Electrochemical Profiling of Plants
Abstract
:1. Introduction and Background
2. Traditional Approaches for Profiling of Plants
3. Profiling of Biochemicals
4. Use of Electrochemistry
5. Electrochemical Profiling of Biochemicals
6. Conclusions and Future Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Lin, J.; Wang, M.; Zhang, M.; Zhang, Y.; Chen, L. Electrochemical Sensors for Soil Nutrient Detection: Oppurtunity and Challenge. Comput. Comput. Technol. Agric. 2008, 2, 1349–1353. [Google Scholar] [CrossRef] [Green Version]
- Pujol, L.; Evrard, D.; Groenen-Serrano, K.; Freyssinier, M.; Ruffien-Cizsak, A.; Gros, P. Electrochemical Sensors and Devices for Heavy Metals Assay in Water: The French Groups’ Contribution. Front. Chem. 2014, 2, 1–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ludvík, J.; Riedl, F.; Liška, F.; Zuman, P. Electrochemical Reduction of Metribuzin. Electroanal. 1998, 10, 869–876. [Google Scholar] [CrossRef]
- Vafaee-Shahi, S.; Shishehbore, M.R.; Sheibani, A.; Tabatabaee, M. Electrochemical Sensing of Folic Acid in Presence of Ascorbic Acid Using Carbon Paste Nano Composite Modified Electrode. Anal. Bioanal. Chem. Res. 2021, 8, 261–274. [Google Scholar] [CrossRef]
- Naik, G.P.; Poonia, A.K.; Chaudhari, P.K. Pretreatment of Lignocellulosic Agricultural Waste for Delignification, Rapid Hydrolysis, and Enhanced Biogas Production: A Review. J. Indian Chem. Soc. 2021, 98, 100147. [Google Scholar] [CrossRef]
- Chiavari, G.; Concialini, V.; Ciamician, C.G.; Bologna, U.; Selmi, V.; Galletti, G.C. Electrochemical Detection in the High-Performance Liquid Chromatographic Analysis of Plant Phenolics. Analyst 1988, 113, 91–94. [Google Scholar] [CrossRef] [PubMed]
- Baezzat, M.R.; Tavakkoli, N.; Zamani, H. Construction of a New Electrochemical Sensor Based on MoS 2 Nanosheets Modified Graphite Screen Printed Electrode for Simultaneous Determination of Diclofenac. Anal. Bioanal. Chem. Res. 2022, 9, 153–162. [Google Scholar]
- Amreen, K.; Sujatha, M. Nanomaterial Assisted Electrochemical Detection of Isolated Piperine: A. Anal. Bioanal. Chem. Res. 2021, 8, 209–217. [Google Scholar]
- Pandey, R.; Teig-Sussholz, O.; Schuster, S.; Avni, A.; Shacham-Diamand, Y. Integrated Electrochemical Chip-on-Plant Functional Sensor for Monitoring Gene Expression under Stress. Biosens. Bioelectron. 2018, 117, 493–500. [Google Scholar] [CrossRef]
- Kuriyama, S.; Rechnitz, G.A. Plant Tissue-Based Bioselective Membrane Electrode for Glutamate. Anal. Chim. Acta 1981, 131, 91–96. [Google Scholar] [CrossRef]
- Sidwell, J.S.; Rechnitz, G.A. Bananatrode- An Electrochemical Biosensor for Dopamine. Biotechnol. Lett. 1985, 7, 419–422. [Google Scholar] [CrossRef]
- Kuriyama, S.; Arnold, M.A.; Rechnitz, G.A. Improved Membrane Electrode Using Plant Tissue as Biocatalyst. J. Memb. Sci. 1983, 12, 269–278. [Google Scholar] [CrossRef]
- Chwatko, G.; Kuzniak, E.; Kubalczyk, P.; Borowczyk, K.; Rokiel, W.M.; Glowacki, R. Determination of Cysteine and Glutathione in Cucumber Leaves by HPLC with UV Detection. Anal. Methods. 2014, 6, 8039. [Google Scholar] [CrossRef]
- Stallings, N.R.; Hanley, N.A.; Majdic, G.; Zhao, L.; Bakke, M.; Parker, K.L.; Stallings, N.R.; Hanley, N.A.; Majdic, G.; Zhao, L.; et al. Development of a transgenic green fluorescent protein lineage marker for steroidogenic factor 1. Mol. Endocrinol. 2016, 16, 2360–2370. [Google Scholar] [CrossRef]
- Dewick, P.M. Medicinal Natural Products: A Biosynthetic Approach, 3rd ed.; Wiley: Hoboken, NJ, USA, 2009. [Google Scholar] [CrossRef]
- Schneider, D.; Schneider, L.; Shulman, A.; Claussen, C.F.; Just, E.; Koltchev, C.; Kersebaum, M.; Dehler, R.; Goldstein, B.; Claussen, E. Gingko Biloba Therapy in Tinnitus Patients and Measurable Interactions between Tinnitus and Vestibular Disturbances. Int Tinnitus J. 2000, 6, 56–62. [Google Scholar]
- Nepal, K.K.; Yoo, J.C.; Sohng, J.K. Biosynthetic approach for the production of new aminoglycoside derivative. J. Biosci. Bioeng. 2010, 110, 109–112. [Google Scholar] [CrossRef]
- Schulz, V.; Hänsel, R.; Tyler, V.E.V. Rational Phytotherapy. A Physician’s Guide to Herbal Medicine, 4th ed.; Springer: Berlin/Heidelberg, Germany, 2001. [Google Scholar]
