The Cosmology of a Non-Minimally Coupled f(R,T) Gravitation
Abstract
1. Introduction
2. Gravity
The FRW Metric and Field Equations
3. Solutions of the Field Equations
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Perlmutter, S.; Aldering, G.; Goldhaber, G.; Knop, R.A.; Nugent, P.; Castro, P.G.; Deustua, S.; Fabbro, S.; Goobar, A.; Groom, D.E.; et al. Measurements of Ω and Λ from 42 high-redshift supernovae. Astrophys. J. 1999, 517, 565–586. [Google Scholar] [CrossRef]
- Riess, A.G.; Filippenko, A.V.; Challis, P.; Clocchiatti, A.; Diercks, A.; Garnavich, P.M.; Gilliland, R.L.; Hogan, C.J.; Jha, S.; Kirshner, R.P.; et al. Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 1998, 116, 1009–1038. [Google Scholar] [CrossRef]
- Riess, A.G.; Kirshner, R.P.; Schmidt, B.P.; Jha, S.; Challis, P.; Garnavich, P.M.; Esin, A.A.; Carpenter, C.; Grashius, R.; Schild, R.E.; et al. BVRI light curves for 22 Type Ia supernovae. Astron. J. 1999, 117, 707–724. [Google Scholar] [CrossRef]
- Ade, P.A.R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, R.B.; Barriero, R.B.; Bartlett, G.; Bartolo, N.; et al. [Planck Collaboration] Planck 2015 results. XIII. Cosmological parameters. Astron. Astrophys. 2016, 594, A13. [Google Scholar]
- Burgess, C.P. The cosmological constant problem: Why it’s hard to get dark energy from micro-physics. arXiv 2013, arXiv:1309.4133. [Google Scholar] [CrossRef]
- Luongo, O.; Tommasisni, D. Modeling dark energy through an Ising fluid with network interactions. Int. J. Mod. Phys. D 2014, 23, 1450023. [Google Scholar] [CrossRef]
- Luongo, O.; Quevedo, H. Cosmographic study of the universe’s specific heat: A landscape for cosmology. Gen. Relativ. Gravit. 2014, 46, 1649. [Google Scholar] [CrossRef]
- Luongo, O.; Muccino, M. Speeding up the universe using dust with pressure. Phys. Rev. D 2018, 98, 103520. [Google Scholar] [CrossRef]
- Caldwell, R.R.; Dave, R.; Steinhardt, P.J. Cosmological imprint of an energy component with general equation of state. Phys. Rev. Lett. 1998, 80, 1582–1585. [Google Scholar] [CrossRef]
- Tsujikawa, S. Quintessence: A review. Class. Quant. Grav. 2013, 30, 214003. [Google Scholar] [CrossRef]
- Moraes, P.H.R.S.; Santos, J.R.L. Two scalar field cosmology from coupled one-field models. Phys. Rev. D 2014, 89, 083516. [Google Scholar] [CrossRef]
- Khurshudyan, M.; Chubaryan, E.; Pourhassan, B. Interacting Quintessence Models of Dark Energy. Int. J. Theor. Phys. 2014, 53, 2370–2378. [Google Scholar] [CrossRef]
- Khurshudyan, M.; Pourhassan, B.; Myrzakulov, R.; Chattopadhyay, S. An effective quintessence field with a power-law potential. Astrophys. Space Sci. 2015, 356, 383–391. [Google Scholar] [CrossRef]
- Umar Farooq, M.; Jamil, M.; Debnath, U. Dynamics of interacting phantom and quintessence dark energies. Astrophys. Space Sci. 2011, 334, 243–248. [Google Scholar] [CrossRef]
- Harko, T.; Lobo, F.S.N.; Nojiri, S.; Odintsov, S.D. f(R,T) gravity. Phys. Rev. D 2011, 84, 024020. [Google Scholar] [CrossRef]
- Xu, M.-X.; Harko, T.; Liang, S.-D. Quantum cosmology of f(R,T) gravity. Eur. Phys. J. C 2016, 76, 449. [Google Scholar] [CrossRef]
- Myrzakulov, R. FRW cosmology in f(R,T) gravity. Eur. Phys. J. C 2012, 72, 2203. [Google Scholar] [CrossRef]
