Effect of Various Factors on the Accuracy of Determining the Planck Constant in a Student Physics Laboratory
Abstract
1. Introduction
2. Photoelectric Effect
Determining the Current–Voltage Characteristic of the Photocell
3. Blackbody Radiation
Determination of Current–Voltage Characteristics of Glowing Bulb Filament
4. Electroluminescence Phenomenon
Determination of Current–Voltage Characteristics of LED
5. Light Diffraction on the Single Slit
6. Determining the Planck Constant Based on the Hydrogen Atom Spectrum
7. Discussion
8. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Planck, M. Ueber das Gesetz der Energieverteilung im Normalspectrum. Ann. Phys. 1901, 309, 553–663, English translation: Planck, M. On the law of distribution of energy in the normal spectrum. Available online: https://strangepaths.com/files/planck1901.pdf (accessed on 14 July 2025). [CrossRef]
- Mavani, H.; Singh, N. A concise history of the black-body radiation problem. arXiv 2022, arXiv:2208.06470. [Google Scholar] [CrossRef]
- Possolo, A.; Schlamminger, S.; Stoudt, S.; Pratt, J.R.; Williams, C.J. Evaluation of the accuracy, consistency, and stability of measurements of the Planck constant used in the redefinition of the international system of units. Metrologia 2018, 55, 29–37. [Google Scholar] [CrossRef]
- Massa, E. Avogadro and Planck constants, two pillars of the International System of Units. Physics 2024, 6, 845–858. [Google Scholar] [CrossRef]
- Butto, N. The origin and nature of the Planck constant. J. High Energy Phys. Grav. Cosmol. 2021, 7, 324–332. [Google Scholar] [CrossRef]
- Nagasaka, H.; Mori, T. Theoretical derivation of Planck’s constant based on Brownian motion model and uncertainty relation. Quantum Stud. Math. Found. 2024, 11, 505–531. [Google Scholar] [CrossRef]
- Einstein, A. Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt. Ann. Phys. 1905, 17, 132–148, English translation: Einstein, A. On a heuristic point of view concerning the production and transformation of light. In The Collected Papers of Albert Einstein. Volume 2: The Swiss Writings, 1900–1909; Stachel, J., Cassidy, D.C., Renn, J., Schulmann, R., Eds.; Princeton University Press: Princeton, NJ, USA, 1990. Available online: https://einsteinpapers.press.princeton.edu/vol2-doc/185 (accessed on 14 July 2025). [CrossRef]
- Millikan, R.A. A Direct photoelectric determination of Planck’s “ℎ”. Phys. Rev. 1916, 7, 355–388. [Google Scholar] [CrossRef]
- Keesing, R.G. The measurement of Planck’s constant using the visible photoelectric effect. Eur. J. Phys. 1981, 2, 139–149. [Google Scholar] [CrossRef]
- Fitri, U.R.; Ziveria, M.; Muhara, I. Determination of Planck’s constant using the photoelectric effect experiment. J. Phys. Conf. Ser. 2022, 2377, 012076. [Google Scholar] [CrossRef]
- Usman, A.; Dogari, J.; Enuwa, M.R.; Sambo, I. A tutorial for laboratory determination of Planck’s constant from the Planck radiation law. Lat.-Am. J. Phys. Educ. 2009, 3, 246–253. [Google Scholar]
- Crandall, R.E.; Delord, J.F. Minimal apparatus for determination of Planck’s constant. Am. J. Phys. 1983, 51, 90–91. [Google Scholar] [CrossRef]
