Opportunities and Challenges of Using Feynman Diagrams with Upper Secondary Students
Abstract
:1. Introduction
1.1. Particle Physics in High School Education
1.2. Feynman Diagrams
1.3. Context of the Present Study: Design-Based Research
1.4. Scope of the Study
2. Materials and Methods
2.1. Selection of Experts
2.2. Conducting the Interviews
- What challenges are connected to teaching FDs to high school students?
- What opportunities for physics education at the high school level are provided by FDs?
2.3. Coding Scheme
2.4. Validating the Coding of the Data
3. Results
3.1. Challenges
3.1.1. FDs Evoke and Perpetuate Inadequate Conceptions about Particle Physics
3.1.2. Feynman Diagrams Can Only Be Treated Superficially with High School Students
3.2. Opportunities
3.2.1. FDs Offer a Link between Particle Physics and Other High School Physics Topics
3.2.2. FDs Offer an Opportunity for Different Particle Physics Topics to Be Taught
3.2.3. FDs Offer the Opportunity to Discuss Insightful Perspectives on Science
4. Discussion
4.1. Learning Objectives
4.1.1. Charge Conservation
4.1.2. Interaction Particles
4.1.3. Superposition
4.1.4. Work of Particle Physicists
4.2. Challenges to Address When Teaching with FDs
4.3. Outcomes and Limitations
4.4. Outlook
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Swinbank, E. Particle Physics: A new course for schools and colleges. Phys. Educ. 1992, 27, 87–91. [Google Scholar] [CrossRef]
- Aubrecht, G.J. Report on the conference on the teaching of modern physics. Phys. Teach. 1986, 24, 540–547. [Google Scholar] [CrossRef]
- Sjøberg, S.; Schreiner, C. Results and perspectives from the Rose project. In Science Education Research and Practice in Europe: Retrospective and Prospective; Jorde, D., Dillon, J., Eds.; Sense Publishers: Rotterdam, The Netherlands, 2012; pp. 203–236. [Google Scholar] [CrossRef]
- Barlow, R. Particle Physics: From School to University. Phys. Educ. 1992, 27, 92–95. [Google Scholar] [CrossRef]
- Kobel, M. High school students’ exposure to modern particle physics. Europhys. News 2003, 34, 108–110. [Google Scholar] [CrossRef] [Green Version]
- Tuzón, P.; Solbes, J. Particle physics in high school: A diagnose study. PLoS ONE 2016, 11, e0156526. [Google Scholar] [CrossRef] [Green Version]
- Allday, J. The nature of force in particle physics. Phys. Educ. 1997, 32, 327. [Google Scholar] [CrossRef]
- Zügge, T.; Passon, O. Das Wuppertaler Curriculum der Elementarteilchenphysik. In Kohärenz im Unterricht der Elementarteilchenphysik; Passon, O., Zügge, T., Grebe-Ellis, J., Eds.; Springer Spektrum: Berlin/Heidelberg, Germany, 2020; pp. 121–141. [Google Scholar] [CrossRef]
- Kobel, M.; Bilow, U.; Lindenau, P.; Schorn, B. Teilchenphysik: Ladungen, Wechselwirkungen Und Teilchen, 3. Auflage.; Joachim Herz Stiftung: Hamburg, Germany, 2018. [Google Scholar] [CrossRef]
- Polen, C. Particle physics: An essential and engaging part of the high school physics program. Phys. Teach. 2019, 57, 320–322. [Google Scholar] [CrossRef]
- Van de Berg, E.; Hoekzema, D. Teaching conservation laws, symmetries and elementary particles with fast feedback. Phys. Educ. 2006, 41, 47–56. [Google Scholar] [CrossRef] [Green Version]
- Hoekzema, D.; Schooten, G.; van den Berg, E.; Lijnse, P. Conservation laws, symmetries, and elementary particles. Phys. Teach. 2005, 43, 266–271. [Google Scholar] [CrossRef] [Green Version]
