Non-Monotonic Variation of Acoustic Spectrum with the Mass or Thickness of a Layered Structure
Abstract
:1. Introduction
2. Parametric Non-Monotonicity of the RL Spectrum
3. Discussion and Conclusions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
RL | Rayleigh–Lamb |
MCF | Mass coefficient of frequency |
TCF | Temperature coefficient of frequency |
D, F | Subscripts for dilatational and flexural |
Appendix A
References
- Malischewsky, P.G. Surface Waves and Discontinuities; Akademie Verlag: Berlin, Germany, 1987. [Google Scholar]
- Auld, B.A. Acoustic Fields and Waves in Solids; Krieger: Malabar, FL, USA, 1990. [Google Scholar]
- Graff, K.F. Wave Motion in Elastic Solids; Dover Publications: New York, NY, USA, 1991. [Google Scholar]
- Cheeke, J.D.N. Fundamentals and Applications of Ultrasonic Waves, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar]
- Rose, J.L. Ultrasonic Guided Waves in Solid Media; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Saira, O.-P.; Matheny, M.H.; Wang, L.; Pekola, J.; Roukes, M. Modification of electron-phonon coupling by micromachining and suspension. J. Appl. Phys. 2020, 127, 024307. [Google Scholar] [CrossRef]
- Tarasov, M.; Gunbina, A.; Chekushkin, A.; Yusupov, R.; Edelman, V.; Koshelets, V. Microwave SINIS Detectors. Appl. Sci. 2022, 12, 10525. [Google Scholar] [CrossRef]
- Stroscio, M.A.; Dutta, M. Phonons in Nanostructures; Cambridge University Press: Cambridge, UK, 2001.
- Cojocaru, S.; Anghel, D.V. Low-temperature electron-phonon heat transfer in metal films. Phys. Rev. B 2016, 93, 115405. [Google Scholar] [CrossRef]
- Nguyen, H.Q.; Meschke, M.; Courtois, H.; Pekola, J.P. Sub-50-mK Electronic Cooling with Large-Area Superconducting Tunnel Junctions. Phys. Rev. Appl. 2014, 2, 054001. [Google Scholar] [CrossRef]
- Kuznetsov, S.V. Abnormal Dispersion of Lamb Waves in Stratified Media. Z. Angew. Math. Phys. 2019, 70, 175. [Google Scholar] [CrossRef]
- Sasaki, R.; Nii, Y.; Onose, Y. Magnetization Control by Angular Momentum Transfer from Surface Acoustic Wave to Ferromagnetic Spin Moments. Nat. Commun. 2021, 12, 2599. [Google Scholar] [CrossRef]
- Peria, W.K.; Zhang, D.-L.; Fan, Y.; Wang, J.-P.; Crowell, P.A. Anomalous Temperature Dependence of Phonon Pumping by Ferromagnetic Resonance in Co/Pd Multilayers with Perpendicular Anisotropy. Phys. Rev. B 2022, 106, L060405. [Google Scholar] [CrossRef]
- Ballantine, D.S.; White, R.M.; Martin, S.J.; Ricco, A.J.; Zellers, E.T.; Frye, G.C.; Wohltjen, H.; Levy, M.; Stern, R. Acoustic Wave Sensors: Theory, Design and Physico-Chemical Applications; Academic Press: Burlington, UK, 1997. [Google Scholar]
- Cheeke, J.D.N.; Wang, Z. Acoustic Wave Gas Sensors. Sens. Actuators Chem. 1999, 59, 146–153. [Google Scholar] [CrossRef]
- Müller, A.; Konstantinidis, G.; Giangu, I.; Adam, G.C.; Stefanescu, A.; Stavrinidis, A.; Stavrinidis, G.; Kostopoulos, A.; Boldeiu, G.; Dinescu, A. GaN Membrane Supported SAW Pressure Sensors With Embedded Temperature Sensing Capability. IEEE Sens. J. 2017, 17, 7383–7393. [Google Scholar] [CrossRef]
- Gholami, F.; Shih, A.; Robichaud, A.; Cicek, P.-V. A Study of Optimizing Lamb Wave Acoustic Mass Sensors Performance through Adjustment of the Transduction Electrode Metallization Ratio. Sensors 2022, 22, 6428. [Google Scholar] [CrossRef]
- Zhang, Y.; Tan, Q.; Zhang, L.; Zhang, W.; Xiong, J. A Novel SAW Temperature-Humidity-Pressure (THP) Sensor Based on LiNbO3 for Environment Monitoring. J. Phys. Appl. Phys. 2020, 53, 375401. [Google Scholar] [CrossRef]
- Boldeiu, G.; Ponchak, G.E.; Nicoloiu, A.; Nastase, C.; Zdru, I.; Dinescu, A.; Müller, A. Investigation of Temperature Sensing Capabilities of GaN/SiC and GaN/Sapphire Surface Acoustic Wave Devices. IEEE Access 2022, 10, 741–752. [Google Scholar] [CrossRef]