- Barros, L.; Cabrita, L.; Boas, M.V.; Carvalho, A.M.; Ferreira, I.C.F.R. Chemical, Biochemical and Electrochemical Assays to Evaluate Phytochemicals and Antioxidant Activity of Wild Plants. Food Chem. 2011, 127, 1600–1608. [Google Scholar] [CrossRef]
- Stobiecki, M.; Skirycz, A.; Kerhoas, L.; Kachlicki, P.; Muth, D.; Einhorn, J.; Mueller-Roeber, B. Profiling of Phenolic Glycosidic Conjugates in Leaves of Arabidopsis Thaliana Using LC/MS. Metabolomics 2006, 2, 197–219. [Google Scholar] [CrossRef]
- Berkov, S.; Osorio, E.; Viladomat, F. Chemodiversity, Chemotaxonomy and Chemoecology of Amaryllidaceae Alkaloids, 1st ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2020; Volume 83. [Google Scholar] [CrossRef]
- Shrivastava, S.; Trung, T.Q.; Lee, N.E. Recent Progress, Challenges, and Prospects of Fully Integrated Mobile and Wearable Point-of-Care Testing Systems for Self-Testing. Chem. Soc. Rev. 2020, 49, 1812–1866. [Google Scholar] [CrossRef]
- Nguyen, H.H.; Lee, S.H.; Lee, U.J.; Fermin, C.D.; Kim, M. Immobilized Enzymes in Biosensor Applications. Materials 2019, 12, 121. [Google Scholar] [CrossRef] [Green Version]
- Mehrotra, P. Biosensors and Their Applications—A Review. J. Oral Biol. Craniofacial Res. 2016, 6, 153–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bobrinetskiy, I.I.; Knezevic, N.Z. Graphene-Based Biosensors for on-Site Detection of Contaminants in Food. Anal. Methods 2018, 10, 5061–5070. [Google Scholar] [CrossRef]
- Gan, T.; Shi, Z.; Sun, J.; Liu, Y. Simple and Novel Electrochemical Sensor for the Determination of Tetracycline Based on Iron/zinc Cations-Exchanged Montmorillonite Catalyst. Talanta 2014, 121, 187–193. [Google Scholar] [CrossRef] [PubMed]
- González-Fernández, E.; Avlonitis, N.; Murray, A.F.; Mount, A.R.; Bradley, M. Methylene Blue Not Ferrocene: Optimal Reporters for Electrochemical Detection of Protease Activity. Biosens. Bioelectron. 2016, 84, 82–88. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Lillehoj, P.B. Embroidered Electrochemical Sensors for Biomolecular Detection. Lab. Chip 2016, 16, 2093–2098. [Google Scholar] [CrossRef]
- Maduraiveeran, G.; Jin, W. Nanomaterials Based Electrochemical Sensor and Biosensor Platforms for Environmental Applications. Trends Environ. Anal. Chem. 2017, 13, 10–23. [Google Scholar] [CrossRef]
- Motia, S.; Tudor, I.A.; Ribeiro, P.A.; Raposo, M.; Bouchikhi, B.; El Bari, N. Electrochemical Sensor Based on Molecularly Imprinted Polymer for Sensitive Triclosan Detection in Wastewater and Mineral Water. Sci. Total Environ. 2019, 664, 647–658. [Google Scholar] [CrossRef]
- Sánchez, A.; Villalonga, A.; Martínez-García, G.; Parrado, C.; Villalonga, R. Dendrimers as Soft Nanomaterials for Electrochemical Immunosensors. Nanomaterials 2019, 9, 1745. [Google Scholar] [CrossRef] [Green Version]
- Bhat, V.S.; Supriya, S.; Hegde, G. Review—Biomass Derived Carbon Materials for Electrochemical Sensors. J. Electrochem. Soc. 2020, 167, 037526. [Google Scholar] [CrossRef]
- Cho, I.H.; Kim, D.H.; Park, S. Electrochemical Biosensors: Perspective on Functional Nanomaterials for on-Site Analysis. Biomater. Res. 2020, 24, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Cortés, E.; Etchegoin, P.G.; Le Ru, E.C.; Fainstein, A.; Vela, M.E.; Salvarezza, R.C. Electrochemical Modulation for Signal Discrimination in Surface Enhanced Raman Scattering (SERS). Anal. Chem. 2010, 82, 6919–6925. [Google Scholar] [CrossRef] [PubMed]
- Ong, W.; Grindstaff, J.; Sobransingh, D.; Toba, R.; Quintela, J.M.; Peinador, C.; Kaifer, A.E. Electrochemical and Guest Binding Properties of Fréchet- and Newkome-Type Dendrimers with a Single Viologen Unit Located at Their Apical Positions. J. Am. Chem. Soc. 2005, 127, 3353–3361. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Hu, S. Electrochemical Sensors Based on Metal and Semiconductor Nanoparticles. Microchim. Acta 2009, 165, 1–22. [Google Scholar] [CrossRef]
- Cretescu, I.; Lutic, D.; Manea, L.R. Electrochemical Sensors for Monitoring of Indoor and Outdoor Air Pollution. In Electrochemical Sensors Technology; IntechOpen: London, UK, 2017. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Wen, D. Wearable Biochemical Sensors for Human Health Monitoring: Sensing Materials and Manufacturing Technologies. J. Mater. Chem. B 2020, 8, 3423–3436. [Google Scholar] [CrossRef]
