New Conformally Invariant Born–Infeld Models and Geometrical Currents
Abstract
1. Introduction
2. New Born–Infeld Model and Its Conformal Generalization
Gravitational Equations and Symmetries
3. Abelian and Non-Abelian Lagragians from Geometry
4. Simplified Lagrangian
4.1. Flat Limits
4.2. Discussion: Abelian Limit, Relation with Other Proposals
- (1)
- (2)
- ModMax is prior to Refs. [18,19]; in the study by the author in Ref. [11], the origin of that type of Lagrangian was thoroughly elucidated—it is nothing but a particular eigenvalue of the corresponding characteristic (secular) equation of the tensor , given as
5. Dynamical Equations, Symmetries, and Topological Bounds
5.1. Electromagnetic Field Equations for the Abelian Case
5.2. The Metric Energy–Momentum Tensor
5.2.1. Fundamental Function and Self-Similarity
5.2.2. Topological Bounds
- (1)
- The saturation of the bound in the action (31) is given by
- (2)
- (3)
- One can find then that, from Refs. [12,27], the non-conformal models (with metric and electromagnetic field tensors) satisfy the conditionIn the case under study here, in the new conformal BI-type model here considered (with the Bach tensor and electromagnetic field tensor), the condition (34) includes the conformal factor and reads
6. Concluding Remarks
- (1)
- The square-root form of the proposed Lagrangian, being traceless and containing the antisymmetric bivector and the symmetric tensor (Bach tensor), which is conformally invariant, is inconsistent since the trace of gravitational equations imposes the condition .
- (2)
- The fourth-root form of the proposed Lagrangian, being traceless and containing the antisymmetric bivector and the symmetric tensor (Bach tensor), which is conformally invariant, is fully consistent since the trace of the gravitational equations leads to the condition suggesting an ansatz , where is a conformal factor: consequently, it is to be associated with a conformal-Killing vector equation.
- (3)
- The consistent Lagrangian is self-similar with respect to the determinant of the metric tensor, suggesting a possible conformal Bach flow of topological character.
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix B
References
- Born, M. On the quantum theory of the electromagnetic field. Proc. R. Soc. Lond. A Math. Phys. Engin. Sci. 1934, 143, 410–437. [Google Scholar] [CrossRef]
- Born, M.; Infeld, L. Foundations of the new field theory. Proc. R. Soc. Lond. A Math. Phys. Engin. Sci. 1934, 144, 425–451. [Google Scholar] [CrossRef]
- Born, M.; Infeld, L. On the quantization of the new field equations. I. Proc. R. Soc. Lond. A Math. Phys. Engin. Sci. 1934, 147, 522–546. [Google Scholar] [CrossRef]
- Born, M.; Infeld, L. On the quantization of the new field equations. II. Proc. R. Soc. Lond. A Math. Phys. Engin. Sci. 1935, 150, 141–166. [Google Scholar] [CrossRef]
- Wohlfarth, M.N.R. Gravity á la Born–Infeld. Class. Quantum Grav. 2004, 21, 1927–1939. [Google Scholar] [CrossRef]
- Taniuti, T. On wave Propagation in non-linear fields. Prog. Theor. Phys. Suppl. 1959, 9, 69–128. [Google Scholar] [CrossRef]
- Barbashov, B.M.; Nesterenko, V.V. Introduction to the Relativistic String Theory; World Scientific Publishing Co. Pte. Ltd.: Singapore, 1990. [Google Scholar] [CrossRef]
- Leigh, R.G. Dirac–Born–Infeld action from Dirichlet σ-model. Mod. Phys. Lett. A 1989, 4, 2767–2772. [Google Scholar] [CrossRef]
- Sato, M.; Tsuchiya, A. Born–Infeld action from supergravity. Prog. Theor. Phys. 2003, 109, 687–707. [Google Scholar] [CrossRef]
- Cirilo-Lombardo, D.J. New spherically symmetric monopole and regular solutions in Einstein–Born–Infeld theories. J. Math. Phys. 2005, 46, 042501. [Google Scholar] [CrossRef]
- Cirilo-Lombardo, D.J. Conformally invariant nonlinear electrodynamic actions and its non-Abelian extensions. Int. J. Geom. Meth. Mod. Phys. 2023, 20, 2350238. [Google Scholar] [CrossRef]
- Cirilo-Lombardo, D.J. Non-Abelian Born–Infeld action, geometry and supersymmetry. Class. Quantum Grav. 2005, 22, 4987–5004. [Google Scholar] [CrossRef]
