding and number of Leydig cells in hypophysectomized mice. Endocrinol. Jpn. 1990, 37, 193–203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dombrowicz, D.; Sente, B.; Closset, J.; Hennen, G. Dose-dependent effects of human prolactin on the immature hypophysectomized rat testis. Endocrinology 1992, 130, 695–700. [Google Scholar] [CrossRef] [PubMed]
- Purvis, K.; Clausen, O.P.F.; Olsen, A.; Haug, E.; Hansson, V. Prolactin and Leydig cell responsiveness to LH/hCG in the rat. Syst. Biol. Reprod. Med. 1979, 3, 219–230. [Google Scholar] [CrossRef] [PubMed]
- Klemcke, H.G.; Bartke, A.; Borer, K.T. Regulation of testicular prolactin and luteinizing hormone receptors in golden hamsters. Endocrinology 1984, 114, 594–603. [Google Scholar] [CrossRef]
- Aragona, C.; Bohnet, H.G.; Friesen, H.G. Localization of prolactin binding in prostate and testis: The role of serum prolactin concentration on the testicular LH receptor. Acta Endocrinol. 1977, 84, 402–409. [Google Scholar] [CrossRef]
- Grizard, G.; Andre, M.; Jarrige, J.F.; Chambon, M.; Boucher, D. Effects of bromocriptine on pituitary-testicular function in the rat: Possible inhibition of in vitro production of androgen by Leydig cells. Int. J. Androl. 1983, 6, 563–574. [Google Scholar] [CrossRef] [PubMed]
- Waeber, C.; Reymond, O.; Reymond, M.; Lemarchand-Beraud, T. Effects of hyper- and hypoprolactinemia on gonadotropin secretion, rat testicular luteinizing hormone/human chorionic gonadotropin receptors and testosterone production by isolated Leydig cells. Biol. Reprod. 1983, 28, 167–177. [Google Scholar] [CrossRef] [Green Version]
- Weiss-Messer, E.; Ber, R.; Barkey, R.J. Prolactin and MA-10 Leydig cell steroidogenesis: Biphasic effects of prolactin and signal transduction. Endocrinology 1996, 137, 5509–5518. [Google Scholar] [CrossRef]
- Steger, R.W.; Chandrashekar, V.; Zhao, W.; Bartke, A.; Horseman, N.D. Neuroendocrine and reproductive functions in male mice with targeted disruption of the prolactin gene. Endocrinology 1998, 139, 3691–3695. [Google Scholar] [CrossRef]
- Binart, N.; Melaine, N.; Pineau, C.; Kercret, H.; Touzalin, A.M.; Imbert-Bolloré, P.; Kelly, P.A.; Jégou, B. Male reproductive function is not affected in prolactin receptor-deficient mice. Endocrinology 2003, 144, 3779–3782. [Google Scholar] [CrossRef] [Green Version]
- Ji, M.; Chen, D.; Zhao, X.; Huang, F.; Guan, X.; Wen, X.; Wang, J.; Shao, J.; Xie, J.; Shan, D.; et al. Isolation of Leydig cells from adult rat testes by magnetic-activated cell sorting protocol based on prolactin receptor expression. Andrology 2022, 10, 1197–1207. [Google Scholar] [CrossRef] [PubMed]
- Jabbour, H.N.; Lincoln, G.A. Prolactin receptor expression in the testis of the ram: Localisation, functional activation and the influence of gonadotrophins. Mol. Cell. Endocrinol. 1999, 148, 151–161. [Google Scholar] [CrossRef] [PubMed]
- Hair, W.M.; Gubbay, O.; Jabbour, H.N.; Lincoln, G.A. Prolactin receptor expression in human testis and accessory tissues: Localization and function. Mol. Hum. Reprod. 2002, 8, 606–611. [Google Scholar] [CrossRef] [PubMed]
- Barkey, R.J.; Weiss-Messer, E.; Hacham, H.; Herscovich, S.; Ber, R.; Amit, T. Prolactin and testicular Leydig cell function: Characterization of prolactin receptors in the murine MA-10 testicular Leydig cell line. Proc. Soc. Exp. Biol. Med. 1994, 206, 243–248. [Google Scholar] [CrossRef]