- Chandrasekaran, A.R. DNA Nanobiosensors: An Outlook on Signal Readout Strategies. J. Nanomater. 2017, 2017, 2820619. [Google Scholar] [CrossRef]
- Liu, F.; Wei, L.; Chen, Y. Synthesis of Graphene Materials by Electrochemical Exfoliation: Recent Progress and Future Potential. Carbon Energy 2019, 1, 173–199. [Google Scholar] [CrossRef] [Green Version]
- Begum, P.; Ikhtiari, R.; Fugetsu, B. Potential Impact of Multi-Walled Carbon Nanotubes Exposure to the Seedling Stage of Selected Plant Species. Nanomaterials 2014, 4, 203–221. [Google Scholar] [CrossRef] [Green Version]
- Bartosova, Z.; Riman, D.; Jakubec, P.; Halouzka, V.; Hrbac, J.; Jirovsky, D. Electrochemically Pretreated Carbon Microfiber Electrodes as Sensitive HPLC-EC Detectors. Sci. World J. 2012, 2012, 295802. [Google Scholar] [CrossRef] [Green Version]
- Vishnu, N.; Gandhi, M.; Badhulika, S.; Kumar, A.S. Tea Quality Testing Using 6B Pencil Lead as an Electrochemical Sensor. Anal. Methods 2018, 10, 2327–2336. [Google Scholar] [CrossRef]
- Gandhi, M.; Rajagopal, D.; Parthasarathy, S.; Raja, S.; Huang, S.; Kumar, A.S. In Situ Immobilized Sesamol-Quinone/Carbon Nanoblack-Based Electrochemical Redox Platform for E Ffi Cient Bioelectrocatalytic and Immunosensor Applications. ACS Omega 2018, 3, 10823–10835. [Google Scholar] [CrossRef]
- Subagio, A.; Sari, P.; Morita, N. Simultaneous Determination of (+)-Catechin and (−)-Epicatechin in Cacao and Its Products by High-Performance Liquid Chromatography with Electrochemical Detection. Phytochem. Anal. 2001, 12, 271–276. [Google Scholar] [CrossRef] [PubMed]
- Rusling, J.F. Sensors for Toxicity of Chemicals and Oxidative Stress Based on Electrochemical Catalytic DNA Oxidation. Biosens. Bioelectron. 2004, 20, 1022–1028. [Google Scholar] [CrossRef] [PubMed]
- Liang, M.; Liu, S.; Wei, M.; Guo, L.H. Photoelectrochemical Oxidation of DNA by Ruthenium Tris(bipyridine) on a Tin Oxide Nanoparticle Electrode. Anal. Chem. 2006, 78, 621–623. [Google Scholar] [CrossRef] [PubMed]
- Cantalapiedra, A.; Gismera, M.J.; Sevilla, M.T.; Procopio, J.R. Sensitive and Selective Determination of Phenolic Compounds from Aromatic Plants Using an Electrochemical Detection Coupled with HPLC Method. Phytochem. Anal. 2014, 25, 247–254. [Google Scholar] [CrossRef]
- Sagandykova, G.N.; Szultka-Młyńska, M.; Walczak-Skierska, J.; Pomastowski, P.P.; Buszewski, B. Combination of Electrochemical Unit and ESI-MS in Fragmentation of Flavonoids. Phytochem. Anal. 2021, 32, 601–620. [Google Scholar] [CrossRef]
- Chu, Q.; Fu, L.; Cao, Y.; Ye, J. Electrochemical Profiles of Herba Saussureae Involucratae by Capillary Electrophoresis with Electrochemical Detection. Phytochem. Anal. 2006, 17, 176–183. [Google Scholar] [CrossRef]
- Amidi, S.; Mojab, F.; Moghaddam, A.B.; Tabib, K.; Kobarfard, F. A Simple Electrochemical Method for the Rapid Estimation of Antioxidant Potentials of Some Selected Medicinal Plants. Iran. J. Pharm. Res. 2012, 11, 117–121. [Google Scholar] [CrossRef]
- Cosio, M.S.; Buratti, S.; Mannino, S.; Benedetti, S. Use of an Electrochemical Method to Evaluate the Antioxidant Activity of Herb Extracts from the Labiatae Family. Food Chem. 2006, 97, 725–731. [Google Scholar] [CrossRef]
- Doménech-Carbó, A.; Ibars, A.M.; Prieto-Mossi, J.; Estrelles, E.; Scholz, F.; Cebrián-Torrejón, G.; Martini, M. Electrochemistry-Based Chemotaxonomy in Plants Using the Voltammetry of Microparticles Methodology. New J. Chem. 2015, 39, 7421–7428. [Google Scholar] [CrossRef]
- Konieczyński, P. Electrochemical Fingerprint Studies of Selected Medicinal Plants Rich in Flavonoids. Acta Pol. Pharm.—Drug Res. 2015, 72, 655–661. [Google Scholar]
- Shen, Y.; Li, X.; Chen, W.; Cheng, F.; Song, F. Electrochemical Determination of Indole Butyric Acid by Differential Pulse Voltammetry on Hanging Mercury Drops Electrode. J. Plant Biochem. Biotechnol. 2013, 22, 319–323. [Google Scholar] [CrossRef]
