Effect of Spin Coating Parameters on the Electrochemical Properties of Ruthenium Oxide Thin Films
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Electrode Preparation
2.3. Electrode Characterization
3. Results and Discussion
3.1. Morphological Characterization
3.2. Cyclic Voltammetry
3.3. Cyclic Voltammetry in the Presence of a Redox Couple
3.4. Linear Sweep Voltammetry
3.5. Cyclic Voltammetry with Chlorides
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Trasatti, S.; Buzzanca, G. Ruthenium dioxide: A new interesting electrode material. Solid state structure and electrochemical behavior. J. Electroanal. Chem. 1971, 29, A1–A5. [Google Scholar] [CrossRef]
- Popić, J.P.; Avramov-Ivić, M.L.; Vuković, N.B. Reduction of carbon dioxide on ruthenium oxide and modified ruthenium oxide electrodes in 0.5 m NaHCO3. J. Electroanal. Chem. 1997, 421, 105–110. [Google Scholar] [CrossRef]
- Liao, Y.-H.; Chou, J.-C. Preparation and characteristics of ruthenium dioxide for pH array sensors with real-time measurement system. Sens. Actuators B Chem. 2008, 128, 603–612. [Google Scholar] [CrossRef]
- Maurya, D.K.; Sardarinejad, A.; Alameh, K. Ruthenium oxide ion selective thin-film electrodes for engine oil acidity monitoring. Meas. Sci. Technol. 2015, 26, 065102. [Google Scholar] [CrossRef]
- Yu, J.; He, Q.; Yang, G.; Zhou, W.; Shao, Z.; Ni, M. Recent Advances and Prospective in Ruthenium-Based Materials for Electrochemical Water Splitting. ACS Catal. 2019, 9, 9973–10011. [Google Scholar] [CrossRef]
- Cao, K.; Jin, T.; Yang, L.; Jiao, L. Recent progress in conversion reaction metal oxide anodes for Li-ion batteries. Mater. Chem. Front. 2017, 1, 2213–2242. [Google Scholar] [CrossRef]
- Hyun, Y.; Choi, J.Y.; Park, H.K.; Lee, C.S. Synthesis and electrochemical performance of ruthenium oxide-coated carbon nanofibers as anode materials for lithium secondary batteries. Appl. Surf. Sci. 2016, 388, 274–280. [Google Scholar] [CrossRef]
- Kim, I.-H.; Kim, K.-B. Ruthenium oxide thin film electrodes for supercapacitors. Electrochem. Solid-State Lett. 2001, 4, A62–A64. [Google Scholar] [CrossRef]
- Brousse, K.; Pinaud, S.; Nguyen, S.; Fazzini, P.-F.; Makarem, R.; Josse, C.; Thimont, Y.; Chaudret, B.; Taberna, P.-L.; Respaud, M.; et al. Facile and Scalable Preparation of Ruthenium Oxide-Based Flexible Micro-Supercapacitors. Adv. Energy Mater. 2020, 10, 1903136. [Google Scholar] [CrossRef]
- Petrucci, E.; Montanaro, D.; Orsini, M.; Sotgiu, G. Micro- and nanostructured TiO2 substrate: Influence on the electrocatalytic properties of manganese oxide-based electrodes. J. Electroanal. Chem. 2018, 808, 380–386. [Google Scholar] [CrossRef]
- Ahuja, P.; Ujjain, S.K.; Kanojia, R. Electrochemical behaviour of manganese & ruthenium mixed oxide@ reduced graphene oxide nanoribbon composite in symmetric and asymmetric supercapacitor. Appl. Surf. Sci. 2018, 427, 102–111. [Google Scholar]
- Sotgiu, G.; Foderà, M.; Marra, F.; Petrucci, E. Production and characterization of manganese oxide-based electrodes for anodic oxidation of organic compounds. Chem. Eng. Trans. 2014, 41, 115–120. [Google Scholar]
- Wang, W.; Guo, S.; Lee, I.; Ahmed, K.; Zhong, J.; Favors, Z.; Zaera, F.; Ozkan, M.; Ozkan, C.S. Hydrous ruthenium oxide nanoparticles anchored to graphene and carbon nanotube hybrid foam for supercapacitors. Sci. Rep. 2014, 4, 4452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, Y.T.; Tadai, K.; Mitani, T. Highly dispersed ruthenium oxide nanoparticles on carboxylated carbon nanotubes for supercapacitor electrode materials. J. Mater. Chem. 2005, 15, 4914–4921. [Google Scholar] [CrossRef]
