Terahertz Optoelectronic Properties of Monolayer MoS2 in the Presence of CW Laser Pumping
Abstract
1. Introduction
2. Sample and Experimental Measurements
3. Results and Discussions
- (i)
- The electron density increases almost linearly with CW laser pumping intensity. This is due to the feature that stronger CW laser pumping is expected to excite more electrons and electron–hole pairs from VB to CB in ML MoS2. Therefore, the intense CW laser excitation leads to an increase in electron density in ML MoS2. It is found that the electron density in the dark or in the absence of laser pumping is about m−2. In the presence of CW laser pumping, we have , with the photo-induced electron density. The result shown in Figure 5 indicates that the 445 nm wavelength CW laser pumping effectively tunes electron density in an ML MoS2/substrate sample. When the CW laser radiation intensity is at 0.39 , about a 30% increase in electron density to be achieved.
- (ii)
- The electronic relaxation time decreases with increasing pumping intensity, suggesting a nonlinear response of electrons in ML MoS2 to CW pump radiation. In ML MoS2, the electronic relaxation time measured by THz TDS is determined mainly by electron interactions with scattering centers such as other electrons, impurities, phonons, etc., which are basically the intra-band electronic scattering mechanisms to achieve the momentum and energy relaxation during the scattering events. A shorter implies a stronger intra-band electronic scattering rate.It should be noted that the inter-band electronic relaxation time induced by excitonic relaxation and direct non-radiative electronic transition in ML MoS2 is typically in the sub-nanosecond (ns) temporal scale [7,24], which is significantly longer than intra-band electronic relaxation time. Moreover, measured by THz TDS is mainly the momentum relaxation time due to the finding that it is obtained from optical conductivity caused by free-carrier absorption. In contrast, the inter-band electronic relaxation is mainly an energy relaxation process as soon as the direct electron–photon interaction is not expected to change the electron momentum. In the presence of CW laser excitation, the electrons in CB gain energy from the radiation field via optical absorption and lose energy via inter-band transitions to VB and via intra-band interactions with scattering centers to achieve momentum and energy relaxation. When the CW laser excitation is weak, this gain-and-lose process is balanced, and the electrons are in the linear response regime where τ does not depend on the excitation intensity. With increasing excitation intensity, the electrons gain more energy from the radiation field than they lost via inter- and intra-band electronic transitions and relaxations. As a result, the electrons in the CB may be heated or are in the hot-electron regime where the effective intra-band electronic scattering rate increases with the laser excitation intensity. This coincides with the feature that more electrons are pumped into the CB in ML MoS2 and the electrons in the CB are more strongly excited. Thus, stronger intra-band scattering is required to achieve momentum and energy conservation during the momentum and energy gain-and-loss processes. This is a typical feature of a semiconductor subjected to intense CW laser radiation [45]. As the CW laser pump intensity further increases so that the transition and relaxation of hot electrons no longer releases the energy gained from the radiation field, the sample is then heated, and the system is in the hot-phonon regime. Let us note that, in this study, the maximum laser power applied to the sample was approximately 0.150 W, corresponding to an electric field strength of about 1.71 KV/m. This level of laser excitation may result in the hot-electron effect in ML MoS2 but is not sufficient to result in the hot-phonon effect heating the sample. We find that measured here by THz TDS differs from that measured by OPTP [7,24] for ML MoS2. The latter case relates to inter-band electronic transition and excitonic relaxation. The relaxation or decay time measured from the excitation–decay curve in OPTP is typically in the sub-ns time scale [7,24].
- (iii)
- The photon-induced electronic backscattering or localization effect increases with the CW laser excitation intensity, noting that the c-factor is always negative. This is a straight consequence of the increase in electronic scattering rate with the CW laser radiation intensity.
- (iv)
- In the presence of photon-induced electronic backscattering or localization, the effective dc conductivity is . As soon as both c and decrease with increasing CW laser pumping intensity, which effectively offsets the increase in the electron density, decreases with increasing CW laser pumping intensity. Hence, the reduction in the conductivity of ML MoS2 is mainly induced by photon-induced electronic localization.
