A Decoupled Modal Reduction Method for the Steady-State Vibration Analysis of Vibro-Acoustic Systems with Non-Classical Damping
Abstract
:1. Introduction
2. Materials and Methods
2.1. Traditional Reduction Method for Vibro-Acoustic Systems
2.1.1. Governing Equations
2.1.2. Coupled FE Model for the Vibro-Acoustic System
2.1.3. Modal Reduction Method Using Coupled Modes
2.2. Decoupled Modal Reduction Method
2.2.1. Modal Reduction Method Using Uncoupled Modes
2.2.2. Complex Mode Superposition Method
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Harari, I. A survey of finite element methods for time-harmonic acoustic. Comput. Methods Appl. Mech. Eng. 2006, 195, 1594–1607. [Google Scholar] [CrossRef]
- Legay, A. An extended finite element method approach for structural-acoustic problems involving immersed structures at arbitrary positions. Int. J. Numer. Methods Eng. 2013, 93, 376–399. [Google Scholar] [CrossRef]
- Junger, M.C.; Feit, D. Sound, Structures, and Their Interaction; MIT Press: Cambridge, MA, USA, 1972. [Google Scholar]
- Cremer, L.; Heckl, M.; Petersson, B.A.T. Structure-Borne Sound, 3rd ed.; Springer: Berlin, Germany, 2005. [Google Scholar]
- Zienkiewicz, O.C.; Taylor, R.L. The Finite Element Method, 5th ed.; Butterworth-Heinemann: Boston, MA, USA, 2000. [Google Scholar]
- Bathe, K.J. Finite Element Procedures; Prentice Hall: Upper Saddle River, NJ, USA, 1996. [Google Scholar]
- Atalla, N.; Sgard, F. Finite Element and Boundary Methods in Structural Acoustics and Vibration; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Wu, T.W. Boundary Element Acoustics: Fundamentals and Computer Codes; WIT: Southampton, UK, 2000. [Google Scholar]
- Golberg, M.A.; Chen, C.S. Discrete Projection Methods for Integral Equations; Computational Mechanics Publication: Southampton, UK, 1996. [Google Scholar]
- Koopmann, G.H.; Song, L.; Fahnline, J.B. A method for computing acoustic fields based on the principle of wave superposition. J. Acoust. Soc. Am. 1989, 86, 2433–2438. [Google Scholar] [CrossRef]
- Chen, W.; Gu, Y. Recent advances on singular boundary method. Joint Int. Workshop Trefftz Method 2011, 4, 543–558. [Google Scholar]
- Desmet, W. A Wave Based Prediction Technique for Coupled Vibro-Acoustic Analysis. Ph.D. Thesis, K.U. Leuven, Leuven, Belgium, 1998. [Google Scholar]
- Van Genechten, B.; Vandepitte, D.; Desmet, W. A direct hybrid finite element-wave based modelling technique for efficient coupled vibro-acoustic analysis. Comput. Methods Appl. Mech. Eng. 2011, 200, 742–764. [Google Scholar] [CrossRef]
- Everstine, G.C.; Henderson, F.M. Coupled finite element/boundary element approach for fluid-structure interaction. J. Acoust. Soc. Am. 1990, 87, 1938–1947. [Google Scholar] [CrossRef]
- Amini, S.; Harris, P.J.; Wilton, D.T. Coupled Boundary and Finite Element Methods for the Solution of the Dynamic Fluid-Structure Interaction Problem; Springer: Berlin, Germany, 1992. [Google Scholar]
- Atak, O.; Bergen, B.; Huybrechs, D.; Pluymers, B.; Desmet, W. Coupling of boundary element and wave based methods for the efficient solution of complex multiple scattering problems. J. Comput. Phys. 2014, 258, 165–184. [Google Scholar] [CrossRef]
- Ma, Z.D.; Hagiwara, I. Sensitivity analysis methods for coupled acoustic-structural systems part II: Direct frequency response and its sensitivities. AIAA J. 1991, 29, 1796–1801. [Google Scholar] [CrossRef]
- Luo, J.; Gea, H.C. Modal sensitivity analysis of coupled acoustic-structural systems. J. Vib. Acoust. 1997, 119, 545–550. [Google Scholar] [CrossRef]
- Bathe, K.J.; Nitikitpaiboon, C.; Wang, X. A mixed displacement-based finite element formulation for acoustic fluid-structure interaction. Comput. Struct. 1995, 56, 225–237. [Google Scholar] [CrossRef]
- Everstine, G.C. Finite element formulations of structural acoustics problems. Comput. Struct. 1997, 65, 307–321. [Google Scholar] [CrossRef]
- Sandberg, G.; Goransson, P. A symmetric finite element formulation for acoustic fluid-structure interaction analysis. J. Sound Vib. 1988, 123, 507–515. [Google Scholar] [CrossRef]
- Wolf, J.A. Modal synthesis for combined structural-acoustic systems. AIAA J. 1976, 14, 33–38. [Google Scholar] [CrossRef]
- Géradin, M.; Rixen, D. Mechanical Vibrations: Theory and Applications to Structural Dynamics, 2nd ed.; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2015. [Google Scholar]
Truncation Frequency (Hz) | Number of Truncated Modes | Time Cost (s) | |||
---|---|---|---|---|---|
Cavity | Plate |
Traditional Reduction Method |
Decoupled Modal Reduction Method |
Direct Method | |
500 | 2 | 7 | 16.2 | 9.99 | 11,037 |
1000 | 5 | 17 | 27.9 | 11.97 | |
2000 | 26 | 36 | 71.7 | 24.6 | |
3000 | 66 | 57 | 142.9 | 50.3 | |
4000 | 141 | 80 | 286.3 | 109.8 | |
5000 | 245 | 99 | 522.4 | 242.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, R.; Fan, S. A Decoupled Modal Reduction Method for the Steady-State Vibration Analysis of Vibro-Acoustic Systems with Non-Classical Damping. Acoustics 2024, 6, 792-804. https://doi.org/10.3390/acoustics6030044
Gao R, Fan S. A Decoupled Modal Reduction Method for the Steady-State Vibration Analysis of Vibro-Acoustic Systems with Non-Classical Damping. Acoustics. 2024; 6(3):792-804. https://doi.org/10.3390/acoustics6030044
Chicago/Turabian StyleGao, Ruxin, and Shanshan Fan. 2024. "A Decoupled Modal Reduction Method for the Steady-State Vibration Analysis of Vibro-Acoustic Systems with Non-Classical Damping" Acoustics 6, no. 3: 792-804. https://doi.org/10.3390/acoustics6030044
APA StyleGao, R., & Fan, S. (2024). A Decoupled Modal Reduction Method for the Steady-State Vibration Analysis of Vibro-Acoustic Systems with Non-Classical Damping. Acoustics, 6(3), 792-804. https://doi.org/10.3390/acoustics6030044