- Michelini, M. Innovation of curriculum and frontiers of fundamental physics in secondary school: Research-based proposals. In Fundamental Physics and Physics Education Research; Sidharth, B.G., Murillo, J.C., Michelini, M., Perea, C., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 101–116. [Google Scholar] [CrossRef]
- Passon, O. Mystifizierung der Quantenmechanik und Trivialisierung der Teilchenphysik. In Kohärenz im Unterricht der Elementarteilchenphysik: Tagungsband des Symposiums zur Didaktik der Teilchenphysik, Wuppertal 2018; Passon, O., Zügge, T., Grebe-Ellis, J., Eds.; Springer Spectrum: Berlin/Heidelberg, Germany, 2020; pp. 79–90. [Google Scholar] [CrossRef]
- Lindenau, P.; Kobel, M. Introducing an innovative approach of teaching the Standard Model of particle physics at high school. J. Phys. Conf. Ser. 2019, 1287, 012045. [Google Scholar] [CrossRef]
- Gourlay, H. Learning about A level physics students’ understandings of particle physics using concept mapping. Phys. Educ. 2016, 52, 014001. [Google Scholar] [CrossRef]
- Wiener, G.J.; Schmeling, S.M.; Hopf, M. Can grade-6 students understand quarks? Probing Acceptance of the subatomic structure of matter with 12-year-olds. Eur. J. Sci. Math. Educ. 2015, 3, 313–322. [Google Scholar] [CrossRef]
- Kaiser, D. Drawing Theories Apart: The Dispersion of Feynman Diagrams in Postwar Physics; University of Chicago Press. 2005. Available online: https://academic.oup.com/chicago-scholarship-online/book/23068 (accessed on 10 October 2022).
- Dyson, F.J. The radiation theories of Tomonaga, Schwinger, and Feynman. Phys. Rev. 1949, 75, 486–502. [Google Scholar] [CrossRef]
- Feynman, R.P. Space-time approach to quantum electrodynamics. Phys. Rev. 1949, 76, 769–789. [Google Scholar] [CrossRef] [Green Version]
- Passon, O. On the interpretation of Feynman diagrams, or, did the LHC experiments observe H → Γγ? Eur. J. Philos. Sci. 2019, 9, 20. [Google Scholar] [CrossRef]
- Meynell, L. Why Feynman diagrams represent. Int. Stud. Philos. Sci. 2008, 22, 39–59. [Google Scholar] [CrossRef]
- Dorato, M.; Rossanese, E. The nature of representation in Feynman diagrams. Perspect. Sci. 2018, 26, 443–458. [Google Scholar] [CrossRef] [Green Version]
- Passon, O.; Zügge, T.; Grebe-Ellis, J. Pitfalls in the teaching of elementary particle physics. Phys. Educ. 2018, 54, 015014. [Google Scholar] [CrossRef]
- Pascolini, A.; Pietroni, M. Feynman diagrams as metaphors: Borrowing the particle physicist’s imagery for science communication purposes. Phys. Educ. 2002, 37, 324. [Google Scholar] [CrossRef]
- Jones, G.T. The Uncertainty Principle, virtual particles and real forces. Phys. Educ. 2002, 37, 223–233. [Google Scholar] [CrossRef]
- Woithe, J.; Wiener, G.J.; der Veken, F.F.V. Let’s have a coffee with the Standard Model of particle physics! Phys. Educ. 2017, 52, 034001. [Google Scholar] [CrossRef] [Green Version]
- Lambourne, R. Predicting the physics of particles. Phys. Educ. 1992, 27, 71. [Google Scholar] [CrossRef]
- Passon, O.; Lindenau, P.; Kobel, M. Von Feynman-Diagrammen und Stromkreisen. Unterr. Phys. 2020, 180. Available online: https://www.friedrich-verlag.de/physik/quantenphysik/von-feynman-diagrammen-und-stromkreisen-7480 (accessed on 10 October 2022).