- Dryzek, J.; Ruebenbauer, K. Planck’s constant determination from black-body radiation. Am. J. Phys. 1992, 60, 251–253. [Google Scholar] [CrossRef]
- Brizuela, G.; Juan, A. Planck’s constant determination using a light bulb. Am. J. Phys. 1996, 64, 819–821. [Google Scholar] [CrossRef]
- Bonnet, I.; Gabelli, J. Probing Planck’s law at home. Eur. J. Phys. 2010, 31, 1463–1471. [Google Scholar] [CrossRef]
- Abellan, F.J.; Ibanez, J.A.; Valerdi, R.P.; Garcia, J.A. The Stefan–Boltzmann constant obtained from the I–V curve of a bulb. Eur. J. Phys. 2013, 34, 1221–1226. [Google Scholar] [CrossRef]
- Navalkar, V.; Sawant, S.; Mourya, S. Estimation of constants of thermal radiation using tungsten filament bulb. Phys. Educ. 2020, 56, 015007. [Google Scholar] [CrossRef]
- Rawal, I. Planck’s constant from Stefan’s radiation law: A study of gray radiations of tungsten filament bulb. Eur. J. Phys. 2025, 46, 025703. [Google Scholar] [CrossRef]
- Rawal, I. Planck’s constant determination from Ferry’s black-body radiation: A straightforward method. Phys. Educ. 2025, 60, 035038. [Google Scholar] [CrossRef]
- Zhou, F.; Cloninger, T. Computer-based experiment for determining Planck’s constant using LEDs. Phys. Teach. 2008, 46, 413–415. [Google Scholar] [CrossRef]
- Planinšič, G.; Etkina, E. Light-Emitting Diodes: A hidden treasure. Phys. Teach. 2014, 52, 94–99. [Google Scholar] [CrossRef]
- Planinšič, G.; Etkina, E. Framework for using modern devices in introductory physics courses. Eur. J. Phys. 2019, 40, 065702. [Google Scholar] [CrossRef]
- Checchetti, A.; Fantini, A. Experimental determination of Planck’s constant using Light Emitting Diodes (LEDs) and photoelectric effect. World J. Chem. Educ. 2015, 3, 87–92. [Google Scholar] [CrossRef]
- Venkatreddy, H.; Gopalakrishna, S.N.; Visweswaraiah, A.G.; Naik, N.N.K. Five decades of determining Planck’s constant using light emitting diodes in undergraduate laboratories—A review. Mapana J. Sci. (MJS) 2022, 21, 75–91. [Google Scholar] [CrossRef]
- Zollman, D.; Bearden, I. Determining Planck’s constant with LEDs—What could possibly go wrong? Phys. Educ. 2020, 55, 015011. [Google Scholar] [CrossRef]
- Steiner, R. History and progress on accurate measurements of the Planck constant. Rep. Prog. Phys. 2013, 76, 016101. [Google Scholar] [CrossRef] [PubMed]
- Stock, M. The watt balance: Determination of the Planck constant and redefinition of the kilogram. Philos. Trans. R. Soc. A Math. Phys. Engin. Sci. 2011, 369, 3936–3953. [Google Scholar] [CrossRef]
- Shisong, L.; Zhonghua, Z.; Zhengkun, L.; Songling, H. Progress on accurate measurement of the Planck constant: Watt balance and counting atoms. Chin. Phys. B 2014, 24, 010601. [Google Scholar] [CrossRef]
- Huang, J.; Wu, D.; Cai, Y.; Xu, Y.; Li, C.; Gao, O.; Zhao, L.; Liu, G.; Xu, Z.; Zhou, X.J. High precision determination of the Planck constant by modern photoemission spectroscopy. Rev. Sci. Instrum. 2020, 91, 045116. [Google Scholar] [CrossRef] [PubMed]
- Haug, E.G. The Planck constant and its relation to the Compton frequency. J. Appl. Math. Phys. 2024, 12, 168–180. [Google Scholar] [CrossRef]
- e-Laboratory Project. Available online: https://www.ises.info/index.php/en (accessed on 14 July 2025).