- Wahlström, T.; Huhtaniemi, I.; Hovatta, O.; Seppälä, M. Localization of luteinizing hormone, follicle-stimulating hormone, prolactin, and their receptors in human and rat testis using immunohistochemistry and radioreceptor assay. J. Clin. Endocrinol. Metab. 1983, 57, 825–830. [Google Scholar] [CrossRef]
- Bole-Feysot, C.; Goffin, V.; Edery, M.; Binart, N.; Kelly, P.A. Prolactin (PRL) and its receptor: Actions, signal transduction pathways and phenotypes observed in PRL receptor knockout mice. Endocr. Rev. 1998, 19, 225–268. [Google Scholar] [CrossRef]
- Manna, P.R.; El-Hefnawy, T.; Kero, J.; Huhtaniemi, I.T. Biphasic action of prolactin in the regulation of murine Leydig tumor cell functions. Endocrinology 2001, 142, 308–318. [Google Scholar] [CrossRef]
- Griffeth, R.J.; Bianda, V.; Nef, S. The emerging role of insulin-like growth factors in testis development and function. Basic Clin. Androl. 2014, 24, 12. [Google Scholar] [CrossRef]
- Ashcroft, F.M.; Proks, P.; Smith, P.A.; Ammälä, C.; Bokvist, K.; Rorsman, P. Stimulus-secretion coupling in pancreatic beta cells. J. Cell. Biochem. 1994, 55, 54–65. [Google Scholar] [CrossRef]
- Röder, P.V.; Wu, B.; Liu, Y.; Han, W. Pancreatic regulation of glucose homeostasis. Exp. Mol. Med. 2016, 48, e219. [Google Scholar] [CrossRef] [Green Version]
- Maresch, C.C.; Stute, D.C.; Alves, M.G.; Oliveira, P.F.; de Kretser, D.M.; Linn, T. Diabetes-induced hyperglycemia impairs male reproductive function: A systematic review. Hum. Reprod. Update 2018, 24, 86–105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kitamura, T.; Kahn, C.R.; Accili, D. Insulin receptor knockout mice. Annu. Rev. Physiol. 2003, 65, 313–332. [Google Scholar] [CrossRef]
- Ballester, J.; Muñoz, M.C.; Domínguez, J.; Rigau, T.; Guinovart, J.J.; Rodríguez-Gil, J.E. Insulin-dependent diabetes affects testicular function by FSH- and LH-linked mechanisms. J. Androl. 2004, 25, 706–719. [Google Scholar] [CrossRef] [PubMed]
- Schoeller, E.L.; Albanna, G.; Frolova, A.I.; Moley, K.H. Insulin rescues impaired spermatogenesis via the hypothalamic-pituitary- gonadal axis in Akita diabetic mice and restores male fertility. Diabetes 2012, 61, 1869–1878. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wagner, I.V.; Klöting, N.; Savchuk, I.; Eifler, L.; Kulle, A.; Kralisch-Jäcklein, S.; Dötsch, J.; Hiort, O.; Svechnikov, K.; Söder, O. Diabetes Type 1 Negatively Influences Leydig Cell Function in Rats, Which is Partially Reversible by Insulin Treatment. Endocrinol. 2021, 162, bqab017. [Google Scholar] [CrossRef]
- Navarro-Casado, L.; Juncos-Tobarra, M.A.; Cháfer-Rudilla, M.; Íñiguez De Onzoño, L.; Blázquez-Cabrera, J.A.; Miralles-García, J.M. Effect of experimental diabetes and STZ on male fertility capacity. Study in rats. J. Androl. 2010, 31, 584–592. [Google Scholar] [CrossRef]
- Ermetici, F.; Donadio, F.; Iorio, L.; Malavazos, A.E.; Dolci, A.; Peverelli, E.; Barbieri, A.M.; Morricone, L.; Chiodini, I.; Arosio, M.; et al. Peripheral insulin-like factor 3 concentrations are reduced in men with type 2 diabetes mellitus: Effect of glycemic control and visceral adiposity on Leydig cell function. Eur. J. Endocrinol. 2009, 161, 853–859. [Google Scholar] [CrossRef] [Green Version]
- Neirijnck, Y.; Calvel, P.; Kilcoyne, K.R.; Kühne, F.; Stévant, I.; Griffeth, R.J.; Pitetti, J.L.; Andric, S.A.; Hu, M.C.; Pralong, F.; et al. Insulin and IGF1 receptors are essential for the development and steroidogenic function of adult Leydig cells. FASEB J. 2018, 32, 3321–3335. [Google Scholar] [CrossRef] [Green Version]