- Nicoloiu, A.; Boldeiu, G.; Nastase, C.; Nedelcu, M.; Ciornei, C.; Zdru, I.; Stavrinidis, G.; Vasilache, D.; Stavrinidis, A.; Dinescu, A.; et al. Experimental Analysis of Rayleigh and Sezawa Modes Resonance Frequencies in SAW Devices Manufactured on Sc0.3Al0.7N/Si. IEEJ Trans. Electr. Electron. 2024, 19, 900–907. [Google Scholar] [CrossRef]
- Zhou, J.; Guo, Y.; Wang, Y.; Ji, Z.; Zhang, Q.; Zhuo, F.; Luo, J.; Tao, R.; Xie, J.; Reboud, J.; et al. Flexible and Wearable Acoustic Wave Technologies. Appl. Phys. Rev. 2023, 10, 021311. [Google Scholar] [CrossRef]
- Xu, Z.; Yuan, Y.J. Implementation of Guiding Layers of Surface Acoustic Wave Devices: A Review. Biosens. Bioelectron. 2018, 99, 500–512. [Google Scholar] [CrossRef]
- Baumgartner, K.; Westerhausen, C. Recent Advances of Surface Acoustic Wave-Based Sensors for Noninvasive Cell Analysis. Curr. Opin. Biotechnol. 2023, 79, 102879. [Google Scholar] [CrossRef]
- Cao, X.; Zeng, L.; Lin, J.; Hua, J. A Correlation-Based Approach to Corrosion Detection with Lamb Wave Mode Cutoff. J. Nondestruct. Eval. 2019, 38, 87. [Google Scholar] [CrossRef]
- Liu, Y.; Cai, Y.; Zhang, Y.; Tovstopyat, A.; Liu, S.; Sun, C. Materials, Design, and Characteristics of Bulk Acoustic Wave Resonator: A Review. Micromachines 2020, 11, 630. [Google Scholar] [CrossRef]
- Ren, J.; Chu, H.; Bai, Y.; Wang, R.; Chen, P.; Chen, J. Research and Design of High Sensitivity FBAR Micro-Mass Sensors. In IOP Conference Series: Earth and Environmental Science, Volume 632, 2020 Asia Conference on Geological Research and Environmental Technology, Kamakura City, Japan, 10–11 October 2020; IOP Publishing: Bristol, UK, 2021; Volume 632, p. 042014. [Google Scholar]
- Ledbetter, H. Sound Velocities, Elastic Constants: Temperature Dependence. Mater. Sci. Eng. A 2006, 442, 31–34. [Google Scholar] [CrossRef]
- Zakarian, D.; Khachatrian, A.; Firstov, S. Universal Temperature Dependence of Young’s Modulus. Met. Powder Rep. 2019, 74, 204–206. [Google Scholar] [CrossRef]
- Liu, X.; Ren, X.; Tang, M.; Wang, Y.; Xu, Z.; Yan, Y. Superior Temperature Stability of Electromechanical Properties and Resonant Frequency in PYN-PZT Piezoelectric Ceramics. J. Eur. Ceram. Soc. 2024, 44, 873–881. [Google Scholar] [CrossRef]
- Aslam, M.Z.; Jeoti, V.; Karuppanan, S.; Malik, A.F.; Iqbal, A. FEM Analysis of Sezawa Mode SAW Sensor for VOC Based on CMOS Compatible AlN/SiO2/Si Multilayer Structure. Sensors 2018, 18, 1687. [Google Scholar] [CrossRef] [PubMed]
- Nicoloiu, A.; Stan, G.E.; Nastase, C.; Boldeiu, G.; Beşleagă, C.; Dinescu, A.; Müller, A. The Behavior of Gold Metallized AlN/Si- and AlN/Glass-Based SAW Structures as Temperature Sensors. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2021, 68, 1938–1948. [Google Scholar] [CrossRef]
- Vasilache, D.; Nicoloiu, A.; Boldeiu, G.; Zdru, I.; Kostopoulos, T.; Nedelcu, M.; Stavrinidis, A.; Nastase, C.; Stavrinidis, G.; Konstantinidis, G.; et al. Development of 0-Level Packaged Dual SAW Pressure and Temperature Sensors on GaN Thin Membranes. Sci. Technol. 2023, 26, 218–226. [Google Scholar]
- Wang, Z.; Jen, C.K.; Cheeke, J.D.N. Mass Sensitivities of Two-Layer Sagittal Plane Plate Wave Sensors. Ultrasonics 1994, 32, 201–208. [Google Scholar] [CrossRef]
- Wang, Z.; Cheeke, J.D.N.; Jen, C.K. Perturbation Method for Analyzing Mass Sensitivity of Planar Multilayer Acoustic Sensors. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 1996, 43, 844–851. [Google Scholar] [CrossRef]
- Christensen, R.M. Mechanics of Composite Materials; Dover Publications: New York, NY, USA, 2012. [Google Scholar]