- Fang, Y.; Umasankar, Y.; Ramasamy, R.P. A Novel Bi-Enzyme Electrochemical Biosensor for Selective and Sensitive Determination of Methyl Salicylate. Biosens. Bioelectron. 2016, 81, 39–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, L.; Zheng, Y.; Zhang, P.; Zhang, H.; Wu, M.; Zhang, H.; Wang, A.; Su, W.; Chen, F.; Yu, J.; et al. An Electrochemical Method for Plant Species Determination and Classification Based on Fingerprinting Petal Tissue. Bioelectrochemistry 2019, 129, 199–205. [Google Scholar] [CrossRef] [PubMed]
- Volkov, A.G. Green Plants: Electrochemical Interfaces. J. Electroanal. Chem. 2000, 483, 150–156. [Google Scholar] [CrossRef]
- Fang, Y.; Umasankar, Y.; Ramasamy, R.P. Electrochemical Detection of P-Ethylguaiacol, a Fungi Infected Fruit Volatile Using Metal Oxide Nanoparticles. Analyst 2014, 139, 3804–3810. [Google Scholar] [CrossRef]
- Noel Robledo, S.; Alicia Zón, M.; Daniel Ceballos, C.; Fernández, H. Qualitative and Quantitative Electroanalysis of Synthetic Phenolic Antioxidant Mixtures in Edible Oils Based on Their Acid-Base Properties. Food Chem. 2011, 127, 1361–1369. [Google Scholar] [CrossRef]
- Lu, Y.; Xu, Y.; Shi, H.; Zhang, P.; Zhang, H.; Fu, L. Feasibility of Electrochemical Fingerprinting for Plant Phylogeography Study: A Case of Chimonanthus Praecox. Int. J. Electrochem. Sci. 2020, 15, 758–764. [Google Scholar] [CrossRef]
- Mwesigwa, J.; Collins, D.J.; Volkov, A.G. Electrochemical Signaling in Green Plants: Effects of 2,4-Dinitrophenol on Variation and Action Potentials in Soybean. Bioelectrochemistry 2000, 51, 201–205. [Google Scholar] [CrossRef]
- Krystofova, O.; Trnkova, L.; Adam, V.; Zehnalek, J.; Hubalek, J.; Babula, P.; Kizek, R. Electrochemical Microsensors for the Detection of Cadmium(II) and Lead(II) Ions in Plants. Sensors 2010, 10, 5308–5328. [Google Scholar] [CrossRef] [Green Version]
- Rodrí, E. Electrochemical Quantification of the Antioxidant Capacity of Medicinal Plants Using Biosensors. Sensors 2014, 14, 14423–14439. [Google Scholar] [CrossRef]
- Zitka, O.; Babula, P.; Sochor, J.; Kummerova, M.; Krystofova, O.; Adam, V. Determination of Eight Polycyclic Aromatic Hydrocarbons and in Pea Plants (Pisum sativum L.) Extracts by High Performance Liquid Chromatography with Electrochemical Detection. Int. J. Electrochem. Sci. 2012, 7, 908–927. [Google Scholar]
- Olkov, A.G.V.; Abady, A.L.; Homas, D.J.T.; Hvetsova, T.S. Green Plants as Environmental Biosensors: Electrochemical Effects of Carbonyl Cyanide 3-Chlorophenylhydrazone on Soybean. Anal. Chem. 2001, 17, 359–362. [Google Scholar]
- Barroso, M.F.; Delerue-Matos, C.; Oliveira, M.B.P.P. Electrochemical Evaluation of Total Antioxidant Capacity of Beverages Using a Purine-Biosensor. Food Chem. 2012, 132, 1055–1062. [Google Scholar] [CrossRef] [Green Version]
- Ligaj, M.; Tichoniuk, M.; Filipiak, M. Detection of Bar Gene Encoding Phosphinothricin Herbicide Resistance in Plants by Electrochemical Biosensor. Bioelectrochemistry 2008, 74, 32–37. [Google Scholar] [CrossRef] [PubMed]
- Kuznetsov, B.A.; Byzova, N.A.; Shumakovich, G.P.; Mazhorova, L.E.; Mutuskin, A.A. Electrochemical Investigation of Binding Sites of Plantacyanin: Blue, Copper-Containing Protein of Plants. Bioelectrochem. Bioenerg. 1996, 40, 249–255. [Google Scholar] [CrossRef]
- Mohiuddin, M.; Arbain, D.; Islam, A.K.M.S.; Ahmad, M.S.; Ahmad, M.N. Alpha-Glucosidase Enzyme Biosensor for the Electrochemical Measurement of Antidiabetic Potential of Medicinal Plants. Nanoscale Res. Lett. 2016, 11, 95. [Google Scholar] [CrossRef] [Green Version]
- Weber, G.; Konieczyński, P. Speciation of Mg, Mn and Zn in Extracts of Medicinal Plants. Anal. Bioanal. Chem. 2003, 375, 1067–1073. [Google Scholar] [CrossRef]
- Airado-Rodríguez, D.; Galeano-Díaz, T.; Durán-Merás, I. Determination of Trans-Resveratrol in Red Wine by Adsorptive Stripping Square-Wave Voltammetry with Medium Exchange. Food Chem. 2010, 122, 1320–1326. [Google Scholar] [CrossRef]
- Piovesan, J.V.; Jost, C.L.; Spinelli, A. Electroanalytical Determination of Total Phenolic Compounds by Square-Wave Voltammetry Using a Poly(vinylpyrrolidone)-Modified Carbon-Paste Electrode. Sens. Actuators B Chem. 2015, 216, 192–197. [Google Scholar] [CrossRef]
- Yang, Y.; Zhou, J.; Zhang, H.; Gai, P.; Zhang, X.; Chen, J. Electrochemical Evaluation of Total Antioxidant Capacities in Fruit Juice Based on the Guanine/graphene Nanoribbon/glassy Carbon Electrode. Talanta 2013, 106, 206–211. [Google Scholar] [CrossRef]
