# Opportunities and Challenges of Using Feynman Diagrams with Upper Secondary Students

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

#### 1.1. Particle Physics in High School Education

#### 1.2. Feynman Diagrams

#### 1.3. Context of the Present Study: Design-Based Research

#### 1.4. Scope of the Study

## 2. Materials and Methods

#### 2.1. Selection of Experts

#### 2.2. Conducting the Interviews

- What challenges are connected to teaching FDs to high school students?
- What opportunities for physics education at the high school level are provided by FDs?

#### 2.3. Coding Scheme

#### 2.4. Validating the Coding of the Data

## 3. Results

#### 3.1. Challenges

#### 3.1.1. FDs Evoke and Perpetuate Inadequate Conceptions about Particle Physics

#### 3.1.2. Feynman Diagrams Can Only Be Treated Superficially with High School Students

#### 3.2. Opportunities

#### 3.2.1. FDs Offer a Link between Particle Physics and Other High School Physics Topics

#### 3.2.2. FDs Offer an Opportunity for Different Particle Physics Topics to Be Taught

#### 3.2.3. FDs Offer the Opportunity to Discuss Insightful Perspectives on Science

## 4. Discussion

#### 4.1. Learning Objectives

#### 4.1.1. Charge Conservation

#### 4.1.2. Interaction Particles

#### 4.1.3. Superposition

#### 4.1.4. Work of Particle Physicists

#### 4.2. Challenges to Address When Teaching with FDs

#### 4.3. Outcomes and Limitations

#### 4.4. Outlook

## 5. Conclusions

## Supplementary Materials

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Swinbank, E. Particle Physics: A new course for schools and colleges. Phys. Educ.
**1992**, 27, 87–91. [Google Scholar] [CrossRef] - Aubrecht, G.J. Report on the conference on the teaching of modern physics. Phys. Teach.
**1986**, 24, 540–547. [Google Scholar] [CrossRef] - Sjøberg, S.; Schreiner, C. Results and perspectives from the Rose project. In Science Education Research and Practice in Europe: Retrospective and Prospective; Jorde, D., Dillon, J., Eds.; Sense Publishers: Rotterdam, The Netherlands, 2012; pp. 203–236. [Google Scholar] [CrossRef]
- Barlow, R. Particle Physics: From School to University. Phys. Educ.
**1992**, 27, 92–95. [Google Scholar] [CrossRef] - Kobel, M. High school students’ exposure to modern particle physics. Europhys. News
**2003**, 34, 108–110. [Google Scholar] [CrossRef] [Green Version] - Tuzón, P.; Solbes, J. Particle physics in high school: A diagnose study. PLoS ONE
**2016**, 11, e0156526. [Google Scholar] [CrossRef] [Green Version] - Allday, J. The nature of force in particle physics. Phys. Educ.
**1997**, 32, 327. [Google Scholar] [CrossRef] - Zügge, T.; Passon, O. Das Wuppertaler Curriculum der Elementarteilchenphysik. In Kohärenz im Unterricht der Elementarteilchenphysik; Passon, O., Zügge, T., Grebe-Ellis, J., Eds.; Springer Spektrum: Berlin/Heidelberg, Germany, 2020; pp. 121–141. [Google Scholar] [CrossRef]
- Kobel, M.; Bilow, U.; Lindenau, P.; Schorn, B. Teilchenphysik: Ladungen, Wechselwirkungen Und Teilchen, 3. Auflage.; Joachim Herz Stiftung: Hamburg, Germany, 2018. [Google Scholar] [CrossRef]
- Polen, C. Particle physics: An essential and engaging part of the high school physics program. Phys. Teach.
