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Abstract: A non-minimally coupled cosmological scenario is considered in the context of f (R, T) =
f1(R) + f2(R) f3(T) gravity (with R being the Ricci scalar and T the trace of the energy-momentum
tensor) in the background of the flat Friedmann–Robertson–Walker (FRW) model. The field equations
of this modified theory are solved using a time-dependent deceleration parameter for a dust. The
behavior of the model is analyzed taking into account constraints from recent observed values the
deceleration parameter. It is shown that the analyzed models can explain the transition from the
decelerating phase to the accelerating one in the expansion of the universe, by staying true to the
results of the observable universe. It is shown that the models are dominated by a quintessence-like
cosmological dark fluid at the late universe.
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1. Introduction

The cosmological portrait of the universe has been changed by some indications of
recent type Ia supernovae data [1–3] and the results of Planck Collaboration [4]. The
revolutionary sign of these observations is that the expansion of the universe is currently
accelerating. Various theories have been developed in the literature to explain this cosmic
acceleration. It is believed that the cause of this acceleration is an energy called dark energy,
which cannot be explained by the baryonic matter distribution. This dark energy is now
known to have a large proportion of about 70% of the total energy distribution in the
universe. In Λ-cold-dark-matter (ΛCDM) cosmology, this dark energy is usually explained
by adding the cosmological constant Λ to the field equations of the general theory of
relativity (GR).

However, such a cosmological scenario is pregnant with some cosmological prob-
lems [5], so some alternative models have been proposed [6–8]. In these alternative cos-
mologies, the model that behaves similar to the ΛCDM model is obtained without using
the cosmological constant. The main reason here is the need for a cosmological model
that can give the results of the observable universe, but on the other hand, will keep the
problems brought by ΛCDM at bay. For example, it is one of the consequences of such a
need to take the matter–energy content of the universe as the scalar field as exotic matter
in Einstein’s field equations that can produce enough negative pressure to accelerate the
expansion of the universe; see Refs. [9–14].

In this context, modified gravity theories that serve this purpose are of great interest
in current cosmological studies. The f (R, T) theory of gravity is one of the most popular of
these modified gravitational theories [15]. Here, the gravitational Lagrangian is given by an
arbitrary function of the Ricci scalar, R, and the trace, T, of the energy–momentum tensor,
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the dependence of which can be induced by exotic imperfect fluids or quantum effects [15].
Since it was proposed in 2011, many researchers have performed a wide variety of research
on this theory. Some to be mentioned are as follows. Xu et al. [16] studied quantum
cosmology effects of the gravitational interaction described by the model. Friedmann–
Robertson–Walker (FRW) model was examined by Myrzakulov [17]. Sharif and Zubair [18]
obtained exact solutions of the field equations of f (R, T) theory using the anisotropic
behavior of spacetime for exponential and power expansion laws. Moraes et al. examined
the transition from deceleration to acceleration in this theory [19]. Shamir [20] studied
the locally rotationally symmetric (LRS) Bianchi type-I model. A string cosmological
model was considered by Sharma and Singh [21] for Bianchi type-II universe. In order to
understand the dynamic behavior of the anisotropic universe in f (R, T) gravity, a large-
scale search was made for the Bianchi-type VIh model [22,23] by Mishra et al. Tiwari
and Sofuoğlu [24] investigated the cosmological implications of a quadratically varying
decelariton parameter in locally-rotationally-symmetric (LRS) Bianchi type-I model. Tiwari
et al. studied Bianchi type-I universe taking into account time dependent gravitational
and cosmological parameters [25]. Evolution of axially symmetric anisotropic sources was
investigated in f (R, T) theory by Zubair and Noureen [26]. Alfedeel and Tiwari showed
that the generalized Friedman equation’s exact solution for the average scale factor involves
the hypergeometric function considering a novel approach [27]. An accelerating model
studied in the presence of varying cosmological term by Tiwari et al. [28]. A cosmological
model with variable deceleration parameter in f (R, T) theory was constructed by Tiwari
et al. [29]. Sahoo et al. [30] studied on Bianchi type-I universe taking bulk viscous fluid.
Moraes and Sahoo [31] considered nonminimal coupling between geometry and matter
in this theory. Sharma et al. [32] examined the existing of non-minimal matter–geometry
interaction in Bianchi type-I model. Tiwari et al. [33] studied a non-minimal cosmological
model in the presence of a varying deceleration parameter.