- (v)
- Earlier, it has been demonstrated that in the absence of CW laser excitation, the photon-induced electronic backscattering or localization in ML MoS2 can be induced by the presence of the substrate [23]. Here, we find that such an effect can be enhanced by the presence of CW laser pumping. These findings indicate that the usage of CW laser pumping has a crucial impact on the optoelectronic properties of ML MoS2 on a dielectric substrate such as sapphire.
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, P.; Xiang, B. 2D hetero-structures based on transition metal dichalcogenides: Fabrication, properties and applications. Sci. Bull. 2017, 62, 1148–1161. [Google Scholar] [CrossRef] [PubMed]
- Mak, K.F.; Xiao, D.; Shan, J. Light–valley interactions in 2D semiconductors. Nat. Photonics 2018, 12, 451–460. [Google Scholar] [CrossRef]
- Rose, F.; Goerbig, M.O.; Piéchon, F. Spin- and valley-dependent magneto-optical properties of MoS2. Phys. Rev. B 2013, 88, 125438. [Google Scholar] [CrossRef]
- Kormányos, A.; Zólyomi, V.; Drummond, N.D.; Burkard, G. Spin-orbit coupling, quantum dots, and qubits in monolayer transition metal dichalcogenides. Phys. Rev. X 2014, 4, 011034. [Google Scholar] [CrossRef]
- Lu, P.; Wu, X.; Guo, W.; Zeng, X.C. Strain-dependent electronic and magnetic properties of MoS2 monolayer, bilayer, nanoribbons and nanotubes. Phys. Chem. Chem. Phys. 2012, 14, 13035–13040. [Google Scholar] [CrossRef]
- Xiao, D.; Liu, G.-B.; Feng, W.; Xu, X.; Yao, W. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 2012, 108, 196802. [Google Scholar] [CrossRef]
- Lui, C.H.; Frenzel, A.J.; Pilon, D.V.; Lee, Y.-H.; Ling, X.; Akselrod, G.M.; Kong, J.; Gedik, N. Trion-induced negative photoconductivity in monolayer MoS2. Phys. Rev. Lett. 2014, 113, 166801. [Google Scholar] [CrossRef]
- Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147–150. [Google Scholar] [CrossRef]
- Baugher, B.W.H.; Churchill, H.O.H.; Yang, Y.; Jarillo-Herrero, P. Optoelectronic devices based on electrically tunable p–n diodes in a monolayer dichalcogenide. Nat. Nanotechnol. 2014, 9, 262–267. [Google Scholar] [CrossRef]
- Radisavljevic, B.; Whitwick, M.B.; Kis, A. Integrated circuits and logic operations based on single-layer MoS2. ACS Nano 2011, 5, 9934–9938. [Google Scholar] [CrossRef]
- Mak, K.F.; He, K.; Lee, C.; Lee, G.H.; Hone, J.; Heinz, T.F.; Shan, J. Tightly bound trions in monolayer MoS2. Nat. Mater. 2013, 12, 207–211. [Google Scholar] [CrossRef] [PubMed]
- Ross, J.S.; Wu, S.; Yu, H.; Ghimire, N.J.; Jones, A.M.; Aivazian, G.; Yan, J.; Mandrus, D.G.; Xiao, D.; Yao, W.; et al. Electrical control of neutral and charged excitons in a monolayer semiconductor. Nat. Commun. 2013, 4, 1474. [Google Scholar] [CrossRef] [PubMed]
- Komsa, H.-P.; Krasheninnikov, A.V. Effects of confinement and environment on the electronic structure and exciton binding energy of MoS2 from first principles. Phys. Rev. B 2012, 86, 241201. [Google Scholar] [CrossRef]