- Jin, J.H.; Kwon, C.; Park, W.; Kim, S.; Jung, S. Electrochemical Characterization of a Glassy Carbon Electrode Modified with Microbial Succinoglycan Monomers and Multi-Wall Carbon Nanotubes for the Detection of Quercetin in an Aqueous Electrolyte. J. Electroanal. Chem. 2008, 623, 142–146. [Google Scholar] [CrossRef]
- Baldeón, E.O.; Alcañiz, M.; Masot, R.; Fuentes, E.M.; Barat, J.M.; Grau, R. Voltammetry Pulse Array Developed to Determine the Antioxidant Activity of Camu-Camu (Myrciaria Dubia (H.B.K.) McVaug) and Tumbo (Passiflora Mollisima (Kunth) L.H. Bailey) Juices Employing Voltammetric Electronic Tongues. Food Control 2015, 54, 181–187. [Google Scholar] [CrossRef]
- Ensafi, A.A.; Taei, M.; Khayamian, T. A Differential Pulse Voltammetric Method for Simultaneous Determination of Ascorbic Acid, Dopamine, and Uric Acid Using Poly (3-(5-Chloro-2-Hydroxyphenylazo)-4,5-Dihydroxynaphthalene-2,7-Disulfonic Acid) Film Modified Glassy Carbon Electrode. J. Electroanal. Chem. 2009, 633, 212–220. [Google Scholar] [CrossRef]
- Gandhi, M.; Rajagopal, D.; Kumar, A.S. Facile Electrochemical Demethylation of 2-Methoxyphenol to Surface-Con Fi Ned Catechol on the MWCNT and Its E Ffi Cient Electrocatalytic Hydrazine Oxidation and Sensing Applications. ACS Omega 2020, 5, 16208–16219. [Google Scholar] [CrossRef]
- Głód, B.K.; Kiersztyn, I.; Piszcz, P. Total Antioxidant Potential Assay with Cyclic Voltammetry And/or Differential Pulse Voltammetry Measurements. J. Electroanal. Chem. 2014, 719, 24–29. [Google Scholar] [CrossRef]
- Lino, F.M.A.; de Sá, L.Z.; Torres, I.M.S.; Rocha, M.L.; Dinis, T.C.P.; Ghedini, P.C.; Somerset, V.S.; Gil, E.S. Voltammetric and Spectrometric Determination of Antioxidant Capacity of Selected Wines. Electrochim. Acta 2014, 128, 25–31. [Google Scholar] [CrossRef]
- Oliveira-Neto, J.R.; Rezende, S.G.; de Fátima Reis, C.; Benjamin, S.R.; Rocha, M.L.; de Souza Gil, E. Electrochemical Behavior and Determination of Major Phenolic Antioxidants in Selected Coffee Samples. Food Chem. 2016, 190, 506–512. [Google Scholar] [CrossRef]
- Aguirre, M.J.; Chen, Y.Y.; Isaacs, M.; Matsuhiro, B.; Mendoza, L.; Torres, S. Electrochemical Behaviour and Antioxidant Capacity of Anthocyanins from Chilean Red Wine, Grape and Raspberry. Food Chem. 2010, 121, 44–48. [Google Scholar] [CrossRef]
- Domønech-carbó, A.; Ibars, A.M.; Prieto-mossi, J.; Estrelles, E. Access to Phylogeny from Voltammetric Fingerprints of Seeds: The Asparagus Case. Electroanalysis 2017, 29, 643–650. [Google Scholar] [CrossRef]
- Umoh, O.T. Chemotaxonomy: The Role of Phytochemicals in Chemotaxonomic Delineation of Taxa. Asian Plant Res. J. 2020, 5, 43–52. [Google Scholar] [CrossRef]
- Pawlus, D. Natural Stilbenoids: Distribution in the Plant Kingdom and Chemotaxonomic Interest in Vitaceae. Nat. Prod. Rep. 2012, 29, 1317–1333. [Google Scholar] [CrossRef]
- Lanfer-marquez, U.M.; Barros, R.M.C.; Sinnecker, P. Antioxidant Activity of Chlorophylls and Their Derivatives. Food Res. Int. 2005, 38, 38–885. [Google Scholar] [CrossRef]
- Wang, J.; Mei, J.; Ren, G. Plant microRNAs: Biogenesis, Homeostasis, and Degradation. Front. Plant Sci. 2019, 10, 360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, Z.; Yu, Y.H. A microRNA Biosensor Based on Direct Chemical Ligation and Electrochemically Amplified Detection. Sens. Actuators B Chem. 2007, 121, 552–559. [Google Scholar] [CrossRef]
- Rasheed, P.A.; Sandhyarani, N. Electrochemical DNA Sensors Based on the Use of Gold Nanoparticles: A Review on Recent Developments. Microchim. Acta 2017, 184, 981–1000. [Google Scholar] [CrossRef]
- Mohammed, A.M.; Rahim, R.A.; Ibraheem, I.J.; Loong, F.K.; Hisham, H.; Hashim, U.; Al-douri, Y. Application of Gold Nanoparticles for Electrochemical DNA Biosensor. J. Nanomater. 2014, 2014, 13. [Google Scholar] [CrossRef]
- Li, Q.; Batchelor-mcauley, C.; Compton, R.G. Electrochemical Oxidation of Guanine: Electrode Reaction Mechanism and Tailoring Carbon Electrode Surfaces to Switch between Adsorptive and Diffusional Responses. J. Phys. Chem. B 2010, 114, 7423–7428. [Google Scholar] [CrossRef]
- Jambrec, D.; Haddad, R.; Lauks, A.; Gebala, M. DNA Intercalators for Detection of DNA Hybridisation: SCS(MI)–MP2 Calculations and Electrochemical Impedance Spectroscopy. ChemPlusChem 2016, 81, 604–612. [Google Scholar] [CrossRef]