In the current study, inspired by the above discussion, we consider the f (R, T) modi-
fied theory of gravity in the background of flat FRW universe by considering a variable
deceleration parameter to investigate the phase change (from decelerating to accelerating
expansion phase) in the expansion of the universe. For the choice of a particular case
of the non-minimally function f (R, T) = f1(R) + f2(R) f3(T), exact solution of the field
equations has been obtained. In Section 2, a basic formalism of f (R, T) theory is presented,
the solutions of the field equations are obtained in Section 3, and the conclusions are given
in Section 4.

2. f (R, T) Gravity

Throughout this section, we review the basic derivation of the f (R, T) theory of gravity.
Let us start by introducing the the action of f (R, T) gravity is defined by Harko et al. [15]:

S =
∫ √

−g d4x
(

1
16πG

f (R, T) + Lm

)
, (1)

where f (R, T) is an arbitrary function of R and T = gijTij the trace of the energy–momentum
tensor, Tij; Latin letters i, j, k, l, . . . denote 4-dimensional tensor indices and take on the
values 0 (time), 1, 2, and 3 (space); g = det|gij| is the determinant of the metric tensor, gij;
G is Newtonian constant of gravity, and Lm is the matter Lagrangian. Accordingly, the
energy–momentum tensor, Tij, is defined as

Tij = −
2√−g

δ(
√−gLm)

δgij = Lmgij − 2
δLm

δgij . (2)
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Here, we assume that Lm is a function the metric tensor, gij, rather than of its deriva-
tives. By varying the action S in Equation (1) with respect to the metric tensor, gij, the
modified gravitational field equations for f (R, T) gravity reads:

fR(R, T)Rij −
1
2

f (R, T)gij − (∇i∇j − gij�) fR(R, T) = 8πTij − fT(R, T)(Tij + Θij) , (3)

where ∇i is the covariant derivative, � ≡ ∇i∇i is the d’Alembertian operator and the
fractions moved to a linear form better visible in the text. Please confirm. fR(R, T) =
∂ f (R, T)/∂R, fT(R, T) = ∂ f (R, T)/∂T, Θij = gabδTab/δgij. Contracting Equation (3) with
metric tensor gij produces

fR(R, T)R + 3� fR(R, T)− 2 f (R, T) = 8πT − fT(R, T)(T + Θ) , (4)

where Θ = gijΘij. Upon using the matter Lagrangian Lm, the energy–momentum tensor of
matter is given by

Tij = (ρ + p)uiuj − pgij , (5)

where ρ, p, ui are the fluid energy density, the pressure of the fluid and the fluid 4-velocity,
respectively. Further, ui is time-like quantity that satisfies uiui = 1 and ui∇jui = 0. The
variation of stress energy of perfect fluid is obtained by following Shamir [34] argument
where the matter Lagrangian Lm = −p is assumed, thus

Θij = −2Tij − pgij . (6)

Substituting Equation (6) into Equation (3), the field equations take the form

fR(R, T)Rij −
1
2

f (R, T)gij − (∇i∇j − gij�) fR(R, T) = 8πTij + fT(R, T)(Tij + pgij) . (7)

Equation (7) leads to the modified f (R) and GR theories of gravity when f (R, T) =
f (R) and f (R, T) = R, respectively. Ref. [15] investigated three different functional forms
of f (R, T). More justification about the choice of f (R, T) is given in [35]. These forms are
given by

f (R, T) =


R + 2 f (T),

f1(R) + f2(T),
f1(R) + f2(R) f3(T).