- Berkelbach, T.C.; Hybertsen, M.S.; Reichman, D.R. Theory of neutral and charged excitons in monolayer transition metal dichalcogenides. Phys. Rev. B 2013, 88, 045318. [Google Scholar] [CrossRef]
- Lin, Y.; Ling, X.; Yu, L.; Huang, S.; Hsu, A.L.; Lee, Y.-H.; Kong, J.; Dresselhaus, M.S.; Palacios, T. Dielectric screening of excitons and trions in single-layer MoS2. Nano Lett. 2014, 14, 5569–5576. [Google Scholar] [CrossRef] [PubMed]
- Kar, S.; Su, Y.; Nair, R.R.; Sood, A.K. Probing photoexcited carriers in a few-layer MoS2 laminate by time-resolved optical pump–terahertz probe spectroscopy. ACS Nano 2015, 9, 12004–12010. [Google Scholar] [CrossRef]
- Splendiani, A.; Sun, L.; Zhang, Y.; Li, T.; Kim, J.; Chim, C.-Y.; Galli, G.; Wang, F. Emerging photoluminescence in monolayer MoS2. Nano Lett. 2010, 10, 1271–1275. [Google Scholar] [CrossRef]
- Xia, F.; Wang, H.; Xiao, D.; Dubey, M.; Ramasubramaniam, A. Two-dimensional material nanophotonics. Nat. Photonics 2014, 8, 899–907. [Google Scholar] [CrossRef]
- Gusynin, V.P.; Sharapov, S.G.; Carbotte, J.P. Unusual microwave response of Dirac quasiparticles in graphene. Phys. Rev. Lett. 2006, 96, 256802. [Google Scholar] [CrossRef]
- D’Arco, A.; Mussi, V.; Petrov, S.; Tofani, S.; Petrarca, M.; Beccherelli, R.; Dimitrov, D.; Marinova, V.; Lupi, S.; Zografopoulos, D.C. Fabrication and spectroscopic characterization of graphene transparent electrodes on flexible cyclo-olefin substrates for terahertz electro-optic applications. Nanotechnology 2020, 31, 364006. [Google Scholar] [CrossRef]
- Ji, J.; Zhou, Y.; Zhou, B.; Desgué, E.; Legagneux, P.; Jepsen, P.U.; Bøggild, P. Probing carrier dynamics in large-scale MBE-grown PtSe2 films by terahertz spectroscopy. ACS Appl. Mater. Interfaces 2023, 15, 51319–51329. [Google Scholar] [CrossRef] [PubMed]
- Zografopoulos, D.C.; Dionisiev, I.; Minev, N.; Petrone, G.; Maita, F.; Maiolo, L.; Dimitrov, D.; Marinova, V.; Liscio, A.; Mussi, V. Terahertz time-domain characterization of thin conducting films in reflection mode. IEEE Trans. Antenn. Propag. 2024, 72, 9301–9316. [Google Scholar] [CrossRef]
- Wang, C.; Xu, W.; Mei, H.; Qin, H.; Zhao, X.; Zhang, C.; Yuan, H.; Zhang, J.; Xu, Y.; Li, P.; et al. Substrate-induced electronic localization in monolayer MoS2 measured via terahertz spectroscopy. Opt. Lett. 2019, 44, 4139–4142. [Google Scholar] [CrossRef] [PubMed]
- Docherty, C.J.; Parkinson, P.; Joyce, H.J.; Chiu, M.-H.; Chen, C.-H.; Lee, M.-Y.; Li, L.-J.; Herz, L.M.; Johnston, M.B. Ultrafast transient terahertz conductivity of monolayer MoS2 and WSe2 grown by chemical vapor deposition. ACS Nano 2014, 8, 11147–11153. [Google Scholar] [CrossRef]
- Nguyen, P.X.; Garg, S.; Tse, W.-K.; Pan, S.; Kung, P.; Kim, S.M. Polarization dependent trion dynamics in large area CVD grown 2D monolayer MoS2 by terahertz time-domain spectroscopy. J. Phys. D Appl. Phys. 2019, 52, 155104. [Google Scholar] [CrossRef]