- Sharif, M.; Zubair, M. Study of Bianchi I anisotropic model in f(R,T) gravity. Astrophys. Space Sci. 2014, 349, 457–465. [Google Scholar] [CrossRef]
- Moraes, P.H.R.S.; Ribeiro, G.; Correa, R.A.C. A transition from a decelerated to an accelerated phase of the universe expansion from the simplest non-trivial polynomial function of T in the f(R,T) formalism. Astrophys. Space Sci. 2016, 361, 227. [Google Scholar] [CrossRef]
- Shamir, M.F. Locally rotationally symmetric Bianchi type I cosmology in f(R,T) gravity. Eur. Phys. J. 2015, 75, 354. [Google Scholar] [CrossRef]
- Sharma, N.K.; Singh, J.K. Bianchi type-II String cosmological model with magnetic field in f(R,T) gravity. Int J. Theor. Phys. 2014, 53, 2912–2922. [Google Scholar] [CrossRef]
- Mishra, B.; Tarai, S.; Pacif, S.K.J. Dynamics of Bianchi VIh universe with bulk viscous fluid in modified gravity. Int. J. Geom. Mod. Phys. 2018, 15, 1850036. [Google Scholar] [CrossRef]
- Mishra, B.; Tarai, S.; Tripathy, S.K. Dynamical features of an anisotropic cosmological model. Int. J. Phys. 2018, 92, 1199–1206. [Google Scholar] [CrossRef]
- Tiwari, R.K.; Sofuoğlu, D. Quadratically varying deceleration parameter in f(R,T) gravity. Int. J. Geom. Methods Mod. Phys. 2020, 17, 2030003. [Google Scholar] [CrossRef]
- Tiwari, R.K.; Beesham, A.; Singh, R.; Tiwari, L.K. Time varying G and Λ cosmology in f(R,T) gravity theory. Astrophys. Space Sci. 2017, 362, 143. [Google Scholar] [CrossRef]
- Zubair, M.; Noureen, I. Evolution of axially symmetric anisotropic sources in f(R,T) gravity. Eur. Phys. J. C 2015, 75, 265. [Google Scholar] [CrossRef]
- Alfedeel, A.H.A.; Tiwari, R.K. A novel approach to Bianchi type–I cosmological model in f(R,T) gravity. Indian J. Phys. 2021, 96, 1877–1885. [Google Scholar] [CrossRef]
- Tiwari, R.K.; Sofuoğlu, D.; Mishra, S.K. Accelerating universe with varying Λ in f(R,T) theory of gravity. New Astron. 2021, 83, 101476. [Google Scholar] [CrossRef]
- Tiwari, R.K.; Beesham, A.; Shukla, B. Cosmological model with variable deceleration parameter in f(R,T) modified gravity. Int. J. Geom. Meth. Mod. Phys. 2018, 15, 1850115. [Google Scholar] [CrossRef]
- Sahoo, P.K.; Sahoo, P.; Bishi, B.K. Anisotropic cosmological models in f(R,T) gravity with variable deceleration parameter. Int. J. Geom. Meth. Mod. Phys. 2017, 14, 1750097. [Google Scholar] [CrossRef]
- Moraes, P.H.R.S.; Sahoo, P.K. The simplest non-minimal matter-geometry coupling in the f(R,T) cosmology. Eur. Phys. J. C 2017, 77, 480. [Google Scholar] [CrossRef]
- Sharma, L.K.; Yadav, A.K.; Sahoo, P.K.; Singh, B.K. Non-minimal matter-geometry coupling in Bianchi I space-time. Results Phys. 2018, 10, 738–742. [Google Scholar] [CrossRef]
- Tiwari, R.K.; Sofuoglu, D.; Isik, R.; Shukla, B.K.; Baysazan, E. Non-minimally coupled transit cosmology in f(R,T) gravity. Int. J. Geom. Meth. Mod. Phys. 2022, 19, 2250118. [Google Scholar] [CrossRef]
- Shamir, M.F. Bianchi type-I cosmology in f(R,T) gravity. J. Exp. Theor. Phys. 2014, 119, 242–250. [Google Scholar] [CrossRef]
- Fisher, S.B.; Carlson, E.D. Reexamining f(R,T) gravity. Phys. Rev. D 2019, 100, 064059. [Google Scholar] [CrossRef]
- Perlmutter, S.; Gabi, S.; Goldhaber, G.; Goobar, A.; Groom, D.E.; Hook, I.M.; Kim, A.G.; Kim, M.Y.; Lee, J.C.; Pain, R.; et al. Measurements of the cosmological parameters Ω and Λ from the first seven supernovae at z≥0.35. Astrophys. J. 1997, 483, 565–581. [Google Scholar] [CrossRef]