**2019**, 57, 320–322. [Google Scholar] [CrossRef] - Van de Berg, E.; Hoekzema, D. Teaching conservation laws, symmetries and elementary particles with fast feedback. Phys. Educ.
**2006**, 41, 47–56. [Google Scholar] [CrossRef] [Green Version] - Hoekzema, D.; Schooten, G.; van den Berg, E.; Lijnse, P. Conservation laws, symmetries, and elementary particles. Phys. Teach.
**2005**, 43, 266–271. [Google Scholar] [CrossRef] [Green Version] - Michelini, M. Innovation of curriculum and frontiers of fundamental physics in secondary school: Research-based proposals. In Fundamental Physics and Physics Education Research; Sidharth, B.G., Murillo, J.C., Michelini, M., Perea, C., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 101–116. [Google Scholar] [CrossRef]
- Passon, O. Mystifizierung der Quantenmechanik und Trivialisierung der Teilchenphysik. In Kohärenz im Unterricht der Elementarteilchenphysik: Tagungsband des Symposiums zur Didaktik der Teilchenphysik, Wuppertal 2018; Passon, O., Zügge, T., Grebe-Ellis, J., Eds.; Springer Spectrum: Berlin/Heidelberg, Germany, 2020; pp. 79–90. [Google Scholar] [CrossRef]
- Lindenau, P.; Kobel, M. Introducing an innovative approach of teaching the Standard Model of particle physics at high school. J. Phys. Conf. Ser.
**2019**, 1287, 012045. [Google Scholar] [CrossRef] - Gourlay, H. Learning about A level physics students’ understandings of particle physics using concept mapping. Phys. Educ.
**2016**, 52, 014001. [Google Scholar] [CrossRef] - Wiener, G.J.; Schmeling, S.M.; Hopf, M. Can grade-6 students understand quarks? Probing Acceptance of the subatomic structure of matter with 12-year-olds. Eur. J. Sci. Math. Educ.
**2015**, 3, 313–322. [Google Scholar] [CrossRef] - Kaiser, D. Drawing Theories Apart: The Dispersion of Feynman Diagrams in Postwar Physics; University of Chicago Press. 2005. Available online: https://academic.oup.com/chicago-scholarship-online/book/23068 (accessed on 10 October 2022).
- Dyson, F.J. The radiation theories of Tomonaga, Schwinger, and Feynman. Phys. Rev.
**1949**, 75, 486–502. [Google Scholar] [CrossRef] - Feynman, R.P. Space-time approach to quantum electrodynamics. Phys. Rev.
**1949**, 76, 769–789. [Google Scholar] [CrossRef] [Green Version] - Passon, O. On the interpretation of Feynman diagrams, or, did the LHC experiments observe H → Γγ? Eur. J. Philos. Sci.
**2019**, 9, 20. [Google Scholar] [CrossRef] - Meynell, L. Why Feynman diagrams represent. Int. Stud. Philos. Sci.
**2008**, 22, 39–59. [Google Scholar] [CrossRef] - Dorato, M.; Rossanese, E. The nature of representation in Feynman diagrams. Perspect. Sci.
**2018**, 26, 443–458. [Google Scholar] [CrossRef] [Green Version] - Passon, O.; Zügge, T.; Grebe-Ellis, J. Pitfalls in the teaching of elementary particle physics. Phys. Educ.
**2018**, 54, 015014. [Google Scholar] [CrossRef] - Pascolini, A.; Pietroni, M. Feynman diagrams as metaphors: Borrowing the particle physicist’s imagery for science communication purposes. Phys. Educ.
**2002**, 37, 324. [Google Scholar] [CrossRef] - Jones, G.T. The Uncertainty Principle, virtual particles and real forces. Phys. Educ.
**2002**, 37, 223–233. [Google Scholar] [CrossRef] - Woithe, J.; Wiener, G.J.; der Veken, F.F.V. Let’s have a coffee with the Standard Model of particle physics! Phys. Educ.
**2017**, 52, 034001. [Google Scholar] [CrossRef] [Green Version] - Lambourne, R. Predicting the physics of particles. Phys. Educ.
**1992**, 27, 71. [Google Scholar] [CrossRef] - Passon, O.; Lindenau, P.; Kobel, M. Von Feynman-Diagrammen und Stromkreisen. Unterr. Phys.
**2020**, 180. Available online: https://www.friedrich-verlag.de/physik/quantenphysik/von-feynman-diagrammen-und-stromkreisen-7480 (accessed on 10 October 2022). - Harlander, R.V.; Klein, S.Y.; Lipp, M. FeynGame. Comput. Phys. Commun.
**2020**, 256, 107465. [Google Scholar] [CrossRef] - Lindenau, P.; Winkler, O. Feynman-Rhombino. Unterr. Phys.
**2020**, 180. Available online: https://www.friedrich-verlag.de/physik/quantenphysik/feynman-rhombino-7486 (accessed on 10 October 2022). - Baumgartner, E. et al. [The Design-Based Research Collective] Design-based research: An emerging paradigm for educational inquiry. Educ. Res.
**2003**, 32, 5–8. [Google Scholar] [CrossRef] - Duit, R.; Komorek, M. Understanding the basic ideas of chaos-theory in a study of limited predictability. Int. J. Sci. Educ.
