Electrocatalytic Reduction of O2 by ITO-IrOx: Implication for Dissolved Oxygen Sensor in the Alkaline Medium
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Preparation of Precursor Solution for Electrode Modification (Ir2O3·nH2O Colloid)
2.3. Fabrication of Electrode and Electrochemical Measurements
2.4. Surface Analysis
3. Results and Discussion
3.1. Spectroscopic Characterization
3.2. Voltammetric Characterization of Oxide Thin Film
3.3. EIS Studies
3.4. ORR Studies
3.4.1. Catalysis
3.4.2. Sensing, Stability and Interference of Some Common Ion Study
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shin, I.S.; Hirsch, T.; Ehrl, B.; Jang, D.H.; Wolfbeis, O.S.; Hong, J.I. Efficient fluorescence “turn-on” sensing of dissolved oxygen by electrochemical switching. Anal. Chem. 2012, 84, 9163–9168. [Google Scholar] [CrossRef] [PubMed]
- Faruk Hossain, M.; McCracken, S.; Slaughter, G. Electrochemical laser induced graphene-based oxygen sensor. J. Electroanal. Chem. 2021, 899, 115690. [Google Scholar] [CrossRef]
- Keenan, L.W.; Miller, S.J. Low-Maintenance, Precision Amplifier, Dissolved Oxygen Sensor, and Miniature Data Logger System Designed for Long-Term Deployment in Riverine Systems. Trans. Am. Fish. Soc. 2010, 139, 593–597. [Google Scholar] [CrossRef]
- Nagel, B.; Dellweg, H.; Gierasch, L.M. Glossary for chemists of terms used in biotechnology (IUPAC Recommendations 1992). Pure Appl. Chem. 1992, 64, 143–168. [Google Scholar] [CrossRef] [Green Version]
- Prambudy, H.; Supriyatin, T.; Setiawan, F. The testing of Chemical Oxygen Demand (COD) and Biological Oxygen Demand (BOD) of river water in Cipager Cirebon. IOP Conf. Ser. J. Phys. Conf. Ser. 2019, 1360, 012010. [Google Scholar] [CrossRef]
- Reynolds, D.M.; Ahmad, S.R. Rapid and direct determination of wastewater BOD values using a fluorescence technique. Water Res. 1997, 31, 2012–2018. [Google Scholar] [CrossRef]
- Hur, J.; Lee, B.M.; Lee, T.H.; Park, D.H. Estimation of biological oxygen demand and chemical oxygen demand for combined sewer systems using synchronous fluorescence spectra. Sensors 2010, 10, 2460–2471. [Google Scholar] [CrossRef]
- Chang-Yen, D.A.; Gale, B.K. An integrated optical oxygen sensor fabricated using rapid-prototyping techniques. Lab Chip 2003, 3, 297–301. [Google Scholar] [CrossRef]
- Rivas, L.; Dulay, S.; Miserere, S.; Pla, L.; Marin, S.B.; Parra, J.; Eixarch, E.; Gratacós, E.; Illa, M.; Mir, M.; et al. Micro-needle implantable electrochemical oxygen sensor: Ex-vivo and in-vivo studies. Biosens. Bioelectron. 2020, 153, 112028. [Google Scholar] [CrossRef]
- Wang, Y.; Hosono, T.; Hasebe, Y. Hemin-adsorbed carbon felt for sensitive and rapid flow-amperometric detection of dissolved oxygen. Microchim. Acta 2013, 180, 1295–1302. [Google Scholar] [CrossRef]
- Wu, C.C.; Yasukawa, T.; Shiku, H.; Matsue, T. Fabrication of miniature Clark oxygen sensor integrated with microstructure. Sens. Actuators B Chem. 2005, 110, 342–349. [Google Scholar] [CrossRef]