- Harlander, R.V.; Klein, S.Y.; Lipp, M. FeynGame. Comput. Phys. Commun. 2020, 256, 107465. [Google Scholar] [CrossRef]
- Lindenau, P.; Winkler, O. Feynman-Rhombino. Unterr. Phys. 2020, 180. Available online: https://www.friedrich-verlag.de/physik/quantenphysik/feynman-rhombino-7486 (accessed on 10 October 2022).
- Baumgartner, E. et al. [The Design-Based Research Collective] Design-based research: An emerging paradigm for educational inquiry. Educ. Res. 2003, 32, 5–8. [Google Scholar] [CrossRef]
- Duit, R.; Komorek, M. Understanding the basic ideas of chaos-theory in a study of limited predictability. Int. J. Sci. Educ. 1997, 19, 247–264. [Google Scholar] [CrossRef]
- Kersting, M.; Henriksen, E.K.; Bøe, M.V.; Angell, C. General relativity in upper secondary school: Design and evaluation of an online learning environment using the model of educational reconstruction. Phys. Rev. Phys. Educ. Res. 2018, 14, 010130. [Google Scholar] [CrossRef] [Green Version]
- Kamphorst, F.; Vollebregt, M.J.; Savelsbergh, E.R.; van Joolingen, W.R. An educational reconstruction of special relativity theory for secondary education. Sci. Educ. 2021. [Google Scholar] [CrossRef]
- Anderson, T.; Shattuck, J. Design-based research: A decade of progress in education research? Educ. Res. 2012, 41, 16–25. [Google Scholar] [CrossRef] [Green Version]
- Haagen-Schützenhöfer, C.; Hopf, M. Design-based research as a model for systematic curriculum development: The example of a curriculum for introductory optics. Phys. Rev. Phys. Educ. Res. 2020, 16, 020152. [Google Scholar] [CrossRef]
- Barab, S.; Squire, K. Design-based research: Putting a stake in the ground. J. Learn. Sci. 2004, 31, 1–14. [Google Scholar] [CrossRef]
- Duit, R.; Gropengießer, H.; Kattmann, U.; Komorek, M.; Parchmann, I. The model of educational reconstruction―A framework for improving teaching and learning science. In Science Education Research and Practice in Europe: Retrospective and Prospective; Jorde, D., Dillon, J., Eds.; SensePublishers: Rotterdam, The Netherlands, 2012; pp. 13–37. [Google Scholar] [CrossRef]
- Bogner, A.; Littig, B.; Menz, W. Interviews mit Experten: Eine praxisorientierte Einführung; Springer: Wiesbaden, Germany, 2014. [Google Scholar] [CrossRef]
- Wiener, G.J.; Schmeling, S.M.; Hopf, M. The technique of probing acceptance as a tool for teachers’ professional development: A PCK study. J. Res. Sci. Teach. 2018, 55, 849–875. [Google Scholar] [CrossRef] [Green Version]
- Burde, J.-P.; Wilhelm, T. The electron gas model as an introduction to electricity in middle school science. In Electronic Proceedings of the ESERA 2015 Conference: Science education research: Engaging Learners for a Sustainable Future; Lavonen, J., Juuti, K., Lampiselkä, J., Uitto, A., Hahl, K., Eds.; Part 1: Conceptual Understanding; Finalayson, O., Pinto, R., Eds.; University of Helsinki: Helsinki, Finland, 2016; pp. 26–36. Available online: https://www.dropbox.com/s/wrb22pgeociw8dr/eBook2015_Part_1_links.pdf (accessed on 10 October 2022).
- Braun, V.; Clarke, V. Using thematic analysis in psychology. Qual. Res. Psychol. 2006, 3, 77–101. [Google Scholar] [CrossRef] [Green Version]
- Hayes, A.F.; Krippendorff, K. Answering the call for a standard reliability measure for coding data. Commun. Meth. Meas. 2007, 1, 77–89. [Google Scholar] [CrossRef]
- Hill, C.T.; Lederman, L.M. Teaching symmetry in the introductory physics curriculum. Phys. Teach. 2000, 38, 348–353. [Google Scholar] [CrossRef] [Green Version]
- Daniel, M. Particles, Feynman diagrams and all that. Phys. Educ. 2006, 41, 119–129. [Google Scholar] [CrossRef]
- Wolchover, N. ‘Last Hope’ Experiment Finds Evidence for Unknown Particles. Quanta Magazine. 7 April 2021. Available online: https://www.quantamagazine.org/last-hope-experiment-finds-evidence-for-unknown-particles-20210407/ (accessed on 10 October 2022).