- Różański, S.A. Computer-aided experiments in student physics laboratory. Acta Phys. Pol. B Proc. Suppl. 2020, 13, 937–942. [Google Scholar] [CrossRef]
- Luan, Z.; Wang, L.; Wang, Y.; Gu, H.; Bai, Y. Online and offline analysis of Planck constant measurement. In Proceedings of CECNet 2022. The 12th International Conference on Electronics, Communications and Networks (CECNet 2022) 4–7 November 2022; Tallón-Ballesteros, A.J., Ed.; IOS Press: Amsterdam, The Netherlands, 2022; pp. 492–498. [Google Scholar] [CrossRef]
- Klassen, S. The photoelectric effect: Reconstructing the story for the physics classroom. Sci. Educ. 2011, 20, 719–731. [Google Scholar] [CrossRef]
- Foong, S.K.; Lee, P.; Wong, D.; Chee, Y.P. On the conceptual understanding of the photoelectric effect. AIP Conf. Proc. 2010, 1263, 114–117. [Google Scholar] [CrossRef]
- McGee, J. Photoelectric cells—A review of progress. IRE Trans. Component Parts. 1958, 5, 2–23. [Google Scholar] [CrossRef]
- PHYWE. Photocell for H-Determination, with Housing. Article No. 06779-00. Available online: https://www.phywe.com/physics/modern-physics/quantum-physics/photocell-for-h-determination-with-housing_1085_2016/ (accessed on 14 July 2025).
- Carla, M. Stefan–Boltzmann law for the tungsten filament of a light bulb: Revisiting the experiment. Am. J. Phys. 2013, 81, 512–517. [Google Scholar] [CrossRef]
- Izarra, C.H.; Gitton, J.-M. Calibration and temperature profile of a tungsten filament lamp. Eur. J. Phys. 2010, 31, 933–942. [Google Scholar] [CrossRef]
- English, S. Stephan Boltzmann Law and Boltzmann’s Constant. Bachelor’s Thesis, The College of Wooster, Physics Department, Wooster, OH, USA, 1999. Available online: https://physics.wooster.edu/wp-content/uploads/2021/08/Junior-IS-Thesis-Web_1999_English.pdf (accessed on 14 July 2025).
- PHYWE. Stefan-Boltzmann’s Law of Radiation with an Amplifier. Article No. P2350101. Available online: https://www.phywe.com/experiments-sets/university-experiments/stefan-boltzmann-s-law-of-radiation-with-an-amplifier_9515/ (accessed on 14 July 2025).
- Held, G. Introduction to Light Emitting Diode Technology and Applications; Auerbach Publications/Taylor & Francis Group: New York, NY, USA, 2009. [Google Scholar] [CrossRef]
- Rahman, F. Zinc oxide light-emitting diodes: A review. Opt. Eng. 2019, 58, 010901. [Google Scholar] [CrossRef]
- Dupuis, R.D.; Krames, M.R. History, development, and applications of high-brightness visible light-emitting diodes. J. Light. Technol. 2008, 26, 1154–1171. [Google Scholar] [CrossRef]
- Mosiori, C.O.; Oeba, D.A.; Shikambe, R. Determination of Planck’s constant using light emitting diodes. Path Sci. 2017, 3, 2007–2012. [Google Scholar] [CrossRef]
- Santonocito, F.; Tornabene, A.; Persano-Adorno, D. From led light signboards to the Planck’s constant. J. Phys. Conf. Ser. 2018, 1076, 012009. [Google Scholar] [CrossRef]
- Andrilana; Ishafit; Kusumaningtyas, D.A. Scientific content analysis of light emitting siode (LED) for high school physics STEM based learning. Al-Tarbiyah J. Pendid. 2024, 34, 38–50. [Google Scholar] [CrossRef]
- Frederiksen Scientific A/S. Varenr. 506030. Plancks konstant, diodekarakteristik. Available online: https://www.frederiksen-scientific.dk/produkt/plancks-konstant-diodekarakteristik/506030 (accessed on 14 July 2025). (In Dutch).