- Lin, T.; Haskell, J.; Vinson, N.; Terracio, L. Characterization of insulin and insulin-like growth factor i receptors of purified leydig cells and their role in steroidogenesis in primary culture: A comparative study. Endocrinology 1986, 119, 1641–1647. [Google Scholar] [CrossRef]
- Leisegang, K.; Henkel, R. The in vitro modulation of steroidogenesis by inflammatory cytokines and insulin in TM3 Leydig cells. Reprod. Biol. Endocrinol. 2018, 16, 26. [Google Scholar] [CrossRef] [Green Version]
- Ahn, S.W.; Gang, G.T.; Kim, Y.D.; Ahn, R.S.; Harris, R.A.; Lee, C.H.; Choi, H.S. Insulin directly regulates steroidogenesis via induction of the orphan nuclear receptor DAX-1 in testicular Leydig cells. J. Biol. Chem. 2013, 288, 15937–15946. [Google Scholar] [CrossRef] [Green Version]
- Avruch, J. MAP kinase pathways: The first twenty years. Biochim. Biophys. Acta-Mol. Cell Res. 2007, 1773, 1150–1160. [Google Scholar] [CrossRef] [Green Version]
- Cannarella, R.; Condorelli, R.A.; La Vignera, S.; Calogero, A.E. Effects of the insulin-like growth factor system on testicular differentiation and function: A review of the literature. Andrology 2018, 6, 3–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Handelsman, D.J.; Spaliviero, J.A.; Scott, C.D.; Baxter, R.C. Identification of insulin-like growth factor-I and its receptors in the rat testis. Acta Endocrinol. 1985, 109, 543–549. [Google Scholar] [CrossRef]
- Wang, G.; Hardy, M.P. Development of Leydig cells in the insulin-like growth factor-I (IGF-I) knockout mouse: Effects of IGF-I replacement and gonadotropic stimulation. Biol. Reprod. 2004, 70, 632–639. [Google Scholar] [CrossRef]
- Xu, Y.; Han, C.Y.; Park, M.J.; Gye, M.C. Increased testicular insulin-like growth factor 1 is associated with gonadal activation by recombinant growth hormone in immature rats. Reprod. Biol. Endocrinol. 2022, 20, 72. [Google Scholar] [CrossRef] [PubMed]
- Cailleau, J.; Vermeire, S.; Verhoeven, G. Independent control of the production of insulin-like growth factor I and its binding protein by cultured testicular cells. Mol. Cell. Endocrinol. 1990, 69, 79–89. [Google Scholar] [CrossRef]
- Nagpal, M.L.; Wang, D.; Calkins, J.H.; Chang, W.W.; Lin, T. Human chorionic gonadotropin up-regulates insulin-like growth factor-I receptor Gene expression of Leydig cells. Endocrinology 1991, 129, 2820–2826. [Google Scholar] [CrossRef]
- Lin, T.; Blaisdell, J.; Haskell, J.F. Hormonal regulation of type I insulin-like growth factor receptors of Leydig cells in hypophysectomized rats. Endocrinology 1988, 123, 134–139. [Google Scholar] [CrossRef] [PubMed]
- Baker, J.; Hardy, M.P.; Zhou, J.; Bondy, C.; Lupu, F.; Bellvé, A.R.; Efstratiadis, A. Effects of an Igf1 gene null mutation on mouse reproduction. Mol. Endocrinol. 1996, 10, 903–918. [Google Scholar] [CrossRef] [Green Version]
- Hakuno, F.; Takahashi, S.I. 40 years of IGF1: IGF1 receptor signaling pathways. J. Mol. Endocrinol. 2018, 61, T69–T86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, S.; Teerds, K.; Dorrington, J. Growth factor requirements for DNA synthesis by Leydig cells from the immature rat. Biol. Reprod. 1992, 46, 335–341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, G.M.; O’Shaughnessy, P.J.; Chubb, C.; Robaire, B.; Hardy, M.P. Effects of insulin-like growth factor I on steroidogenic enzyme expression levels in mouse Leydig cells. Endocrinology 2003, 144, 5058–5064. [Google Scholar] [CrossRef] [Green Version]
- Moore, A.; Morris, I.D. The involvement of insulin-like growth factor-I in local control of steroidogenesis and DNA synthesis of Leydig and non-Leydig cells in the rat testicular interstitium. J. Endocrinol. 1993, 138, 107–114. [Google Scholar] [CrossRef]