- Wiener, G.J.; Schmeling, S.M.; Hopf, M. Introducing 12 year-olds to elementary particles. Phys. Educ. 2017, 52, 044001. [Google Scholar] [CrossRef]
- Osborne, J.; Collins, S.; Ratcliffe, M.; Millar, R.; Duschl, R. What “ideas-about-science” should be taught in school science? A Delphi study of the expert community. J. Res. Sci. Teach. 2003, 40, 692–720. [Google Scholar] [CrossRef]
Theme | Subtheme | Sub-Subtheme | Mentioned by Experts (E1, E2, etc.) |
---|---|---|---|
Feynman diagrams (FDs) elicit and perpetuate inadequate conceptions | Types of inadequate conceptions connected to FDs | Particle processes are embedded in spacetime | E1, E2, E3, E4 |
FDs show observable processes | E1, E2, E3, E4 | ||
Particles are small balls | E1, E2, E3 | ||
Focus on the concept of “building blocks” and neglect of the concept of ”interaction” | E1, E2 | ||
Potential sources of inadequate conceptions | Use of scientific language is a source of misconceptions | E1, E2, E3 | |
The axes of FDs are misleading | E2, E3 | ||
Particle physics can only be treated superficially | Limitations by educational setting | The time used for particle physics could be used otherwise | E1, E3 |
Necessary prior knowledge is missing in school-level physics | E1, E3 | ||
It is a challenge for teachers to teach modern physics | E1 | ||
The disciplinary handling of FD is not taught in school | Calculations might be too difficult | E1, E2, E3, E4 | |
Drawing FDs is challenging | E2 | ||
Some concepts are too difficult for school-level physics | E2 |
Theme | Subtheme | Mentioned by |
---|---|---|
FDs offer a link between particle physics and high school topics | FDs are suited to teach conservation laws | E1, E2, E3 |
FDs link particle physics and quantum mechanics | E1, E2, E4 | |
FDs offer an insight into the use of structurally equivalent representations | E1, E2, E3 | |
FDs offer an analogy to resonance phenomena in classical oscillations | E2, E3 | |
FDs offer an opportunity to teach different particle physics topics | Outer and inner lines/virtual particles | E1, E2, E3 |
Introduction of interaction particles | E1, E2, E3 | |
Suggestions for educational uses of FDs | E1, E2, E3 | |
Particle types | E2, E3, E4 | |
Introduction of pair production and annihilation | E1 | |
FDs offer a connection to current research | FDs help scientists to discuss particle processes | E1, E2, E3, E4 |
Particle physics is a showcase for modern science | E1, E2, E3, E4 | |
Students can find FDs in popular scientific representations | E1, E3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dahlkemper, M.N.; Klein, P.; Müller, A.; Schmeling, S.M.; Wiener, J. Opportunities and Challenges of Using Feynman Diagrams with Upper Secondary Students. Physics 2022, 4, 1331-1347. https://doi.org/10.3390/physics4040085
Dahlkemper MN, Klein P, Müller A, Schmeling SM, Wiener J. Opportunities and Challenges of Using Feynman Diagrams with Upper Secondary Students. Physics. 2022; 4(4):1331-1347. https://doi.org/10.3390/physics4040085
Chicago/Turabian StyleDahlkemper, Merten Nikolay, Pascal Klein, Andreas Müller, Sascha Marc Schmeling, and Jeff Wiener. 2022. "Opportunities and Challenges of Using Feynman Diagrams with Upper Secondary Students" Physics 4, no. 4: 1331-1347. https://doi.org/10.3390/physics4040085