- Perlmutter, S.; Aldering, G.; Della Valle, M.; Deustua, S.; Ellis, R.S.; Fabbro, S.; Fruchter, A.; Goldhaber, G.; Goobar, A.; Groom, D.E.; et al. Discovery of a supernova explosion at half the age of the Universe. Nature 1998, 391, 51–54. [Google Scholar] [CrossRef]
- Tiwari, R.K.; Beesham, A.; Shukla, B.K. Cosmological models with viscous fluid and variable deceleration parameter. Eur. Phys. J. Plus 2017, 132, 20. [Google Scholar] [CrossRef]
- Tiwari, R.K.; Beesham, A.; Shukla, B.K. Scenario of a two-fluid FRW cosmological model with dark energy. Eur. Phys. J. Plus 2017, 132, 126. [Google Scholar] [CrossRef]
- Tiwari, R.K.; Beesham, A.; Shukla, B.K. Behaviour of the cosmological model with variable deceleration parameter. Eur. Phys. J. Plus 2016, 131, 447. [Google Scholar] [CrossRef]
- Berman, M.S. A special law of variation for Hubble’s parameter. Nuovo Cim. B 1983, 74, 182–186. [Google Scholar] [CrossRef]
- Berman, M.S.; de Mello Gomide, F. Cosmological models with constant deceleration parameter. Gen. Relativ. Gravit. 1988, 20, 191–198. [Google Scholar] [CrossRef]
- Tiwari, R.K.; Singh, R.; Shukla, B.K. A cosmological model with variable deceleration parameter. Afric. Rev. Phys. 2015, 10, 395–402. Available online: http://lamp.ictp.it/index.php/aphysrev/article/view/1137/460 (accessed on 15 October 2022). [CrossRef]
- Pradhan, A.; Goswami, G.K.; Beesham, A.; Dixit, A. An FLRW interacting dark energy model of the Universe. New Astron. 2020, 78, 101368. [Google Scholar] [CrossRef]
- Goswami, G.K.; Pradhan, A.; Beesham, A. A dark energy quintessence model of the universe. Mod. Phys. Lett. A 2020, 35, 2050002. [Google Scholar] [CrossRef]
- Giostri, R.; Vargas dos Santos, M.; Waga, I.; Reis, R.R.R.; Calvão, M.O.; Lago, B.L. From cosmic deceleration to acceleration: New constraints from SN Ia and BAO/CMB. J. Cosmol. Astropart. Phys. 2012, 3, 27. [Google Scholar] [CrossRef]
- Cunha, J.V. Kinematic constraints to the transition redshift from supernovae type Ia union data. Phys. Rev. D 2009, 79, 047301. [Google Scholar] [CrossRef]
- Rapetti, D.; Allen, S.W.; Amin, M.A.; Blandford, R.D. A kinematical approach to dark energy studies. Mon. Not. R. Astron. Soc. 2007, 375, 1510. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sofuoğlu, D.; Tiwari, R.K.; Abebe, A.; Alfedeel, A.H.A.; Hassan, E.I. The Cosmology of a Non-Minimally Coupled f(R,T) Gravitation. Physics 2022, 4, 1348-1358. https://doi.org/10.3390/physics4040086
Sofuoğlu D, Tiwari RK, Abebe A, Alfedeel AHA, Hassan EI. The Cosmology of a Non-Minimally Coupled f(R,T) Gravitation. Physics. 2022; 4(4):1348-1358. https://doi.org/10.3390/physics4040086
Chicago/Turabian StyleSofuoğlu, Değer, Rishi Kumar Tiwari, Amare Abebe, Alnadhief H. A. Alfedeel, and Eltegani I. Hassan. 2022. "The Cosmology of a Non-Minimally Coupled f(R,T) Gravitation" Physics 4, no. 4: 1348-1358. https://doi.org/10.3390/physics4040086
APA StyleSofuoğlu, D., Tiwari, R. K., Abebe, A., Alfedeel, A. H. A., & Hassan, E. I. (2022). The Cosmology of a Non-Minimally Coupled f(R,T) Gravitation. Physics, 4(4), 1348-1358. https://doi.org/10.3390/physics4040086