- Hu, G.-X.; Lin, H.; Chen, G.-R.; Chen, B.-B.; Lian, Q.-Q.; Hardy, D.O.; Zirkin, B.R.; Ge, R.-S. Deletion of the Igf1 gene: Suppressive effects on adult Leydig cell development. J. Androl. 2010, 31, 379–387. [Google Scholar] [CrossRef] [Green Version]
- Colón, E.; Zaman, F.; Axelson, M.; Larsson, O.; Carlsson-Skwirut, C.; Svechnikov, K.V.; Söder, O. Insulin-like growth factor-I is an important antiapoptotic factor for rat Leydig cells during postnatal development. Endocrinology 2007, 148, 128–139. [Google Scholar] [CrossRef]
- Tai, P.; Shiraishi, K.; Ascoli, M. Activation of the lutropin/choriogonadotropin receptor inhibits apoptosis of immature Leydig cells in primary culture. Endocrinology 2009, 150, 3766–3773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villalpando, I.; Lira, E.; Medina, G.; Garcia-Garcia, E.; Echeverria, O. Insulin-like growth factor 1 is expressed in mouse developing testis and regulates somatic cell proliferation. Exp. Biol. Med. 2008, 233, 419–426. [Google Scholar] [CrossRef]
- Ornitz, D.M.; Itoh, N. New developments in the biology of fibroblast growth factors. WIREs Mech. Dis. 2022, 14, e1549. [Google Scholar] [CrossRef]
- Cotton, L.M.; O’Bryan, M.K.; Hinton, B.T. Cellular signaling by fibroblast growth factors (FGFs) and their receptors (FGFRs) in male reproduction. Endocr. Rev. 2008, 29, 193–216. [Google Scholar] [CrossRef] [Green Version]
- Ostrer, H.; Huang, H.Y.; Masch, R.J.; Shapiro, E. A cellular study of human testis development. Sex. Dev. 2007, 1, 286–292. [Google Scholar] [CrossRef] [PubMed]
- Lai, M.S.; Wang, C.Y.; Yang, S.H.; Wu, C.C.; Sun, H.S.; Tsai, S.J.; Chuang, J.I.; Chen, Y.C.; Huang, B.M. The expression profiles of fibroblast growth factor 9 and its receptors in developing mice testes. Organogenesis 2016, 12, 61–77. [Google Scholar] [CrossRef] [Green Version]
- Gao, X.; Yao, X.; Yang, H.; Deng, K.; Guo, Y.; Zhang, T.; Zhang, G.; Wang, F. Role of FGF9 in sheep testis steroidogenesis during sexual maturation. Anim. Reprod. Sci. 2018, 197, 177–184. [Google Scholar] [CrossRef]
- DiNapoli, L.; Batchvarov, J.; Capel, B. FGF9 promotes survival of germ cells in the fetal testis. Development 2006, 133, 1519–1527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, Y.M.; Tsai, C.C.; Chung, C.L.; Chen, P.R.; Sunny Sun, H.; Tsai, S.J.; Huang, B.M. Fibroblast growth factor 9 stimulates steroidogenesis in postnatal Leydig cells. Int. J. Androl. 2010, 33, 545–553. [Google Scholar] [CrossRef]
- Colvin, J.S.; Green, R.P.; Schmahl, J.; Capel, B.; Ornitz, D.M. Male-to-female sex reversal in mice lacking fibroblast growth factor 9. Cell 2001, 104, 875–889. [Google Scholar] [CrossRef] [PubMed]
- Croft, B.; Bird, A.D.; Ono, M.; Eggers, S.; Bagheri-Fam, S.; Ryan, J.M.; Reyes, A.P.; van den Bergen, J.; Baxendale, A.; Thompson, E.M.; et al. FGF9 variant in 46,XY DSD patient suggests a role for dimerization in sex determination. Clin. Genet. 2023, 103, 277–287. [Google Scholar] [CrossRef]
- Lai, M.S.; Cheng, Y.S.; Chen, P.R.; Tsai, S.J.; Huang, B.M. Fibroblast growth factor 9 activates Akt and MAPK pathways to stimulate steroidogenesis in mouse leydig cells. PLoS ONE 2014, 9, e90243. [Google Scholar] [CrossRef] [Green Version]
- Zeng, F.; Harris, R.C. Epidermal growth factor, from gene organization to bedside. Semin. Cell Dev. Biol. 2014, 28, 2–11. [Google Scholar] [CrossRef] [Green Version]