- Wang, H.-Y. Exploring the implications of the uncertainty relationships in quantum mechanics. Front. Phys. 2022, 10, 1059968. [Google Scholar] [CrossRef]
- Sen, D. The uncertainty relations in quantum mechanics. Curr. Sci. 2014, 107, 203–218. [Google Scholar] [CrossRef]
- PHYWE. Diffraction at a Slit and Heisenberg’s Uncertainty Principle. Article No. P2230101. Available online: https://www.phywe.com/experiments-sets/university-experiments/diffraction-at-a-slit-and-heisenberg-s-uncertainty-principl_9844_10775/ (accessed on 14 July 2025).
- Gan, K.; Law, A.T. Measuring slit width and separation in a diffraction experiment. Eur. J. Phys. 2009, 30, 1271–1276. [Google Scholar] [CrossRef]
- Nikolic, D.; Nesic, L. Verification of the uncertainty principle by using diffraction of light waves. Eur. J. Phys. 2011, 32, 467–477. [Google Scholar] [CrossRef]
- Pašić, S.; Gamulin, O.; Tocilj, Z. A simple experimental checking of Heisenberg’s uncertainty relations. Fizika A 2006, 15, 73–84. Available online: https://hrcak.srce.hr/302065 (accessed on 14 July 2025).
- Wilson, R. A review of the Bohr’s model of hydrogen atom. Phys. Sci. Int. J. 2021, 25, 41–45. [Google Scholar] [CrossRef]
- Onorato, P.; Malgieri, M.; De Ambrosis, A. Measuring the hydrogen Balmer series and Rydberg’s constant with a homemade spectrophotometer. Eur. J. Phys. 2015, 36, 058001. [Google Scholar] [CrossRef]
- Amrani, D. Hydrogen Balmer series measurements and determination of Rydberg’s constant using two different spectrometers. Eur. J. Phys. 2014, 35, 045001. [Google Scholar] [CrossRef]
- Tufino, E.; Caprara, C.; Rosi, T.; Malgieri, M.; Onorato, P. Smartphone experiments to study the radiation of a black body in a remote laboratory. Il Nuovo Cimento. 2022, 45C, 231. [Google Scholar] [CrossRef]
- Onorato, P.; Rosi, T.; Tufino, E.; Caprara, C.; Malgieri, M. Quantitative experiments in a distance lab: Studying blackbody radiation with a smartphone. Eur. J. Phys. 2021, 42, 045103. [Google Scholar] [CrossRef]
- Monteiro, M. Exploring Planck’s Law with a Smartphone. Talk at Seminaros del grupo Física No Lineal, Instituto de Física de la Facultad de Ciencias, Universidad de la Republica Urugway, 3 August 2020, Montevideo, Urugway. Available online: http://fisicanolineal.fisica.edu.uy/wp-content/uploads/2020/08/Planck-Smartphone-13ago2020.pdf (accessed on 14 July 2025).
- Indelicato, V.; La Rocca, P.; Riggi, F.; Santagati, G.; Zappala, G. Analysis of LED data for the measurement of Planck’s constant in the undergraduate laboratory. Eur. J. Phys. 2013, 34, 819. [Google Scholar] [CrossRef]
- Capone, R.; De Luca, R.; De Santis, A.; Faella, O.; Fiore, O.; Saggese, A. Training teachers: Explorative activities measuring Planck’s constant. J. Phys. Conf. Ser. 2019, 1286, 012046. [Google Scholar] [CrossRef]
- Schauer, F.; Ozvoldova, M.; Lustig, F. Real remote physics experiments across Internet—Inherent part of Integrated e-Learning. Int. J. Online Biomed. Eng. (iJOE) 2008, 4, 42–55. [Google Scholar] [CrossRef]
- LabsLand: The Global Remote STEM Labs Platform. Available online: https://labsland.com/en (accessed on 14 July 2025).
- UNILabs. University Network of Interactive Laboratories. Available online: https://unilabs.dia.uned.es/?lang=en (accessed on 14 July 2025).