- Nei, L.; Compton, R.G. An improved Clark-type galvanic sensor for dissolved oxygen. Sens. Actuators B Chem. 1996, 30, 83–87. [Google Scholar] [CrossRef]
- Jobst, G.; Urban, G.; Jachimowicz, A.; Kohl, F.; Tilado, O.; Lettenbichler, I.; Nauer, G. Thin-film Clark-type oxygen sensor based on novel polymer membrane systems for in vivo and biosensor applications. Biosens. Bioelectron. 1993, 8, 123–128. [Google Scholar] [CrossRef]
- Zhao, Y.; Ye, T.; Chen, H.; Huang, D.; Zhou, T.; He, C.; Chena, X. A dissolved oxygen sensor based on composite fluorinated xerogel doped with platinum porphyrin dye. Luminescence 2011, 26, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Liu, W.; Correia, J.P.; Mourato, A.C.; Viana, A.S.; Jin, G. Optical and Electrochemical Combination Sensor with Poly-Aniline Film Modified Gold Surface and Its Application for Dissolved Oxygen Detection. Electroanalysis 2014, 26, 374–381. [Google Scholar] [CrossRef] [Green Version]
- Ju, H.; Shen, C. Electrocatalytic Reduction and Determination of Dissolved Oxygen at a Poly(Nile Blue) Modified Electrode. Electroanalysis 2001, 13, 8–9. [Google Scholar] [CrossRef]
- Jud, W.; Salazar, C.A.; Imbrogno, J.; Verghese, J.; Guinness, S.M.; Desrosiers, J.N.; Cantillo, D. Electrochemical oxidation of alcohols using nickel oxide hydroxide as heterogeneous electrocatalyst in batch and continuous flow. Org. Process Res. Dev. 2022, 26, 1486–1495. [Google Scholar] [CrossRef]
- Saxena, A.; Liyanage, W.; Masud, J.; Kapila, S.; Nath, M. Selective electroreduction of CO2 to carbon-rich products with a simple binary copper selenide electrocatalyst. J. Mater. Chem. A 2021, 9, 7150–7161. [Google Scholar] [CrossRef]
- Saxena, A.; Liyanage, W.P.; Kapila, S.; Nath, M. Nickel selenide as an efficient electrocatalyst for selective reduction of carbon dioxide to carbon-rich products. Catal. Sci. Technol. 2022, 12, 4727–4739. [Google Scholar] [CrossRef]
- Hasnat, M.A.; Siddika, M.; Uddin, S.M.N.; Alamry, K.A.; Rahman, M.M. Fabrication of IrOx Immobilized Glassy Carbon Surface for Attaining Electrocatalytic Ascorbic Acid Oxidation Reactions. Electrochim. Acta 2021, 392, 138999. [Google Scholar] [CrossRef]
- Rivera, J.F.; Pignot-Paintrand, I.; Pereira, E.; Rivas, B.L.; Moutet, J.C. Electrosynthesized Iridium Oxide-Polymer Nanocomposite Thin Films for Electrocatalytic Oxidation of Arsenic(III). Electrochim. Acta 2013, 110, 465–473. [Google Scholar] [CrossRef]
- Wijenberg, J.H.O.J.; de Vooys, A.C.A.; Kortlever, R.; Koper, M.T.M. Oxidation Reactions in Chromium(III) Formate Electrolytes at Platinum and at a Catalytic Mixed Metal Oxide Coating of Iridium Oxide and Tantalum Oxide. Electrochim. Acta 2016, 213, 194–200. [Google Scholar] [CrossRef]
- Jiwanti, P.K.; Ichzan, A.M.; Dewandaru, R.K.P.; Atriardi, S.R.; Einaga, Y.; Ivandini, T.A. Improving the CO2 Electrochemical Reduction to Formic Acid Using Iridium-Oxide-Modified Boron-Doped Diamond Electrodes. Diam. Relat. Mater. 2020, 106, 107874. [Google Scholar] [CrossRef]