- Gherghi, I.C.; Girousi, S.T.; Pantazaki, A.A. Electrochemical DNA Biosensors Applicable to the Study of Interactions Between DNA and DNA Intercalators. Int. J. Environ. Anal. Chem. 2010, 83, 693–700. [Google Scholar] [CrossRef]
- Tansil, N.C.; Xie, H.; Xie, F.; Gao, Z. Direct Detection of DNA with an Electrocatalytic Threading Intercalator. Anal. Chem. 2005, 77, 126–134. [Google Scholar] [CrossRef]
- Mucelli, S.P.; Zamuner, M.; Tormen, M.; Stanta, G.; Ugo, P. Nanoelectrode Ensembles as Recognition Platform for Electrochemical Immunosensors. Biosens. Bioelectron. 2008, 23, 1900–1903. [Google Scholar] [CrossRef] [Green Version]
- Sierra, H.; Cordova, M.; Chen, C.J.; Rajadhyaksha, M. Confocal imaging-guided laser ablation of basal cell carcinomas: An ex vivo study. J. Invest. Dermatol. 2015, 2, 612–615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Kim, H.H.; Heller, A. Enzyme-Amplified Amperometric Detection of 3000 Copies of DNA in a 10-μL Droplet at 0.5 fM Concentration. Anal. Chem. 2003, 75, 3267–3269. [Google Scholar] [CrossRef] [PubMed]
- Xie, H.; Zhang, C.; Gao, Z. Amperometric Detection of Nucleic Acid at Femtomolar Levels with a Nucleic Acid/Electrochemical Activator Bilayer on Gold Electrode. Anal. Chem. 2004, 76, 1611–1617. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Tang, Z.; Yang, C.J.; Kim, Y.; Fang, X.; Li, W.; Wu, Y.; Medley, C.D.; Cao, Z.; Li, J.; et al. Molecular Engineering of DNA: Molecular Beacons. Angew. Chemie—Int. Ed. 2009, 48, 856–870. [Google Scholar] [CrossRef] [Green Version]
- Scholz, F. Electrochemical Age Determinations of Metallic Specimens—Utilization of the Corrosion Clock. Acc. Chem. Res. 2018, 52, 400–406. [Google Scholar] [CrossRef]
- Xu, Q.; Wei, F.; Wang, Z.; Yang, Q.; di Zhao, Y.; Chen, H. In Vivo Monitor Oxidative Burst Induced by Cd2+ Stress for the Oilseed Rape (Brassica Napus L.) Based on Electrochemical Microbiosensor. Phytochem. Anal. 2010, 21, 192–196. [Google Scholar] [CrossRef]
- Doménech-Carbó, A.; Domínguez, I.; Hernández-Muñoz, P.; Gavara, R. Electrochemical Tomato (Solanum Lycopersicum L.) Characterisation Using Contact Probe in Situ Voltammetry. Food Chem. 2015, 172, 318–325. [Google Scholar] [CrossRef]
- Camborde, L.; Jauneau, A.; Brière, C.; Deslandes, L.; Dumas, B.; Gaulin, E. Detection of Nucleic Acid—Protein Interactions in Plant Leaves Using Fluorescence Lifetime Imaging Microscopy. Nat. Protoc. 2017, 12, 1933–1950. [Google Scholar] [CrossRef]
- Schwarzacher, T. Chapter 14. Fluorescent in situ hybridization to detect transgene integration into plant genomes. In Transgenic Wheat, Barley and Oats; Methods in Molecular Biology 478; Humana Press: Totowa, NJ, USA, 2009; pp. 227–246. [Google Scholar] [CrossRef]
- Hardinge, P.; Murray, J.A.H. Reduced False Positives and Improved Reporting of Loop-Mediated Isothermal Amplification Using Quenched Fluorescent Primers. Sci. Rep. 2019, 9, 7400. [Google Scholar] [CrossRef]
- Sytsma, K.J.; Morawetz, J.; Chris Pires, J.; Nepokroeff, M.; Conti, E.; Zjhra, M.; Hall, J.C.; Chase, M.W. Urticalean Rosids: Circumscription, Rosid Ancestry, and Phylogenetics Based on rbcL, trnL-F, and ndhF Sequences. Am. J. Bot. 2002, 89, 1531–1546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chase, M.W.; Christenhusz, M.J.M.; Fay, M.F.; Byng, J.W.; Judd, W.S.; Soltis, D.E.; Mabberley, D.J.; Sennikov, A.N.; Soltis, P.S.; Stevens, P.F.; et al. An Update of the Angiosperm Phylogeny Group Classification for the Orders and Families of Flowering Plants: APG IV. Bot. J. Linn. Soc. 2016, 181, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez Cid de León, G.I.; Gómez Hernández, M.; Domínguez y Ramírez, A.M.; Medina López, J.R.; Alarcón-Ángeles, G.; Morales Pérez, A. Adaptation of DPPH Method for Antioxidant Determination. ECS Trans. 2011, 36, 401–411. [Google Scholar] [CrossRef]
- Wei, F.; Lillehoj, P.B.; Ho, C. DNA Diagnostics: Nanotechnology-Enhanced Electrochemical. Pediatric Res. 2010, 67, 458–468. [Google Scholar] [CrossRef] [Green Version]