- Miller, S.J. The method of least squares: The theory and applications of linear regression, from the orbits of planets to regionalizing school districts. Scatterplot 2025, 2, 2470533. [Google Scholar] [CrossRef]
λ (nm) | f (Hz), ×1014 | Vh (V) |
---|---|---|
365 | 8.21 | 1.41 |
405 | 7.40 | 1.17 |
436 | 6.88 | 0.86 |
546 | 5.49 | 0.43 |
568 | 5.28 | 0.31 |
V (V) | I (A) | P (W) | Vth (mV) | T (K) | logVth | logT |
---|---|---|---|---|---|---|
0.44 | 1.36 | 0.60 | 0.04 | 384.83 | −1.36 | 2.59 |
1.07 | 1.91 | 2.04 | 0.28 | 606.26 | −0.55 | 2.78 |
1.85 | 2.42 | 4.48 | 0.92 | 787.82 | −0.04 | 2.90 |
2.08 | 2.56 | 5.32 | 1.19 | 829.38 | 0.08 | 2.92 |
3.05 | 3.11 | 9.49 | 2.55 | 971.72 | 0.41 | 2.99 |
4.03 | 3.61 | 14.55 | 4.36 | 1083.17 | 0.64 | 3.03 |
5.01 | 4.05 | 20.29 | 6.42 | 1180.04 | 0.81 | 3.07 |
5.99 | 4.49 | 26.90 | 8.80 | 1256.44 | 0.94 | 3.10 |
7.04 | 4.90 | 34.50 | 11.61 | 1335.90 | 1.06 | 3.13 |
λ (nm) | f (Hz), ×1014 | Vp (V) | Ea(J), ×10−19 | h(J·s), ×10−34 |
---|---|---|---|---|
400 | 7.50 | 2.92 | 4.67 | 6.23 |
472 | 6.36 | 2.65 | 4.24 | 6.67 |
525 | 5.71 | 1.83 | 2.94 | 5.15 |
597 | 5.03 | 1.75 | 2.80 | 5.57 |
655 | 4.58 | 1.54 | 2.46 | 5.38 |
λ [nm)] | f (Hz), ×1014 | Vp(V) | Ea(J), ×10−19 | h (J·s), ×10−34 |
---|---|---|---|---|
405 | 7.41 | 2.89 | 4.63 | 6.25 |
466 | 6.44 | 2.72 | 4.35 | 6.76 |
595 | 5.04 | 1.89 | 3.02 | 6.00 |
640 | 4.69 | 1.79 | 2.86 | 6.11 |
940 | 3.19 | 1.10 | 1.76 | 5.52 |
Measurement Method | (h ± u(h)) × 10−34 J·s |
---|---|
Photoelectric effect | 5.98 ± 0.32 |
Blackbody radiation | 6.76 ± 0.66 |
LEDs characteristics | 5.80 ± 0.28 |
6.13 ± 0.28 | |
8.08 ± 1.42 | |
7.13 ± 0.55 | |
Hydrogen atom spectrum | 6.72 ± 0.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Różański, S.A. Effect of Various Factors on the Accuracy of Determining the Planck Constant in a Student Physics Laboratory. Physics 2025, 7, 37. https://doi.org/10.3390/physics7030037
Różański SA. Effect of Various Factors on the Accuracy of Determining the Planck Constant in a Student Physics Laboratory. Physics. 2025; 7(3):37. https://doi.org/10.3390/physics7030037
Chicago/Turabian StyleRóżański, Stanisław A. 2025. "Effect of Various Factors on the Accuracy of Determining the Planck Constant in a Student Physics Laboratory" Physics 7, no. 3: 37. https://doi.org/10.3390/physics7030037
APA StyleRóżański, S. A. (2025). Effect of Various Factors on the Accuracy of Determining the Planck Constant in a Student Physics Laboratory. Physics, 7(3), 37. https://doi.org/10.3390/physics7030037