- Zhou, Z.; Li, J.; Pan, D.; Wei, H.; Wang, C.; Pan, F.; Xia, J.; Ma, S. pH Electrodes Based on Iridium Oxide Films for Marine Monitoring. Trends Environ. Anal. Chem. 2020, 25, e00083. [Google Scholar] [CrossRef]
- Sanchez Casalongue, H.G.; Ng, M.L.; Kaya, S.; Friebel, D.; Ogasawara, H.; Nilsson, A. In Situ Observation of Surface Species on Iridium Oxide Nanoparticles during the Oxygen Evolution Reaction. Angew. Chem. 2014, 53, 7169–7172. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.H.; Yuen, T.S.; Nagao, Y.; Yugami, H. Catalytic Activity of Carbon-Supported Iridium Oxide for Oxygen Reduction Reaction as a Pt-Free Catalyst in Polymer Electrolyte Fuel Cell. Solid State Ion. 2011, 197, 49–51. [Google Scholar] [CrossRef]
- Tian, Q.; Chai, L.; Zhou, Z.; Wang, C. Construction of Iridium Oxide Nanoparticle Modified Indium Tin Oxide Electrodes with Polycarboxylic Acids and Pyrophosphoric Acid and Their Application to Water Oxidation Reactions. Electrochim. Acta 2021, 389, 138683. [Google Scholar] [CrossRef]
- Kim, Y.H.; Koo, H.; Kim, M.S.; Jung, S.D. Iridium Oxide on Indium-Tin Oxide Nanowires: An All Metal Oxide Heterostructured Multi-Electrode Array for Neuronal Interfacing. Sens. Actuators B Chem. 2018, 273, 718–725. [Google Scholar] [CrossRef]
- Fernandes, D.M.; Novais, H.C.; Bacsa, R.; Serp, P.; Bachiller-Baeza, B.; Rodríguez-Ramos, I.; Freire, C. Polyoxotungstate@ carbon nanocomposites as oxygen reduction reaction (ORR) electrocatalysts. Langmuir 2018, 34, 6376–6387. [Google Scholar] [CrossRef]
- Sun, Y.; Li, S.; Paul, B.; Han, L.; Strasser, P. Highly efficient electrochemical production of hydrogen peroxide over nitrogen and phosphorus dual-doped carbon nanosheet in alkaline medium. J. Electroanal. Chem. 2021, 896, 115197. [Google Scholar] [CrossRef]
- Islam, T.; Hasan, M.; Shabik, F.; Islam, F.; Nagao, Y.; Hasnat, M.A. Electroless deposition of gold nanoparticles on a glassy carbon surface to attain methylene blue degradation via oxygen reduction reactions. Electrochim. Acta 2020, 360, 136966. [Google Scholar] [CrossRef]
- Baur, J.E.; Spaine, T.W. Electrochemical Deposition of Iridium(IV) Oxide from Alkaline Solutions of Iridium(III) Oxide. J. Electroanal. Chem. 1998, 443, 208–216. [Google Scholar] [CrossRef]
- Chen, R.S.; Chang, H.M.; Huang, Y.S.; Tsai, D.S.; Chattopadhyay, S.; Chen, K.H. Growth and Characterization of Vertically Aligned Self-Assembled IrO 2 Nanotubes on Oxide Substrates. J. Cryst. Growth 2004, 271, 105–112. [Google Scholar] [CrossRef]
- Habibzadeh, S.; Shum-Tim, D.; Omanovic, S. Surface and Electrochemical Characterization of IrTi-Oxide Coatings: Towards the Improvement of Radiopacity for Coronary Stent Applications. Int. J. Electrochem. Sci. 2013, 8, 6291–6310. [Google Scholar]
- Peuckert, M. XPS Study on Thermally and Electrochemically Prepared Oxidic Adlayers on Iridium. Surf. Sci. Lett. 1984, 144, 451–464. [Google Scholar] [CrossRef]
- Casella, I.G.; Contursi, M.; Toniolo, R. Anodic Electrodeposition of Iridium Oxide Particles on Glassy Carbon Surfaces and Their Electrochemical/SEM/XPS Characterization. J. Electroanal. Chem. 2015, 736, 147–152. [Google Scholar] [CrossRef]