- Kibsgaard, J.; Hellstern, T.R.; Choi, S.-J.; Reinecke, B.N.; Jaramillo, T.F. Mesoporous Ruthenium/Ruthenium Oxide Thin Films: Active Electrocatalysts for the Oxygen Evolution Reaction. ChemElectroChem 2017, 4, 2480–2485. [Google Scholar] [CrossRef]
- Patake, V.D.; Lokhande, C.D.; Joo, O.S. Electrodeposited ruthenium oxide thin films for supercapacitor: Effect of surface treatments. Appl. Surf. Sci. 2009, 255, 4192–4196. [Google Scholar] [CrossRef]
- Park, B.-O.; Lokhande, C.D.; Park, H.-S.; Jung, K.-D.; Joo, O.S. Performance of supercapacitor with electrodeposited ruthenium oxide film electrodes—Effect of film thickness. J. Power Sources 2004, 134, 148–152. [Google Scholar] [CrossRef]
- Lee, J.G.; Mln, S.K.; Choh, S.H. Deposition and properties of reactively sputtered ruthenium dioxide thin films as an electrode for ferroelectric capacitors. Jpn. J. Appl. Phys. 1994, 33, 7080. [Google Scholar] [CrossRef]
- Prataap, R.K.V.; Arunachalam, R.; Pavul Raj, R.; Mohan, S.; Peter, L. Effect of electrodeposition modes on ruthenium oxide electrodes for supercapacitors. Curr. Appl. Phys. 2018, 18, 1143–1148. [Google Scholar] [CrossRef]
- Arunachalam, R.; Gnanamuthu, R.M.; Al Ahmad, M.; Mohan, S.; Pavul Raj, R.; Maharaja, J.; Al Taradeh, N.; Al-Hinai, A. Development of nano-spherical RuO2 active material on AISI 317 steel substrate via pulse electrodeposition for supercapacitors. Surf. Coat. Technol. 2015, 276, 336–340. [Google Scholar] [CrossRef]
- Jow, J.J.; Lee, H.J.; Chen, H.R.; Wu, M.S.; Wei, T.Y. Anodic, cathodic and cyclic voltammetric deposition of ruthenium oxides from aqueous RuCl3 solutions. Electrochim. Acta 2007, 52, 2625–2633. [Google Scholar] [CrossRef]
- Kim, I.-H.; Kim, K.-B. Ruthenium oxide thin film electrodes prepared by electrostatic spray deposition and their charge storage mechanism. J. Electrochem. Soc. 2004, 151, E7–E13. [Google Scholar] [CrossRef]
- Browne, M.P.; Mills, A. Determining the importance of the electrode support and fabrication method during the initial screening process of an active catalyst for the oxygen evolution reaction. J. Mater. Chem. A 2018, 6, 14162–14169. [Google Scholar] [CrossRef]
- Lakshminarayana, G.; Kityk, I.V.; Nagao, T. Synthesis, structural, and electrical characterization of RuO2 sol–gel spin-coating nano-films. J. Mater. Sci. Mater. Electron. 2016, 27, 10791–10797. [Google Scholar] [CrossRef] [Green Version]
- Hummelgård, C.; Gustavsson, J.; Cornell, A.; Olin, H.; Bäckström, J. Spin coated titanium-ruthenium oxide thin films. Thin Solid Films 2013, 536, 74–80. [Google Scholar] [CrossRef]
- Sotgiu, G.; Montanaro, D.; Orsini, M.; Petrucci, E. Manganese-containing mixed oxide electrodes as anode materials for degradation of model organic pollutants. Chem. Eng. Trans. 2017, 57, 1639–1644. [Google Scholar]
- Tyona, M.D. A theoretical study on spin coating technique. Adv. Mater. Res. 2013, 2, 195–208. [Google Scholar] [CrossRef] [Green Version]
- Yi, J.H.; Thomas, P.; Manier, M.; Mercurio, J.P. Ruthenium oxide electrodes prepared by sol-gel spin-coating. J. Phys. France IV 1998, 8, 45–48. [Google Scholar] [CrossRef]
- Katiyar, A.; Kumar, N.; Srivastava, P.; Shukla, R.K.; Srivastava, A. Structural and physical parameters of sol-gel spin coated ZnO thin films: Effect of sol concentration. Mater. Today Proc. 2020, 29, 1098–1103. [Google Scholar] [CrossRef]
- Vankhade, D.; Chaudhuri, T.K. Effect of thickness on structural and optical properties of spin-coated nanocrystalline PbS thin films. Opt. Mater. 2019, 98, 109491. [Google Scholar] [CrossRef]