In this paper, we adopt the last functional form,

f (R, T) = f1(R) + f2(R) f3(T) = R + λRT , (8)

thus transforming Equation (7) into the following form:

Rij −
1
2

gijR = +8πTij − λ[gij� − ∇i∇j]T − λT[Rij −
1
2

gijR] + λR[Tij + pgij] , (9)

or, alternatively,

Rij −
1
2

gijR =
8π + λR
(1 + λT)

Tij −
λ

(1 + λT)
[gij� − ∇i∇j] T +

λR
(1 + λT)

pgij . (10)

Here, λ is the coupling parameter of the model and vanishes automatically for GR.
The right-hand side of Equation (10) can be viewed as a total-effective energy momen-

tum tensor, Tt
ij,

Tt
ij = Tij + T f

ij , (11)



Physics 2022, 4 1351

with T f
ij defined as

T f
ij =

λ

1 + λT
(

RTij + Rpgij − [gij�−∇i∇j]T
)

, (12)

showing the contribution term from f (R, T). The limiting case λ = 0 in Equation (9) gives
standard GR results.

The FRW Metric and Field Equations

The homogeneous and isotropic flat FRW universe is given as

ds2 = dt2 − a2(t)(dx2 + dy2 + dz2), (13)

where a(t) is the scale factor. In the flat FRW background, the non-minimally coupled
f (R, T) gravity for T = ρ− 3p, the time-time and space-space components of the modified
field equations of Equation (9) gives the following Friedmann equations:

3H2 = 8πρ− 3λH(ρ̇− 3ṗ)− 3λH2(ρ− 3p)− 6λ(Ḣ + 2H2)(p + ρ) , (14)

2Ḣ + 3H2 = −8πp− λ(2Ḣ + 3H2)(ρ− 3p)− λ(T̈ − 2HṪ) . (15)

Here, H is the Hubble constant and the dot denotes time derivation.
As soon as Ṫ = ρ̇− 3ṗ and T̈ = ρ̈− 3p̈, Equation (15) becomes:

2Ḣ + 3H2 = −8πp− λ(2Ḣ + 3H2)(ρ− 3p)− λ[ρ̈− 3p̈− 3H(ρ̇− 3ṗ)] . (16)

Equations (14) and (16) are the generalized Friedmann equation in f (R, T) theory of
gravity. These equations cannot be solved since they contain λ, ρ̇, ṗ, ρ̈ and p̈. On the other
hand, Equation (9) gives the Bianchi identity as

− 8π∇jTij =
λR
2

(∇iT) + λ(∇jR)[Tij + pgij] + λR[∇jTij +∇j p] , (17)

which gives

(8π + λR)ρ̇ + 3H(p + ρ) = −λR
2

(ρ̇− ṗ)− λṘ(ρ + p) . (18)

Assuming that p = wρ, Equation (17) can be re-arranged for ρ̇ as

ρ̇ = − 3H(1 + w) + λṘ
8π + 1

2 λR(3− w)
ρ , (19)

upon differentiating with respect to time yields:

ρ̈ =

{
− 3Ḣ(1 + w) + λR̈

8π + 1
2 λR(3− w)

+
[3H(1 + w) + λṘ(5− w)][3H(1 + w) + λṘ]

[8π + 1
2 λR(3− w)]2

}
ρ , (20)

where for a flat FRW metric,

R = −6(Ḣ + 2H2) , (21)

Ṙ = −6(Ḧ + 4HḢ) , (22)

R̈ = −6(
...
H + 4Ḣ2 + 4HḦ) (23)

are the Ricci scalar and its time deviatives. The generalized Friedmann Equations (14)
and (16) now read:

3H2 = 8πρ− 3λ(1− 3w)H[ρ̇ + Hρ]− 6λ(1 + w)(Ḣ + 2H2)ρ , (24)
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2Ḣ + 3H2 = −8πwρ− λ(1− 3w)[(2Ḣ + 3H2)ρ− 2Hρ̇ + ρ̈] . (25)

Subtracting Equations (24) and (25) one from another produces the generalized Ray-
chaudhri equation,

2Ḣ = −8π(1 + w)ρ− λ(1− 3w)[(2Ḣ + 3H2)ρ− 2Hρ̇ + ρ̈]

+3λ(1− 3w)H[ρ̇ + Hρ]− 6λ(1 + w)(Ḣ + 2H2)ρ . (26)

Having known the value of ρ̇ and ρ̈ (from Equations (19) and (20), respectively) and
H, Equation (26) is solved in Section 3 below to obtain an expression for the energy density
ρ of the matter content of universe directly. In this model, the Hubble parameter, H, and
deceleration parameter (DP) are defined, respectively, as