- Abud, H.E.; Chan, W.H.; Jardé, T. Source and impact of the EGF family of ligands on intestinal stem cells. Front. Cell Dev. Biol. 2021, 9, 685665. [Google Scholar] [CrossRef]
- Sibilia, M.; Wagner, E.F. Strain-dependent epithelial defects in mice lacking the EGF receptor. Science 1995, 269, 234–238. [Google Scholar] [CrossRef] [PubMed]
- Threadgill, D.W.; Dlugosz, A.A.; Hansen, L.A.; Tennenbaum, T.; Lichti, U.; Yee, D.; LaMantia, C.; Mourton, T.; Herrup, K.; Harris, R.C. Targeted disruption of mouse EGF receptor: Effect of genetic background on mutant phenotype. Science 1995, 269, 230–234. [Google Scholar] [CrossRef]
- Luetteke, N.C.; Qiu, T.H.; Fenton, S.E.; Troyer, K.L.; Riedel, R.F.; Chang, A.; Lee, D.C. Targeted inactivation of the EGF and amphiregulin genes reveals distinct roles for EGF receptor ligands in mouse mammary gland development. Development 1999, 126, 2739–2750. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.C.; Sun, Y.P.; Zhang, M.L.; Koide, S.S. Testis epidermal growth factor and spermatogenesis. Arch. Androl. 1998, 40, 133–146. [Google Scholar] [CrossRef]
- Manna, P.R.; Huhtaniemi, I.T.; Wang, X.J.; Eubank, D.W.; Stocco, D.M. Mechanisms of epidermal growth factor signaling: Regulation of steroid biosynthesis and the steroidogenic acute regulatory protein in mouse Leydig tumor cells. Biol. Reprod. 2002, 67, 1393–1404. [Google Scholar] [CrossRef] [PubMed]
- Ascoli, M.; Euffa, J.; Segaloff, D.L. Epidermal growth factor activates steroid biosynthesis in cultured Leydig tumor cells without affecting the levels of cAMP and potentiates the activation of steroid biosynthesis by choriogonadotropin and cAMP. J. Biol. Chem. 1987, 262, 9196–9203. [Google Scholar] [CrossRef]
- Evaul, K.; Hammes, S.R. Cross-talk between G protein-coupled and epidermal growth factor receptors regulates gonadotropin-mediated steroidogenesis in Leydig cells. J. Biol. Chem. 2008, 283, 27525–27533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sordoillet, C.; Chauvin, M.A.; de Peretti, E.; Morera, A.M.; Benahmed, M. Epidermal growth factor directly stimulates steroidogenesis in primary cultures of porcine Leydig cells: Actions and sites of action. Endocrinology 1991, 128, 2160–2168. [Google Scholar] [CrossRef]
- Verhoeven, G.; Cailleau, J. Stimulatory effects of epidermal growth factor on steroidogenesis in Leydig cells. Mol. Cell. Endocrinol. 1986, 47, 99–106. [Google Scholar] [CrossRef]
- Syed, V.; Khan, S.A.; Nieschlag, E. Epidermal growth factor stimulates testosterone production of human Leydig cells in vitro. J. Endocrinol. Investig. 1991, 14, 93–97. [Google Scholar] [CrossRef]
- Hsueh, A.J.; Welsh, T.H.; Jones, P.B. Inhibition of ovarian and testicular steroidogenesis by epidermal growth factor. Endocrinology 1981, 108, 2002–2004. [Google Scholar] [CrossRef]
- Li, X.; Wang, Y.; Zhu, Q.; Yuan, K.; Su, Z.; Ge, F.; Ge, R.S.; Huang, Y. Epidermal growth factor regulates the development of stem and progenitor Leydig cells in rats. J. Cell. Mol. Med. 2020, 24, 7313–7330. [Google Scholar] [CrossRef] [PubMed]
- Tfelt-Hansen, J.; Yano, S.; John Macleod, R.; Smajilovic, S.; Chattopadhyay, N.; Brown, E.M. High calcium activates the EGF receptor potentially through the calcium-sensing receptor in Leydig cancer cells. Growth Factors 2005, 23, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Zhang, D.; Zhou, Y.; Sun, L.; Li, C.; Luo, X.; Liu, J.; Cui, S. Casein kinase 1α regulates testosterone synthesis and testis development in adult mice. Endocrinology 2023, 164, bqad042. [Google Scholar] [CrossRef] [PubMed]