- Taylor, A. Practical Surface Analysis, 2nd ed.; John Wiley: New York, NY, USA, 1990; p. 657. [Google Scholar]
- Atanasoska, L.; Atanasoski, R.; Trasatti, S. XPS and AES Study of Mixed Layers of RuO2 and IrO2. Vacuum 1990, 40, 91–94. [Google Scholar] [CrossRef]
- Claudel, F.; Dubau, L.; Berthomé, G.; Sola-Hernandez, L.; Beauger, C.; Piccolo, L.; Maillard, F. Degradation Mechanisms of Oxygen Evolution Reaction Electrocatalysts: A Combined Identical-Location Transmission Electron Microscopy and X-ray Photoelectron Spectroscopy Study. ACS Catal. 2019, 9, 4688–4698. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Mai, W.; Li, J.; Wang, H.; Li, G.; Hu, W. Highly Scattered Ir Oxides on TiN as an Efficient Oxygen Evolution Reaction Electrocatalyst in Acidic Media. J. Mater. Sci. 2020, 55, 3507–3520. [Google Scholar] [CrossRef]
- Dupin, J.C.; Gonbeau, D.; Vinatier, P.; Levasseur, A. Systematic XPS Studies of Metal Oxides, Hydroxides and Peroxides. Phys. Chem. Chem. Phys. 2000, 2, 1319–1324. [Google Scholar] [CrossRef]
- Islam, M.F.; Rakib, R.H.; Alamry, K.A.; Rahman, M.M.; Hasnat, M.A. Electrocatalytic Oxidation of Catechol Using IrOx-ITO Electrode in Aqueous Medium. J. Electroanal. Chem. 2022, 907, 116031. [Google Scholar] [CrossRef]
- Yagi, M.; Tomita, E.; Sakita, S.; Kuwabara, T.; Nagai, K. Self-assembly of active IrO2 colloid catalyst on an ITO electrode for efficient electrochemical water oxidation. J. Phys. Chem. B 2005, 109, 21489–21491. [Google Scholar] [CrossRef] [PubMed]
- Hasnat, M.A.; Rahman, M.M.; Borhanuddin, S.M.; Siddiqua, A.; Bahadur, N.M.; Karim, M.R. Efficient hydrogen peroxide decomposition on bimetallic Pt–Pd surfaces. Catal. Commun. 2010, 12, 286–291. [Google Scholar] [CrossRef]
Sample | DO (ppm) 1 | RSD 2 (%) |
---|---|---|
Pond water | 6.5 | 3.2 |
Tap water | 7.3 | 2.1 |
Drain water | 0.9 | 10 |
Canal water | 6.2 | 3.6 |
Paddy land water | 5.3 | 1.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siddika, M.; Hasan, M.M.; Oyshi, T.A.; Hasnat, M.A. Electrocatalytic Reduction of O2 by ITO-IrOx: Implication for Dissolved Oxygen Sensor in the Alkaline Medium. Electrochem 2023, 4, 145-155. https://doi.org/10.3390/electrochem4020012
Siddika M, Hasan MM, Oyshi TA, Hasnat MA. Electrocatalytic Reduction of O2 by ITO-IrOx: Implication for Dissolved Oxygen Sensor in the Alkaline Medium. Electrochem. 2023; 4(2):145-155. https://doi.org/10.3390/electrochem4020012
Chicago/Turabian StyleSiddika, Munira, Md. Mahmudul Hasan, Tahamida A. Oyshi, and Mohammad A. Hasnat. 2023. "Electrocatalytic Reduction of O2 by ITO-IrOx: Implication for Dissolved Oxygen Sensor in the Alkaline Medium" Electrochem 4, no. 2: 145-155. https://doi.org/10.3390/electrochem4020012
APA StyleSiddika, M., Hasan, M. M., Oyshi, T. A., & Hasnat, M. A. (2023). Electrocatalytic Reduction of O2 by ITO-IrOx: Implication for Dissolved Oxygen Sensor in the Alkaline Medium. Electrochem, 4(2), 145-155. https://doi.org/10.3390/electrochem4020012