- Cojocaru, S. A Parametric Anomaly of the Rayleigh-Lamb Spectrum in a Thin Elastic Layer. Phys. Lett. A 2023, 483, 129066. [Google Scholar] [CrossRef]
- Malischewsky, P.G. Diabolical Points and Rayleigh-Wave Propagation. 2022 Days on Diffraction (DD). IEEE Xplore 2022, 88–94. [Google Scholar]
- Kausel, E.; Malischewsky, P.; Barbosa, J. Osculations of Spectral Lines in a Layered Medium. Wave Motion 2015, 56, 22–42. [Google Scholar] [CrossRef]
- Seyranian, A.P.; Kirillov, O.N.; Mailybaev, A.A. Coupling of Eigenvalues of Complex Matrices at Diabolic and Exceptional Points. J. Phys. A Math. Gen. 2005, 38, 1723. [Google Scholar] [CrossRef]
- Triantafyllou, M.S.; Triantafyllou, G.S. Frequency Coalescence and Mode Localization Phenomena: A Geometric Theory. J. Sound Vib. 1991, 150, 485–500. [Google Scholar] [CrossRef]
- Farnell, G.W.; Adler, E.L. Elastic Wave Propagation in Thin Layers. In Physical Acoustics, Volume 9: Principles and Methods; Mason, W.P., Thurston, R.N., Eds.; Academic Press: New York, NY, USA, 1972; pp. 35–127. [Google Scholar]
- Negishi, K. Existence of Negative Group Velocities in Lamb Waves. Jpn. J. Appl. Phys. 1987, 26, 171–173. [Google Scholar] [CrossRef]
- Maznev, A.A.; Every, A.G. Existence of Backward Propagating Acoustic Waves in Supported Layers. Wave Motion 2011, 48, 401–407. [Google Scholar] [CrossRef]
- Kausel, E. Number and Location of Zero-Group-Velocity Modes. J. Acoust. Soc. Am. 2012, 131, 3601–3610. [Google Scholar] [CrossRef] [PubMed]
- Kiefer, D.A.; Plestenjak, B.; Gravenkamp, H.; Prada, C. Computing Zero-Group-Velocity Points in Anisotropic Elastic Waveguides: Globally and Locally Convergent Methods. J. Acoust. Soc. Am. 2023, 153, 1386–1398. [Google Scholar] [CrossRef] [PubMed]
- Legrand, F.; Gérardin, B.; Bruno, F.; Laurent, J.; Lemoult, F.; Prada, C.; Aubry, A. Cloaking, Trapping and Superlensing of Lamb Waves with Negative Refraction. Sci. Rep. 2021, 11, 23901. [Google Scholar] [CrossRef] [PubMed]
- Müller, A.; Nicoloiu, A.; Dinescu, A.; Stavrinidis, A.; Zdru, I.; Konstantinidis, G. The Influence of Metallization on Resonance Frequency and Temperature Sensitivity of GHz Operating III-Nitride SAW Based Sensor Structures. In Proceedings of the 2018 IEEE/MTT-S International Microwave Symposium—IMS, Philadelphia, PA, USA, 10–15 June 2018; pp. 938–941. [Google Scholar]
- Malischewsky, P.G. Comparison of Approximated Solutions for the Phase Velocity of Rayleigh Waves. Nanotechnology 2005, 16, 995. [Google Scholar] [CrossRef]
- Malischewsky, P.G. Surface Waves. In Encyclopedia of Continuum Mechanics; Altenbach, H., Öchsner, A., Eds.; Springer: Berlin, Germany, 2018; pp. 1–9. [Google Scholar]
- Cojocaru, S. Surface Adapted Partial Waves for the Description of Elastic Vibrations in Bilayered Plates. Wave Motion 2020, 92, 102430. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cojocaru, S. Non-Monotonic Variation of Acoustic Spectrum with the Mass or Thickness of a Layered Structure. Acoustics 2024, 6, 805-817. https://doi.org/10.3390/acoustics6040045
Cojocaru S. Non-Monotonic Variation of Acoustic Spectrum with the Mass or Thickness of a Layered Structure. Acoustics. 2024; 6(4):805-817. https://doi.org/10.3390/acoustics6040045
Chicago/Turabian StyleCojocaru, Sergiu. 2024. "Non-Monotonic Variation of Acoustic Spectrum with the Mass or Thickness of a Layered Structure" Acoustics 6, no. 4: 805-817. https://doi.org/10.3390/acoustics6040045
APA StyleCojocaru, S. (2024). Non-Monotonic Variation of Acoustic Spectrum with the Mass or Thickness of a Layered Structure. Acoustics, 6(4), 805-817. https://doi.org/10.3390/acoustics6040045