- Jensen, M.B. Vitamin D and male reproduction. Nat. Rev. Endocrinol. 2014, 10, 175–186. [Google Scholar] [CrossRef]
- Morris, H.A.; Anderson, P.H. Autocrine and paracrine actions of vitamin D. Clin. Biochem. Rev. 2010, 31, 129–138. [Google Scholar]
- Adamczewska, D.; Słowikowska-Hilczer, J.; Walczak-Jędrzejowska, R. The association between vitamin D and the components of male fertility: A systematic review. Biomedicines 2023, 11, 90. [Google Scholar] [CrossRef]
- Haussler, M.R.; Jurutka, P.W.; Mizwicki, M.; Norman, A.W. Vitamin D receptor (VDR)-mediated actions of 1α,25(OH)2vitamin D3: Genomic and non-genomic mechanisms. Best Pract. Res. Clin. Endocrinol. Metab. 2011, 25, 543–559. [Google Scholar] [CrossRef]
- Hewison, M. Vitamin D and immune function: Autocrine, paracrine or endocrine? Scand. J. Clin. Lab. Investig. 2012, 72, 92–102. [Google Scholar] [CrossRef]
- Boisen, I.M.; Bøllehuus Hansen, L.; Mortensen, L.J.; Lanske, B.; Juul, A.; Blomberg Jensen, M. Possible influence of vitamin D on male reproduction. J. Steroid Biochem. Mol. Biol. 2017, 173, 215–222. [Google Scholar] [CrossRef]
- Foresta, C.; Strapazzon, G.; De Toni, L.; Perilli, L.; Di Mambro, A.; Muciaccia, B.; Sartori, L.; Selice, R. Bone mineral density and testicular failure: Evidence for a role of vitamin D 25-hydroxylase in human testis. J. Clin. Endocrinol. Metab. 2011, 96, 646–652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foresta, C.; Selice, R.; De Toni, L.; Di Mambro, A.; Carraro, U.; Plebani, M.; Garolla, A. Altered bone status in unilateral testicular cancer survivors: Role of CYP2R1 and its luteinizing hormone-dependency. J. Endocrinol. Investig. 2013, 36, 379–384. [Google Scholar] [CrossRef]
- Anderson, P.H.; Hendrix, I.; Sawyer, R.K.; Zarrinkalam, R.; Manavis, J.; Sarvestani, G.T.; May, B.K.; Morris, H.A. Co-expression of CYP27B1 enzyme with the 1.5 kb CYP27B1 promoter-luciferase transgene in the mouse. Mol. Cell. Endocrinol. 2008, 285, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Hendrix, I.; Anderson, P.; May, B.; Morris, H. Regulation of gene expression by the CYP27B1 promoter-study of a transgenic mouse model. J. Steroid Biochem. Mol. Biol. 2004, 89–90, 139–142. [Google Scholar] [CrossRef]
- Blomberg Jensen, M.; Nielsen, J.E.; Jørgensen, A.; Rajpert-De Meyts, E.; Kristensen, D.M.; Jørgensen, N.; Skakkebaek, N.E.; Juul, A.; Leffers, H. Vitamin D receptor and vitamin D metabolizing enzymes are expressed in the human male reproductive tract. Hum. Reprod. 2010, 25, 1303–1311. [Google Scholar] [CrossRef] [Green Version]
- Blomberg Jensen, M.; Jørgensen, A.; Nielsen, J.E.; Bjerrum, P.J.; Skalkam, M.; Petersen, J.H.; Egeberg, D.L.; Bangsbøll, S.; Andersen, A.N.; Skakkebæk, N.E.; et al. Expression of the vitamin D metabolizing enzyme CYP24A1 at the annulus of human spermatozoa may serve as a novel marker of semen quality. Int. J. Androl. 2012, 35, 499–510. [Google Scholar] [CrossRef]
- Holt, R.; Juel Mortensen, L.; Harpelunde Poulsen, K.; Nielsen, J.E.; Frederiksen, H.; Jørgensen, N.; Jørgensen, A.; Juul, A.; Blomberg Jensen, M. Vitamin D and sex steroid production in men with normal or impaired Leydig cell function. J. Steroid Biochem. Mol. Biol. 2020, 199, 105589. [Google Scholar] [CrossRef]
- Ferlin, A.; Selice, R.; Carraro, U.; Foresta, C. Testicular function and bone metabolism-Beyond testosterone. Nat. Rev. Endocrinol. 2013, 9, 548–554. [Google Scholar] [CrossRef]