- Yu, Y.; Li, C.; Liu, Y.; Su, L.; Zhang, Y.; Cao, L. Controlled scalable synthesis of uniform, high-quality monolayer and few-layer MoS2 films. Sci. Rep. 2013, 3, 1866. [Google Scholar] [CrossRef]
- Lee, Y.-H.; Zhang, X.-Q.; Zhang, W.; Chang, M.-T.; Lin, C.-T.; Chang, K.-D.; Yu, Y.-C.; Wang, J.T.-W.; Chang, C.-S.; Li, L.-J.; et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 2012, 24, 2320–2325. [Google Scholar] [CrossRef]
- Wen, H.; Xu, W.; Wang, C.; Song, D.; Mei, H.; Zhang, J.; Ding, L. Magneto-optical properties of monolayer MoS2-SiO2/Si structure measured via terahertz time-domain spectroscopy. Nano Select 2021, 2, 90–98. [Google Scholar] [CrossRef]
- Dolui, K.; Rungger, I.; Sanvito, S. Origin of the n-type and p-type conductivity of MoS2 monolayers on a SiO2 substrate. Phys. Rev. B 2013, 87, 165402. [Google Scholar] [CrossRef]
- Kim, D.W.; Ok, J.M.; Jung, W.-B.; Kim, J.-S.; Kim, S.J.; Choi, H.O.; Kim, Y.H.; Jung, H.-T. Direct observation of molybdenum disulfide, MoS2, domains by using a liquid crystalline texture method. Nano Lett. 2015, 15, 229–234. [Google Scholar] [CrossRef]
- Fülöp, J.A.; Pálfalvi, L.; Klingebiel, S.; Almási, G.; Krausz, F.; Karsch, S.; Hebling, J. Generation of sub-mJ terahertz pulses by optical rectification. Opt. Lett. 2012, 37, 557–559. [Google Scholar] [CrossRef] [PubMed]
- Blanchard, F.; Razzari, L.; Bandulet, H.C.; Sharma, G.; Morandotti, R.; Kieffer, J.-C.; Ozaki, T.; Reid, M.; Tiedje, H.F.; Haugen, H.K.; et al. Generation of 1.5 μJ single-cycle terahertz pulses by optical rectification from a large aperture ZnTe crystal. Opt. Express 2007, 15, 13212–13220. [Google Scholar] [CrossRef] [PubMed]
- Komandin, G.A.; Nozdrin, V.S.; Chernomyrdin, N.V.; Seregin, D.S.; Vishnevskiy, A.S.; Kurlov, V.N.; Vorotilov, K.A.; Miakonkikh, A.V.; Lomov, A.A.; Rudenko, K.V. Dielectric permittivity of organosilicate glass thin films on a sapphire substrate determined using time-domain THz and Fourier IR spectroscopy. J. Phys. D Appl. Phys. 2021, 55, 025303. [Google Scholar] [CrossRef]
- Zhao, Y.; Lee, J.H.; Zhu, Y.; Nazari, M.; Chen, C.; Wang, H.; Bernussi, A.; Holtz, M.; Fan, Z. Structural, electrical, and terahertz transmission properties of VO2 thin films grown on c-, r-, and m-plane sapphire substrates. J. Appl. Phys. 2012, 111, 053533. [Google Scholar] [CrossRef]
- Chudpooti, N.; Duangrit, N.; Burnett, A.D.; Freeman, J.R.; Gill, T.B.; Phongcharoenpanich, C.; Imberg, U.; Torrungrueng, D.; Akkaraekthalin, P.; Robertson, I.D.; et al. Wideband dielectric properties of silicon and glass substrates for terahertz integrated circuits and microsystems. Mater. Res. Express 2021, 8, 056201. [Google Scholar] [CrossRef]
- Duvillaret, L.; Garet, F.; Coutaz, J.-L. A reliable method for extraction of material parameters in terahertz time-domain spectroscopy. IEEE J. Sel. Top. Quantum Electron. 1996, 2, 739–746. [Google Scholar] [CrossRef]
- Tinkham, M. Energy gap interpretation of experiments on infrared transmission through superconducting films. Phys. Rev. 1956, 104, 845–846. [Google Scholar] [CrossRef]