H ≡ ȧ
a

and q ≡ −1− Ḣ
H2 . (27)

Using Equation (9), Equations (24) and (25) give the total-effective density, ρt, and the
total-effective pressure, pt:

ρt = ρ− 3λ(1− 3w)H(ρ̇ + Hρ) + 6λ(1 + w)(Ḣ + 2H2)ρ , (28)

pt = wρ− λ(1− 3w)[(2Ḣ + 3H2)ρ− 2Hρ̇ + ρ̈] . (29)

From Equations (28) and (29), with the help of Equation (11), one obtains the density ρ
in terms of H, Ḣ, ρ̇, and ρ̈:

ρ =
1
4

[
2Ḣ − 5λH(1− 3w)ρ̇ + λ(1− 3w)ρ̈

−2π(1 + w) + λ(1 + 3w)Ḣ + 3λ(1 + w)H2

]
. (30)

3. Solutions of the f (R, T) Field Equations

To solve the system of Equations (20)–(24) containing two equations and three un-
knowns (a, ρ, and p), one more equation is needed. Since the Type Ia supernova obser-
vations and various astronomical observations [1,2,36,37] indicated that the universe is
accelerating, a time-dependent DP is needed that can explain the transition from decelera-
tion expansion in the past at z ≥ 1 to acceleration expansion at present. In concordance with
this argument, many parametrization have proposed that DP is time-dependent to study
various problems in cosmology [38–40]. For instance, for Berman [41] and Gomide [42],
the law of variation for Hubble parameter that yields a constant DP. Ref. [43] introduced a
linear function of the Hubble parameter, and well motivated by [44,45]. Motivated by the
above discussion, in this paper, we adopt a generalization form of deceleration parameter
that is introduced in Equation (27) as a function of Hubble parameter:

q = α− β

H2 , (31)

where α is a dimensionless constant, while the other constant, β, has the dimensions of H2.
Using this relation along with Equation (27) for solving the scale factor and the Hubble
parameter, one obtains:

a =

{
sinh

[√
(1 + α)β t + c

]} 1
1+α

, (32)

H =

√
β

1 + α
coth

[√
(1 + α)β t + c

]
, (33)

where c is the constant of integration.
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Substituting the values of H, R, and Ṙ into Equation (19) gives:

ρ̇ =
3Acoth(τ)[1 + w + 4Bλ(2A− B)cosech2(τ)]

8π + Aλ(w− 3)[Acoth2(τ)− 3Bcosech2(τ)]
ρ , (34)

where A =
√

β
1+α and B =

√
(1 + α)β.

Integrating Equation (34) results into the following expression for energy density:

ρ = ρ0exp
{∫ 3Acoth(τ)[1 + w + 4Bλ(2A− B)cosech2(τ)]

8π + λ(w− 3)[A2coth2(τ)− 3ABcosech2(τ)]
dt
}

, (35)

where τ ≡
√
(1 + α)β t + c, and ρ0 is a constant of integration. It is worth mentioning

that the processes of obtaining a simplified expression for the energy density ρ from
Equations (20)–(25) is not straightforward as soon as it depends on R, Ṙ, ρ̇, and ρ̈. If λ = 0,
Equation (35) give the GR limit as

ρ =
3(1 + w)ρ0

8π

√
β

1 + α
sinh(τ) . (36)

It is always viable to write the explicit expression of ρ using its temporal derivatives,
but the expression is large and complex. Instead, it is possible to calculate the integral of
Equation (34) or Equation (35) for w = 0, which gives the following expression for the
energy density ρ:

ρ = ρ0

[
(sinh(τ))−1

] 3A
4B(−9 λ A2+4 π)

[
9λA(−2A cosh2 τ + B)

sinh2 τ
+ 8π

]−72 λ A2B+32 π B+9 A
−12B(−9 λ A2+4 π)

. (37)

To show the graphical representation of the model, let us first write the expressions of
the parameters in terms of redshift, z. Using the relation a = (1 + z)−1, one obtains:

q = α− b
h2 = α− b(1 + α)

1 + (1 + z)2+2α
, (38)

h =

√
(1 + α)−1

√
(1 + z)2(1+α) + 1 , (39)