- Lerchbaum, E.; Trummer, C.; Theiler-Schwetz, V.; Kollmann, M.; Wölfler, M.; Heijboer, A.C.; Pilz, S.; Obermayer-Pietsch, B. Effects of vitamin D supplementation on androgens in men with low testosterone levels: A randomized controlled trial. Eur. J. Nutr. 2019, 58, 3135–3146. [Google Scholar] [CrossRef] [Green Version]
- Tak, Y.J.; Lee, J.G.; Kim, Y.J.; Park, N.C.; Kim, S.S.; Lee, S.; Cho, B.M.; Kong, E.H.; Jung, D.W.; Yi, Y.H. Serum 25-hydroxyvitamin D levels and testosterone deficiency in middle-aged Korean men: A cross-sectional study. Asian J. Androl. 2015, 17, 324–328. [Google Scholar] [CrossRef]
- Canguven, O.; Talib, R.A.; El Ansari, W.; Yassin, D.-J.; Al Naimi, A. Vitamin D treatment improves levels of sexual hormones, metabolic parameters and erectile function in middle-aged vitamin D deficient men. Aging Male 2017, 20, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Santos, H.O.; Howell, S.; Nichols, K.; Teixeira, F.J. Reviewing the evidence on vitamin D supplementation in the management of testosterone status and its effects on male reproductive system (testis and prostate): Mechanistically dazzling but clinically disappointing. Clin. Ther. 2020, 42, e101–e114. [Google Scholar] [CrossRef] [PubMed]
- Rafiq, R.; van Schoor, N.M.; Sohl, E.; Zillikens, M.C.; Oosterwerff, M.M.; Schaap, L.; Lips, P.; de Jongh, R.T. Associations of vitamin D status and vitamin D-related polymorphisms with sex hormones in older men. J. Steroid Biochem. Mol. Biol. 2016, 164, 11–17. [Google Scholar] [CrossRef]
- Panda, D.K.; Miao, D.; Tremblay, M.L.; Sirois, J.; Farookhi, R.; Hendy, G.N.; Goltzman, D. Targeted ablation of the 25-hydroxyvitamin D 1α-hydroxylase enzyme: Evidence for skeletal, reproductive, and immune dysfunction. Proc. Natl. Acad. Sci. USA 2001, 98, 7498–7503. [Google Scholar] [CrossRef]
- Blomberg Jensen, M.; Lieben, L.; Nielsen, J.E.; Willems, A.; Jørgensen, A.; Juul, A.; Toppari, J.; Carmeliet, G.; Rajpert-De Meyts, E. Characterization of the testicular, epididymal and endocrine phenotypes in the Leuven Vdr-deficient mouse model: Targeting estrogen signalling. Mol. Cell. Endocrinol. 2013, 377, 93–102. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Lu, H.; Wang, S.; Liu, H.; Guo, M.; Bai, H.; Zeng, W.; Zhang, T. Vitamin D receptor affects male mouse fertility via regulation of lipid metabolism and testosterone biosynthesis in testis. Gene 2022, 834, 146589. [Google Scholar] [CrossRef]
- Zhang, T.; Yin, Y.; Liu, H.; Du, W.; Ren, C.; Wang, L.; Lu, H.; Zhang, Z. Generation of VDR knock-out mice via zygote injection of CRISPR/Cas9 system. PLoS ONE 2016, 11, e0163551. [Google Scholar] [CrossRef] [Green Version]
- Johnson, L.E.; DeLuca, H.F. Vitamin D receptor null mutant mice fed high levels of calcium are fertile. J. Nutr. 2001, 131, 1787–1791. [Google Scholar] [CrossRef] [Green Version]
- Kinuta, K.; Tanaka, H.; Moriwake, T.; Aya, K.; Kato, S.; Seino, Y. Vitamin D is an important factor in estrogen biosynthesis of both female and male gonads. Endocrinology 2000, 141, 1317–1324. [Google Scholar] [CrossRef]
- Xue, Z.; Zhuang, J.; Bai, H.; Wang, L.; Lu, H.; Wang, S.; Zeng, W.; Zhang, T. VDR mediated HSD3B1 to regulate lipid metabolism and promoted testosterone synthesis in mouse Leydig cells. Genes Genom. 2022, 44, 583–592. [Google Scholar] [CrossRef]
- Zamani, A.; Saki, F.; Hatami, N.; Koohpeyma, F. Stereological assessment of the effects of vitamin D deficiency on the rat testis. BMC Endocr. Disord. 2020, 20, 162. [Google Scholar] [CrossRef] [PubMed]