- Ajadi, D.A.; Agboola, S.M.; Adedokun, O. Effect of Spin Coating Speed on Some Optical Properties of ZnO Thin Films. J. Mater. Sci. Chem. Eng. 2016, 4, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Da Silva, L.M.; De Faria, L.A.; Boodts, J.F.C. Determination of the morphology factor of oxide layers. Electrochim. Acta 2001, 47, 395–403. [Google Scholar] [CrossRef]
- Kusmierek, E. Evaluating the Effect of WO3 on Electrochemical and Corrosion Properties of TiO2-RuO2-Coated Titanium Anodes with Low Content of RuO2. Electrocatalysis 2021, 11, 555–566. [Google Scholar] [CrossRef]
- Martínez-Huitle, C.A.; Rodrigo, M.A.; Sirés, I.; Scialdone, O. Single and Coupled Electrochemical Processes and Reactors for the Abatement of Organic Water Pollutants: A Critical Review. Chem. Rev. 2015, 115, 13362–13407. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Liu, C.; Liao, J.; Su, Y.; Xue, X.; Xing, W. Study of ruthenium oxide catalyst for electrocatalytic performance in oxygen evolution. J. Mol. Catal. A Chem. 2006, 247, 7–13. [Google Scholar] [CrossRef]
- Sotgiu, G.; Tortora, L.; Petrucci, E. Influence of surface roughening of Titanium substrate in the electrochemical activity of Manganese oxide thin film electrode in anodic oxidation of dye-containing solutions. J. Appl. Electrochem. 2015, 45, 787–797. [Google Scholar] [CrossRef]
Id | Method | N. Deposits | Volume (µL) | Spin Speed (min−1) | [RuCl3] (mol∙L−1) | T (°C) |
---|---|---|---|---|---|---|
E-01 | SC | 3 | 10 | 500 | 0.1 | 400 |
E-02 | SC | 3 | 20 | 500 | 0.1 | 400 |
E-03 | SC | 3 | 20 | 1000 | 0.1 | 400 |
E-04 | SC | 3 | 20 | 250 | 0.1 | 400 |
E-05 | SC | 1 | 20 | 500 | 0.1 | 400 |
E-06 | SC | 2 | 20 | 500 | 0.1 | 400 |
E-07 | SC | 6 | 20 | 500 | 0.1 | 400 |
E-08 | SC | 3 | 20 | 500 | 0.05 | 400 |
E-09 | SC | 3 | 20 | 500 | 0.01 | 400 |
E-10 | DC | 3 | 20 | 500 | 0.1 | 400 |
E-11 | SC | 3 | 20 | 500 | 0.1 | 100 (a) |
Id | ΔE (a) (Volt) | Ip(c)/Ip(a) (b) | E @ 3 mA∙cm−2 (c) (Volt) | |
---|---|---|---|---|
E-01 | 3.30 | 0.174 | 0.96 | 1.426 |
E-02 | 5.84 | 0.182 | 0.91 | 1.276 |
E-03 | 2.98 | 0.193 | 0.94 | 1.402 |
E-04 | 3.18 | 0.194 | 0.93 | 1.404 |
E-05 | 3.70 | 0.210 | 0.90 | 1.381 |
E-06 | 6.50 | 0.212 | 0.92 | 1.361 |
E-07 | 5.76 | 0.149 | 0.97 | 1.229 |
E-08 | 6.08 | 0.179 | 0.96 | 1.287 |
E-09 | 3.44 | 0.146 | 0.93 | 1.303 |
E-10 | 8.40 | 0.230 | 0.95 | 1.334 |
E-11 | 8.88 | 0.213 | 0.86 | 1.268 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petrucci, E.; Orsini, M.; Porcelli, F.; De Santis, S.; Sotgiu, G. Effect of Spin Coating Parameters on the Electrochemical Properties of Ruthenium Oxide Thin Films. Electrochem 2021, 2, 83-94. https://doi.org/10.3390/electrochem2010008
Petrucci E, Orsini M, Porcelli F, De Santis S, Sotgiu G. Effect of Spin Coating Parameters on the Electrochemical Properties of Ruthenium Oxide Thin Films. Electrochem. 2021; 2(1):83-94. https://doi.org/10.3390/electrochem2010008
Chicago/Turabian StylePetrucci, Elisabetta, Monica Orsini, Francesco Porcelli, Serena De Santis, and Giovanni Sotgiu. 2021. "Effect of Spin Coating Parameters on the Electrochemical Properties of Ruthenium Oxide Thin Films" Electrochem 2, no. 1: 83-94. https://doi.org/10.3390/electrochem2010008
APA StylePetrucci, E., Orsini, M., Porcelli, F., De Santis, S., & Sotgiu, G. (2021). Effect of Spin Coating Parameters on the Electrochemical Properties of Ruthenium Oxide Thin Films. Electrochem, 2(1), 83-94. https://doi.org/10.3390/electrochem2010008