**1997**, 19, 247–264. [Google Scholar] [CrossRef] - Kersting, M.; Henriksen, E.K.; Bøe, M.V.; Angell, C. General relativity in upper secondary school: Design and evaluation of an online learning environment using the model of educational reconstruction. Phys. Rev. Phys. Educ. Res.
**2018**, 14, 010130. [Google Scholar] [CrossRef] [Green Version] - Kamphorst, F.; Vollebregt, M.J.; Savelsbergh, E.R.; van Joolingen, W.R. An educational reconstruction of special relativity theory for secondary education. Sci. Educ.
**2021**. [Google Scholar] [CrossRef] - Anderson, T.; Shattuck, J. Design-based research: A decade of progress in education research? Educ. Res.
**2012**, 41, 16–25. [Google Scholar] [CrossRef] [Green Version] - Haagen-Schützenhöfer, C.; Hopf, M. Design-based research as a model for systematic curriculum development: The example of a curriculum for introductory optics. Phys. Rev. Phys. Educ. Res.
**2020**, 16, 020152. [Google Scholar] [CrossRef] - Barab, S.; Squire, K. Design-based research: Putting a stake in the ground. J. Learn. Sci.
**2004**, 31, 1–14. [Google Scholar] [CrossRef] - Duit, R.; Gropengießer, H.; Kattmann, U.; Komorek, M.; Parchmann, I. The model of educational reconstruction―A framework for improving teaching and learning science. In Science Education Research and Practice in Europe: Retrospective and Prospective; Jorde, D., Dillon, J., Eds.; SensePublishers: Rotterdam, The Netherlands, 2012; pp. 13–37. [Google Scholar] [CrossRef]
- Bogner, A.; Littig, B.; Menz, W. Interviews mit Experten: Eine praxisorientierte Einführung; Springer: Wiesbaden, Germany, 2014. [Google Scholar] [CrossRef]
- Wiener, G.J.; Schmeling, S.M.; Hopf, M. The technique of probing acceptance as a tool for teachers’ professional development: A PCK study. J. Res. Sci. Teach.
**2018**, 55, 849–875. [Google Scholar] [CrossRef] [Green Version] - Burde, J.-P.; Wilhelm, T. The electron gas model as an introduction to electricity in middle school science. In Electronic Proceedings of the ESERA 2015 Conference: Science education research: Engaging Learners for a Sustainable Future; Lavonen, J., Juuti, K., Lampiselkä, J., Uitto, A., Hahl, K., Eds.; Part 1: Conceptual Understanding; Finalayson, O., Pinto, R., Eds.; University of Helsinki: Helsinki, Finland, 2016; pp. 26–36. Available online: https://www.dropbox.com/s/wrb22pgeociw8dr/eBook2015_Part_1_links.pdf (accessed on 10 October 2022).
- Braun, V.; Clarke, V. Using thematic analysis in psychology. Qual. Res. Psychol.
**2006**, 3, 77–101. [Google Scholar] [CrossRef] [Green Version] - Hayes, A.F.; Krippendorff, K. Answering the call for a standard reliability measure for coding data. Commun. Meth. Meas.
**2007**, 1, 77–89. [Google Scholar] [CrossRef] - Hill, C.T.; Lederman, L.M. Teaching symmetry in the introductory physics curriculum. Phys. Teach.
**2000**, 38, 348–353. [Google Scholar] [CrossRef] [Green Version] - Daniel, M. Particles, Feynman diagrams and all that. Phys. Educ.
**2006**, 41, 119–129. [Google Scholar] [CrossRef] - Wolchover, N. ‘Last Hope’ Experiment Finds Evidence for Unknown Particles. Quanta Magazine. 7 April 2021. Available online: https://www.quantamagazine.org/last-hope-experiment-finds-evidence-for-unknown-particles-20210407/ (accessed on 10 October 2022).
- Wiener, G.J.; Schmeling, S.M.; Hopf, M. Introducing 12 year-olds to elementary particles. Phys. Educ.
**2017**, 52, 044001. [Google Scholar] [CrossRef] - Osborne, J.; Collins, S.; Ratcliffe, M.; Millar, R.; Duschl, R. What “ideas-about-science” should be taught in school science? A Delphi study of the expert community. J. Res. Sci. Teach.
**2003**, 40, 692–720. [Google Scholar] [CrossRef]