ρ = ρ0(1 + z)
3(1+α)A

4B(−9 λ A2+4 π)×[
(1 + z)2 α

(
9 λ A

(
(−2A + B)[z2 + z + 1] + (−2A + 7B)z− 2

)
+ 8 π

)]−72 λ A2B+32 π B+9 A
−12B(−9 λ A2+4 π) , (40)

where h = H/H0 is the normalized expansion rate and b = β/H2
0 is a normalized constant

with H0 being the Hubble constant.
To plot the graphs, different values of the constants α and b were selected considering

the observable universe as initial conditions (z = 0). We take into account the results of
three different observations for the current values of the deceleration parameter, namely
q0 = −0.54 [46], q0 = −0.73 [47] and q0 = −0.81 [48]; the models obtained for each of the
observational values called Model 1 (M1), Model 2 (M2), and Model 3 (M3), respectively.
In what follows, the graphs are plotted for the corresponding three different α and b pairs:
α = 0.4761, b = 1.3903 for M1, α = 0.5685, b = 1.6557 for M2, and α = 0.6054, b = 1.7633
for M3.

From Figure 1, one can see that the normalized Hubble parameter, h, has a larger value
at high redshift zone and it is smaller at the low redshift zone for all the models. Figure 2
shows that while the sign of the deceleration parameter was initially positive, it became
negative in the late universe for each model. This sign change indicates that the universe
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has moved from its decelerating expansion in the past to its current accelerating expansion.
It is seen that the transition from slowing expansion to accelerating expansion takes place
at almost z = 1/2 for three of the models.

Figure 1. The normalized expansion rate, h (39), versus redshift, z, for three observational models
M1, M2, and M3. See text for details.

Figure 2. The deceleration parameter, q (38), versus redshift, z, for three observational models M1,
M2, and M3. See text for details.

Figure 3 shows that the energy density ρ decreases from the high redshift region to the
low redshift region and always remains positive.
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Figure 3. The energy density, ρ (40), versus redshift, z, with λ = 0.1 and ρ0 = 1 for three observational
models M1, M2, and M3. See text for details.

Now, let us use the relation

wt =
1
3
(2q− 1) (41)

between the deceleration parameter and total-effective equation of state (EoS) parameter,
wt, to obtain

wt =
1
3

[
2α− 2b(1 + α)

(1 + z)2+2α
− 1

]
. (42)

Figure 4 shows the evolution of the total-effective EoS parameter in redshift for each
model. It is seen that while the EoS parameter has positive values at high redshift regions,
it decreases and takes negative values at low redshift regions. Current values of wt indicate
that the models are dominated by a quintessence-like dark fluid currently.

Figure 4. The The equation of state (EoS) parameter, wt (42), versus redshift, z, for three observational
models M1, M2, and M3. See text for details.
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4. Conclusions

In this study, we investigated a non-minimally coupled cosmological model in the
context of f (R, T) theory for the flat Friedmann–Robertson–Walker (FRW) metric. For the
choice of the function f (R, T) in the form of f (R, T) = f1(R) + f2(R) f3(T) with f1(R) =
f2(R) = R and f3(T) = λT, the solutions of the field equations were solved under the
assumption of a time-dependent deceleration parameter, which can explain the evolution
of the expansion of the universe from beginning to current epoch. Results obtained were
discussed by means of their graphs in redshift space, by taking into account three different
observed values of the deceleration parameter as three different observational models (M1,
M2, and M3).

The evolution of the deceleration parameters shows that the phase change in the
expansion of the universe occurs at almost z = 1/2 redshift, and the deceleration parameter
current values (q0) are −0.55, −0.729, and −0.81 for M1, M2, and M3 models, respectively.
These values of q0 are consistent with the observational values of the deceleration parameter.

The total or effective equation of state parameter, wt, is found to have positive values
initially, but continue their evolution by taking negative values, for each model. The current
values of wt are less than −1/3 and greater than −1. These values tell us that each model
is dominated by a quintessence-like dark fluid.

As a next step, it is worth constraining the parameter space of these models with cur-
rent and upcoming astronomical data, as well as studying the cosmological perturbations
in the context of these models to analyze large-scale structure formation scenarios.
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