- Ferdosian, F.; Ebadi, M.; Mehrabian, R.Z.; Golsefid, M.A.; Moradi, A.V. Application of Electrochemical Techniques for Determining and Extracting Natural Product (EgCg) by the Synthesized Conductive Polymer Electrode (Ppy/Pan/rGO) Impregnated with Nano-Particles of TiO2. Sci. Rep. 2019, 9, 3940. [Google Scholar] [CrossRef] [Green Version]
- Samoticha, J.; Jara, M.J.; José, P.; Hernández, M.; Francisco, H.; Aneta, J.H. Phenolic Compounds and Antioxidant Activity of Twelve Grape Cultivars Measured by Chemical and Electrochemical Methods. Eur. Food Res. Technol. 2018, 244, 1933–1943. [Google Scholar] [CrossRef]
- Calculations, A.I.; Arroyo-Currás, N.; Rosas-García, V.M.; Videa, M. Substituent Inductive Effects on the Electrochemical Oxidation of Flavonoids Studied by Square Wave. Molecules 2016, 21, 1422. [Google Scholar] [CrossRef]
- Šeruga, M.; Tomac, I. Influence of Chemical Structure of Some Flavonols on Their Electrochemical Behaviour. Int. J. Electrochem. Sci. 2017, 12, 7616–7637. [Google Scholar] [CrossRef]
- Mateo, E.M.; Vicente, J.; Montoya, N.; Mateo-castro, R.; Gimeno-adelantado, J.V.; Jiménez, M.; Doménech-carbó, A. Electrochemical Identification of Toxigenic Fungal Species Using Solid-State Voltammetry Strategies. Food Chem. 2018, 267, 91–100. [Google Scholar] [CrossRef]
- Bavishi, K.; Laursen, T.; Martinez, K.L.; Møller, B.L.; Della Pia, E.A. Application of Nanodisc Technology for Direct Electrochemical Investigation of Plant Cytochrome P450s and Their NADPH P450 Oxidoreductase. Sci. Rep. 2016, 6, 29459. [Google Scholar] [CrossRef] [Green Version]
- Udit, A.K.; Hill, M.G.; Gray, H.B. Electrochemistry of Cytochrome P450 BM3 in Sodium Dodecyl Sulfate Films. Langmuir 2006, 22, 10854–10857. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nurmi, T.; Adlercreutz, H. Sensitive High-Performance Liquid Chromatographic Method for Profiling Phytoestrogens Using Coulometric Electrode Array Detection: Application to Plasma Analysis. Anal. Biochem. 1999, 274, 110–117. [Google Scholar] [CrossRef] [PubMed]
- Klejdus, B.; Vacek, J.; Adam, V.; Zehnálek, J.; Kizek, R.; Trnková, L.; Kubáň, V. Determination of Isoflavones in Soybean Food and Human Urine Using Liquid Chromatography with Electrochemical Detection. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2004, 806, 101–111. [Google Scholar] [CrossRef] [PubMed]
- Gil, E.S.; Couto, R.O. Flavonoid Electrochemistry: A Review on the Electroanalytical Applications. Rev. Bras. Farmacogn.–Braz. J. Pharm. 2013, 23, 542–558. [Google Scholar] [CrossRef] [Green Version]
Chemically Modified Electrode | pH | Profile Constituent | Technique | Real Sample | Comment | Ref No. |
---|---|---|---|---|---|---|
GCE (acetone/chloroform extracts) | 7, PBS | Quercetin, rutin, morin | SWV; −0.25 V to +1.25 V | Rosid varieties | Taxonomical studies; repeatability with 3 different harvests | [53] |
Au (electrochemical chip fabrication) | 5.8 and 7.1, PBS | β-glucuronidase monitoring | CV, −1 V to 1 V; chronoamperometry at 0.7 V and −0.4 V | Tobacco and tomato varieties | Gene expression monitoring | [9] |
Boron-doped diamond electrode (BDDE) | 7, PBS | Flavone peaks | SEC–HPLC–ELC detector; 0.8 V to 0.4 V | Profiling of Betula verrucosa, Equisetum arvense, Polygonum aviculare, etc. | Relationships between Cu and Fe species and with flavonoids | [54] |
GCE | 7, PBS | Antioxidant power determination | CV; −0.4 V to +0.8 V | Buxus hyrcana, Rumex crispus, Archillea millefolium, Zateria Multiflora, Ginkobiloba, Lippa citriodora, etc. | The lower the potential, better the antioxidant power | [51] |
Hanging Hg drop electrode | 3.5, B-R | Indole butyric acid | Stripping voltammetry; N2 atm | Direct bio-chemical | Plant hormone monitoring | [55] |
GCE/CNT/AO-HRP | 7.6, PBS | Methyl salicylate | Amperometry; 0.45 V | Wintergreen oil | Volatile organic compounds | [56] |
GCE/GO-Fe2O3-CS | Methanolic 0.1 M NaClO4 | Gallic acid; ascorbic acid | CV, DPV, −0.5 V to +1.5 V | Inflorescences variety | Antioxidant activity | [19] |
SPE | 7, PBS | - | DPV; −0.3 V to 1.0 V | 14 Lycoris flowers | Fingerprinting petal tissues | [57] |
Ag/AgCl | pH 2–7 | H2SO4, HNO3 | Potential difference | Soyabean seedling | Effects of uncoupler (FCCP) and acid rain are studied | [58] |
SP/TiO2 or SiO2 | 4, KPH | p-ethylene guaiacol | CV; −0.1 V to +0.4 V | Phytophthora catorum | Plant disease biomarkers | [59] |