**Figure 1.**An example of a Feynman diagram of electron–positron (eē) annihilation. The diagram describes the transformation of an electron–positron pair into a muon–antimuon (µ$\overline{\mu}$) pair. The interaction is mediated by a photon (γ) which is the interaction particle of the electromagnetic interaction. The direction of arrows determines whether it is a particle or an antiparticle.

**Table 1.**Themes and subthemes of the dimension challenges. The order of the (sub-)subthemes within a (sub)theme is according to the frequency of mentions.

Theme | Subtheme | Sub-Subtheme | Mentioned by Experts (E1, E2, etc.) |
---|---|---|---|

Feynman diagrams (FDs) elicit and perpetuate inadequate conceptions | Types of inadequate conceptions connected to FDs | Particle processes are embedded in spacetime | E1, E2, E3, E4 |

FDs show observable processes | E1, E2, E3, E4 | ||

Particles are small balls | E1, E2, E3 | ||

Focus on the concept of “building blocks” and neglect of the concept of ”interaction” | E1, E2 | ||

Potential sources of inadequate conceptions | Use of scientific language is a source of misconceptions | E1, E2, E3 | |

The axes of FDs are misleading | E2, E3 | ||

Particle physics can only be treated superficially | Limitations by educational setting | The time used for particle physics could be used otherwise | E1, E3 |

Necessary prior knowledge is missing in school-level physics | E1, E3 | ||

It is a challenge for teachers to teach modern physics | E1 | ||

The disciplinary handling of FD is not taught in school | Calculations might be too difficult | E1, E2, E3, E4 | |

Drawing FDs is challenging | E2 | ||

Some concepts are too difficult for school-level physics | E2 |

**Table 2.**Themes and subthemes for the dimension opportunities. The order of the subthemes within a theme is according to the frequency of overall mentions.

Theme | Subtheme | Mentioned by |
---|---|---|

FDs offer a link between particle physics and high school topics | FDs are suited to teach conservation laws | E1, E2, E3 |

FDs link particle physics and quantum mechanics | E1, E2, E4 | |

FDs offer an insight into the use of structurally equivalent representations | E1, E2, E3 | |

FDs offer an analogy to resonance phenomena in classical oscillations | E2, E3 | |

FDs offer an opportunity to teach different particle physics topics | Outer and inner lines/virtual particles | E1, E2, E3 |

Introduction of interaction particles | E1, E2, E3 | |

Suggestions for educational uses of FDs | E1, E2, E3 | |

Particle types | E2, E3, E4 | |

Introduction of pair production and annihilation | E1 | |

FDs offer a connection to current research | FDs help scientists to discuss particle processes | E1, E2, E3, E4 |

Particle physics is a showcase for modern science | E1, E2, E3, E4 | |

Students can find FDs in popular scientific representations | E1, E3 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Dahlkemper, M.N.; Klein, P.; Müller, A.; Schmeling, S.M.; Wiener, J.
Opportunities and Challenges of Using Feynman Diagrams with Upper Secondary Students. *Physics* **2022**, *4*, 1331-1347.
https://doi.org/10.3390/physics4040085

**AMA Style**

Dahlkemper MN, Klein P, Müller A, Schmeling SM, Wiener J.
Opportunities and Challenges of Using Feynman Diagrams with Upper Secondary Students. *Physics*. 2022; 4(4):1331-1347.
https://doi.org/10.3390/physics4040085

**Chicago/Turabian Style**

Dahlkemper, Merten Nikolay, Pascal Klein, Andreas Müller, Sascha Marc Schmeling, and Jeff Wiener.
2022. "Opportunities and Challenges of Using Feynman Diagrams with Upper Secondary Students" *Physics* 4, no. 4: 1331-1347.
https://doi.org/10.3390/physics4040085