- Bielli, D.; Ferko, C.; Smith, L.; Tartaglino-Mazzucchelli, G. T duality and T-like deformations of sigma models. Phys. Rev. Lett. 2025, 134, 101601. [Google Scholar] [CrossRef]
- Cayley, A. On the theory of linear transformations. Camb. Math. J. 1845, 4, 193–209, Reprinted in: Cayley, A. The Collected Mathematical Papers. Volume 1; Cambridge University Press: Cambridge, UK, 2009; Chapter 13. [Google Scholar] [CrossRef]
- Tapia, V. Polynomial identities for hypermatrices. arXiv 2002. [Google Scholar] [CrossRef]
- Gelfand, I.M.; Kapranov, M.M.; Zelevinsky, A.V. Hyperdeterminants. Adv. Math. 1992, 96, 226–263. [Google Scholar] [CrossRef]
- Bach, R. Zur Weylschen Relativitätstheorie und der Weylschen Erweiterung des Krümmungstensorbegriffs. Math. Zeits. 1921, 9, 110–135. [Google Scholar] [CrossRef]
- Bandos, I.; Lechner, K.; Sorokin, D.; Townsend, P.K. ModMax meets SUSY. J. High Energy Phys. 2021, 2021, 31. [Google Scholar] [CrossRef]
- Bandos, I.; Lechner, K.; Sorokin, D.; Townsend, P.K. Nonlinear duality-invariant conformal extension of Maxwell’s equations. Phys. Rev. D 2020, 102, 121703. [Google Scholar] [CrossRef]
- Gaillard, M.K.; Zumino, B. Self-duality in nonlinear electromagnetism. In Supersymmetry and Quantum Field Theory, Proceedings of the D. Volkov Memorial Seminar Held in Kharkov, Ukraine, 5–7 January 1997; Wess, J., Akulov, V.P., Eds.; Springer: Berlin/Heidelberg, Germany, 1998; pp. 121–129. [Google Scholar] [CrossRef]
- Misner, C.W.; Thorne, K.S.; Wheeler, J.A. Gravitation; Princeton University Press: Princeton, NJ, USA, 2017; Available online: https://www.aldebaran.cz/studium/books/2017_MTW-Gravitation.pdf (accessed on 27 June 2025).
- Cirilo-Lombardo, D.J. On the mathematical structure and hidden symmetries of the Born–Infeld field equations. J. Math. Phys. 2007, 48, 032301. [Google Scholar] [CrossRef]
- Gibbons, G.W.; Rasheed, D.A. Electric-magnetic duality rotations in non-linear electrodynamics. Nucl. Phys. B 1995, 454, 185–206. [Google Scholar] [CrossRef]
- Gibbons, G.W.; Rasheed, D.A. SL(2,) invariance of non-linear electrodynamics coupled to an axion and a dilaton. Phys. Lett. B 1996, 365, 46–50. [Google Scholar] [CrossRef]
- Newman, E.T.; Penrose, R. An approach to gravitational radiation by a method of spin coefficients. J. Math. Phys. 1962, 3, 566–768. [Google Scholar] [CrossRef]
- Petrov, A.Z. The classification of spaces defined by gravitational fields. Uch. Zap. Kazan. Gos. Univ. V.I. Ul’yanova-Lenina [Sci. Proceed. V.I. Ul’yanov-Lenin Kazan State Univ.] 1954, 114, 55–69. (In Russian); English Translation: Gen. Relativ. Gravit. 2000, 32, 1665–1685. [Google Scholar] [CrossRef]
- Gibbons, G.W.; Hashimoto, K. Non-linear electrodynamics in curved backgrounds. J. High Energy Phys. 2000, 9, 13. [Google Scholar] [CrossRef]
- Cirilo-Lombardo, D.J. On Einstein–Born–Infeld conformally invariant theory. Eur. Phys. J. C 2023, 83, 191. [Google Scholar] [CrossRef]
- Cirilo-Lombardo, D.J. Non-Riemannian geometry, Born–Infeld models and trace free gravitational equations. J. High Energy Astrophys. 2017, 16, 1–14. [Google Scholar] [CrossRef]
- Cirilo-Lombardo, D.J. On affine geometrical structure, generalized of Born–Infeld models and Eddington’s world conjectures. Int. J. Geom. Meth. Mod. Phys. 2023, 20, 2350089. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cirilo-Lombardo, D.J. New Conformally Invariant Born–Infeld Models and Geometrical Currents. Physics 2025, 7, 36. https://doi.org/10.3390/physics7030036
Cirilo-Lombardo DJ. New Conformally Invariant Born–Infeld Models and Geometrical Currents. Physics. 2025; 7(3):36. https://doi.org/10.3390/physics7030036
Chicago/Turabian StyleCirilo-Lombardo, Diego Julio. 2025. "New Conformally Invariant Born–Infeld Models and Geometrical Currents" Physics 7, no. 3: 36. https://doi.org/10.3390/physics7030036
APA StyleCirilo-Lombardo, D. J. (2025). New Conformally Invariant Born–Infeld Models and Geometrical Currents. Physics, 7(3), 36. https://doi.org/10.3390/physics7030036