- Hauschka, P.V.; Lian, J.B.; Cole, D.E.; Gundberg, C.M. Osteocalcin and matrix Gla protein: Vitamin K-dependent proteins in bone. Physiol. Rev. 1989, 69, 990–1047. [Google Scholar] [CrossRef] [PubMed]
- Poser, J.W.; Esch, F.S.; Ling, N.C.; Price, P.A. Isolation and sequence of the vitamin K-dependent protein from human bone. Undercarboxylation of the first glutamic acid residue. J. Biol. Chem. 1980, 255, 8685–8691. [Google Scholar] [CrossRef] [PubMed]
- Oury, F.; Ferron, M.; Huizhen, W.; Confavreux, C.; Xu, L.; Lacombe, J.; Srinivas, P.; Chamouni, A.; Lugani, F.; Lejeune, H.; et al. Osteocalcin regulates murine and human fertility through a pancreas-bone-testis axis. J. Clin. Investig. 2013, 123, 2421–2433. [Google Scholar] [CrossRef] [PubMed]
- Khrimian, L.; Obri, A.; Ramos-Brossier, M.; Rousseaud, A.; Moriceau, S.; Nicot, A.-S.; Mera, P.; Kosmidis, S.; Karnavas, T.; Saudou, F.; et al. Gpr158 mediates osteocalcin’s regulation of cognition. J. Exp. Med. 2017, 214, 2859–2873. [Google Scholar] [CrossRef]
- Oury, F.; Sumara, G.; Sumara, O.; Ferron, M.; Chang, H.; Smith, C.E.; Hermo, L.; Suarez, S.; Roth, B.L.; Ducy, P.; et al. Endocrine regulation of male fertility by the skeleton. Cell 2011, 144, 796–809. [Google Scholar] [CrossRef] [Green Version]
- Pi, M.; Chen, L.; Huang, M.Z.; Zhu, W.; Ringhofer, B.; Luo, J.; Christenson, L.; Li, B.; Zhang, J.; Jackson, P.D.; et al. GPRC6A null mice exhibit osteopenia, feminization and metabolic syndrome. PLoS ONE 2008, 3, e3858. [Google Scholar] [CrossRef]
- Shan, C.; Yue, J.; Liu, W. Broadening the role of osteocalcin in the hypothalamic-pituitary-gonadal axis. J. Endocrinol. 2021, 249, R43–R51. [Google Scholar] [CrossRef]
- Hannemann, A.; Breer, S.; Wallaschofski, H.; Nauck, M.; Baumeister, S.E.; Barvencik, F.; Amling, M.; Schinke, T.; Haring, R.; Keller, J. Osteocalcin is associated with testosterone in the general population and selected patients with bone disorders. Andrology 2013, 1, 469–474. [Google Scholar] [CrossRef] [Green Version]
- Jawich, K.; Rocca, M.S.; Al Fahoum, S.; Alhalabi, M.; Di Nisio, A.; Foresta, C.; Ferlin, A.; De Toni, L. RS 2247911 polymorphism of GPRC6A gene and serum undercarboxylated-osteocalcin are associated with testis function. J. Endocrinol. Investig. 2022, 45, 1673–1682. [Google Scholar] [CrossRef]
- De Toni, L.; De Filippis, V.; Tescari, S.; Ferigo, M.; Ferlin, A.; Scattolini, V.; Avogaro, A.; Vettor, R.; Foresta, C. Uncarboxylated osteocalcin stimulates 25-hydroxy vitamin D production in Leydig cell line through a GPRC6a-dependent pathway. Endocrinology 2014, 155, 4266–4274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Mattos, K.; Pierre, K.J.; Tremblay, J.J. Hormones and Signaling Pathways Involved in the Stimulation of Leydig Cell Steroidogenesis. Endocrines 2023, 4, 573-594. https://doi.org/10.3390/endocrines4030041
de Mattos K, Pierre KJ, Tremblay JJ. Hormones and Signaling Pathways Involved in the Stimulation of Leydig Cell Steroidogenesis. Endocrines. 2023; 4(3):573-594. https://doi.org/10.3390/endocrines4030041
Chicago/Turabian Stylede Mattos, Karine, Kenley Joule Pierre, and Jacques J. Tremblay. 2023. "Hormones and Signaling Pathways Involved in the Stimulation of Leydig Cell Steroidogenesis" Endocrines 4, no. 3: 573-594. https://doi.org/10.3390/endocrines4030041
APA Stylede Mattos, K., Pierre, K. J., & Tremblay, J. J. (2023). Hormones and Signaling Pathways Involved in the Stimulation of Leydig Cell Steroidogenesis. Endocrines, 4(3), 573-594. https://doi.org/10.3390/endocrines4030041