- Němec, H.; Kužel, P.; Sundström, V. Far-infrared response of free charge carriers localized in semiconductor nanoparticles. Phys. Rev. B 2009, 79, 115309. [Google Scholar] [CrossRef]
- Smith, N.V. Classical generalization of the Drude formula for the optical conductivity. Phys. Rev. B 2001, 64, 155106. [Google Scholar] [CrossRef]
- Lloyd-Hughes, J.; Jeon, T.-I. A review of the terahertz conductivity of bulk and nano-materials. J. Infrared Millim. Terahertz Waves 2012, 33, 871–925. [Google Scholar] [CrossRef]
- Shimakawa, K.; Kasap, S. Dynamics of carrier transport in nanoscale materials: Origin of non-Drude behavior in the terahertz frequency range. Appl. Sci. 2016, 6, 50. [Google Scholar] [CrossRef]
- Hangyo, M.; Nagashima, T.; Nashima, S. Spectroscopy by pulsed terahertz radiation. Meas. Sci. Technol. 2002, 13, 1727–1738. [Google Scholar] [CrossRef]
- Rai, D.P.; Vu, T.V.; Laref, A.; Hossain, M.A.; Haque, E.; Ahmad, S.; Khenata, R.; Thapa, R. Electronic properties and low lattice thermal conductivity (κ1) of mono-layer (ML) MoS2: FP–LAPW incorporated with spin–orbit coupling (SOC). RSC Adv. 2020, 10, 18830–18840. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Dong, H.M.; Li, L.L.; Yao, J.Q.; Vasilopoulos, P.; Peeters, F.M. Optoelectronic properties of graphene in the presence of optical phonon scattering. Phys. Rev. B 2010, 82, 125304. [Google Scholar] [CrossRef]
- Xu, W. Nonlinear transport and optical properties of terahertz-driven two-dimensional electron gases. J. Phys. Condens. Matter 2001, 13, 3717–3726. [Google Scholar] [CrossRef]
- Strutz, T. Data Fitting and Uncertainty: A Practical Introduction to Weighted Least Squares and Beyond; Springer Vieweg; Teubner Verlag: Wiesbaden, Germany, 2011. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farooq, A.; Xu, W.; Zhang, J.; Wen, H.; Wang, Q.; Cheng, X.; Xiao, Y.; Ding, L.; Hamdalnile, A.A.A.; Li, H.; et al. Terahertz Optoelectronic Properties of Monolayer MoS2 in the Presence of CW Laser Pumping. Physics 2025, 7, 27. https://doi.org/10.3390/physics7030027
Farooq A, Xu W, Zhang J, Wen H, Wang Q, Cheng X, Xiao Y, Ding L, Hamdalnile AAA, Li H, et al. Terahertz Optoelectronic Properties of Monolayer MoS2 in the Presence of CW Laser Pumping. Physics. 2025; 7(3):27. https://doi.org/10.3390/physics7030027
Chicago/Turabian StyleFarooq, Ali, Wen Xu, Jie Zhang, Hua Wen, Qiujin Wang, Xingjia Cheng, Yiming Xiao, Lan Ding, Altayeb Alshiply Abdalfrag Hamdalnile, Haowen Li, and et al. 2025. "Terahertz Optoelectronic Properties of Monolayer MoS2 in the Presence of CW Laser Pumping" Physics 7, no. 3: 27. https://doi.org/10.3390/physics7030027
APA StyleFarooq, A., Xu, W., Zhang, J., Wen, H., Wang, Q., Cheng, X., Xiao, Y., Ding, L., Hamdalnile, A. A. A., Li, H., & Peeters, F. M. (2025). Terahertz Optoelectronic Properties of Monolayer MoS2 in the Presence of CW Laser Pumping. Physics, 7(3), 27. https://doi.org/10.3390/physics7030027