CF-UME | Bz + EtOH: H2SO4 | - | SWV; 0.05 V | Edible oils | Antioxidant activity | [60] |
GCE | 9, Tris buffer | Scatter Pattern study | DPV; −0.2 V to 1.4 V | Chimonanthus praecox | Evolutionary studies | [61] |
Ag/AgCl | In situ study | DNP | Potential Difference | Glycine Maxx Merrill | Interfacial ion transport | [62] |
Hg drop electrode | 5, acetate buffer | Cd(ll) and Pb | DPV; −0.2 V to 1.2 V | Maize and sunflower seedling | Trace element contamination determination | [63] |
SPE/Tyr/GA | 4.5; acetate buffer | catechol | DPV; 0.2 V to 0.6 V | Mushroom tryosinase | Antioxidant capacity | [64] |
- | - | PAH’s | Electrochemical detectors | Pisum Satvium | Oxidative stress agent determination | [65] |
Ag/AgCl | - | CCCP | Action potentials | Soyabean | Environmental biosensors | [66] |
GCE/guanine, GCE/adenine, | 4.8; PBS | AA, GA, coumaric acid, resveratrol | SWV; | Mayonnaise and margarine | Antioxidant capacity | [67] |
CPE/stearic acid/DNA | 7.4; PBS | herbicide resistance | SWV | Phosphinothricin Resistance | Barcode gene | [68] |
Au wire/TGA | 7; PBS | Binding site of plant protein | CV;0.0 to 0.8 V | Planthacyanin (Blue Cu-protein) | Binding site of proteins | [69] |
SPE/MWCNT-NH2/AG/PNPG-PVA | 7; PBS | Inhibition of AG enzyme represents the potential for the plant to inhibit glucose production | CV; Amp i-t | Ehretis laevis; Micromelum pubescens; Spondias dulcis | Anti-diabetic potential of medicinal plants | [70] |
Au | 13; NaOH | Mg, Zn, and Mn | Electrochemical detector | Folium betulae; Folium menthae; Folium salviae; radix Valerianae; radix Taraxaci | Speciation of Mg, Zn, and Mn in plants | [71] |
GCE | HClO4 | Trans-resveratrol | Adsorptive stripping SWV | 21 Rioja red wines | Phytoalexin determination | [72] |
GCE/MWCNT | 7; PBS | Sesamol | DPV | Sesame seeds and oils | Phytonutrient content analysis | [44] |
GCE/CPE/PVP | 3; B-R buffer | Kaempferol | CV; SWV | Spinach, cabbage, broccoli, and chicory | Total phenolic compounds | [73] |
GCE/GNR/guanine | 7.4; PBS | OH scavenging by AA | SWV | Fruit juices | Total antioxidant capacity | [74] |
GCE/carbohydrate | 0.1 M KCl | Quercetin | CV; SWV | Chemical compounds | Flavonoid determination | [75] |
Ir, Rh, Pt, Au, Ag, Cu, Co, Ni | 4.8; K3PO4 | Fruit juice characterization | Pulse voltammetry | Electronic tongue | Passiflora mollisima, Myrciaria dubia | [76] |
GCE/Poly-CDDA | 4; PBS | AA, dopamine, and UA | DPV; | Chemical compounds | Antioxidant capacity | [77] |
GCE/MWCNT | 7; PBS | Guaiacol | DPV | Whisky and brandy | Nutritive content | [78] |
GCE | NaClO4 | Standard reduction potential of OH. | CV | Melissa officinalis L, Fragaria L, Origanum majorana L, Salvia officinalis L, Equistum arvensis L, Calendula L, Alcea rosea L, Melilotus officinalis L | Total antioxidant potential | [79] |
CPE | 5; PBS | Electrochemical index | DPV | Red, white, and sparkling wine, and grape juice | Correlating DDPH with the electrochemical index | [80] |
6B pencil graphite electrode | 7; PBS | 2,3;2,4;2,3,5 hydroxy benzoic acid | DPV | Commercial tea available | Tea quality testing | [43] |
CPE | 5; PBS | Electrochemical index; antioxidant power | CV; SWV; DPV | Coffee extracts | Total phenolic content | [81] |
GCE | 3.6; acetate buffer | delphinidin glucoside; cyanidin glucoside | DPV | Cabernet Sauvignon wine, raspberry | Antioxidant capacity | [82] |
GCE | 4.7;7; potassium phosphate | Normalized current plots | SWV | Potentilla Argentea; Sarcopoterium spinosum; Agrimonia eupatoria; Salvia valentina; Lavandula multifida | Fingerprinting of seeds | [83] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gandhi, M.; Amreen, K. Electrochemical Profiling of Plants. Electrochem 2022, 3, 434-450. https://doi.org/10.3390/electrochem3030030
Gandhi M, Amreen K. Electrochemical Profiling of Plants. Electrochem. 2022; 3(3):434-450. https://doi.org/10.3390/electrochem3030030
Chicago/Turabian StyleGandhi, Mansi, and Khairunnisa Amreen. 2022. "Electrochemical Profiling of Plants" Electrochem 3, no. 3: 434-450. https://doi.org/10.3390/electrochem3030030
APA StyleGandhi, M., & Amreen, K. (2022). Electrochemical Profiling of Plants. Electrochem, 3(3), 434-450. https://doi.org/10.3390/electrochem3030030