Assessing the Future Risk of Damage to European Cultural Heritage Due to Climate Change
Abstract
1. Introduction
2. Materials and Methods
2.1. Cultural Heritage Sites
2.2. Data
2.3. Towards Climate Risk Identification
2.4. Heritage Outdoor Microclimate Risk and Predicted Risk of Damage (PRD) Indices
3. Results
3.1. Projected Climate Change at Pilot CH Sites
3.2. Assessment of Heritage Microclimate Risk and Predicted Risk of Damage Indices
4. Discussion
5. Conclusions
- Increase in Temperature: Temperature is expected to rise of 1.5–2.0 °C in the near future, and up to 5.0 °C by the end of the 21st century under the RCP8.5 scenario. TASMAX and TASMIN are expected to increase across all CH sites under all RCPs, indicating a statistically significant warming trend.
- Increase in Hot Days: A significant rise in the number of HD is expected across all emission scenarios for all CH sites.
- Decrease in Frost Days: A reduction in the number of FD is anticipated for all CH sites and RCPs in both future periods.
- Precipitation Reductions: PR is projected to decrease across all CH sites, under both RCP4.5 and RCP8.5 until the end of 21st century, signaling a shift towards a drier climate.
- Heritage Microclimate Risk: The HMRout index indicates increasing thermal risk to CH due to rising temperatures. The period from 2021 to 2050 is expected to be characterized by “moderate–medium” risk, while the period from 2071 to 2100 is anticipated to experience a shift toward “medium–high” risk.
- Predicted Risk of Damage: PRD index indicates a growing risk of damage to inorganic materials with the most significant risks anticipated in the period 2071–2100.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Evaluation of the EURO-CORDEX RCM Simulations
References
- UNESCO World Heritage Centre. Policy Document on the Impacts of Climate Change on World Heritage Properties; UNESCO World Heritage Centre: London, UK, 2008. [Google Scholar]
- Intergovernmental Panel On Climate Change (IPCC). Climate Change 2022—Impacts, Adaptation and Vulnerability: Working Group II Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, 1st ed.; Cambridge University Press: Cambridge, UK, 2023; ISBN 978-1-00-932584-4. [Google Scholar]
- Sesana, E.; Gagnon, A.S.; Bertolin, C.; Hughes, J. Adapting Cultural Heritage to Climate Change Risks: Perspectives of Cultural Heritage Experts in Europe. Geosciences 2018, 8, 305. [Google Scholar] [CrossRef]
- Grossi, C.M.; Brimblecombe, P.; Harris, I. Predicting Long Term Freeze–Thaw Risks on Europe Built Heritage and Archaeological Sites in a Changing Climate. Sci. Total Environ. 2007, 377, 273–281. [Google Scholar] [CrossRef] [PubMed]
- Haugen, A.; Bertolin, C.; Leijonhufvud, G.; Olstad, T.; Broström, T. A Methodology for Long-Term Monitoring of Climate Change Impacts on Historic Buildings. Geosciences 2018, 8, 370. [Google Scholar] [CrossRef]
- Sabbioni, C.; Brimblecomb, P.; Cassar, M. The Atlas of Climate Change Impact on European Cultural Heritage: Scientific Analysis and Management Strategies; Anthem: New York, NY, USA, 2012; ISBN 978-92-79-25377-5. [Google Scholar]
- Yaldiz, E. Climate Effects on Monumental Buildings. In Proceedings of the BALWOIS 2010 Conderence, Ohrid, North Macedonia, 25–29 May 2010. [Google Scholar]
- Sabbioni, C.; Cassar, M.; Briblecombe, P.; Lefevre, R.A. Vulnerability of Cultural Heritage to Climate Change; Council of Europe: Strasbourg, France, 2008. [Google Scholar]
- Rajczak, J.; Schär, C. Projections of Future Precipitation Extremes Over Europe: A Multimodel Assessment of Climate Simulations. J. Geophys. Res. Atmos. 2017, 122, 10773–10800. [Google Scholar] [CrossRef]
- Zanis, P.; Georgoulias, A.K.; Velikou, K.; Akritidis, D.; Kalisoras, A.; Melas, D. Future Projections of Precipitation Extremes for Greece Based on an Ensemble of High-Resolution Regional Climate Model Simulations. Atmosphere 2024, 15, 601. [Google Scholar] [CrossRef]
- Dankers, R.; Feyen, L. Climate Change Impact on Flood Hazard in Europe: An Assessment Based on High-resolution Climate Simulations. J. Geophys. Res. Atmos. 2008, 113, 2007JD009719. [Google Scholar] [CrossRef]
- Spinoni, J.; Vogt, J.V.; Naumann, G.; Barbosa, P.; Dosio, A. Will Drought Events Become More Frequent and Severe in Europe? Int. J. Climatol. 2018, 38, 1718–1736. [Google Scholar] [CrossRef]
- Zittis, G.; Bruggeman, A.; Lelieveld, J. Revisiting Future Extreme Precipitation Trends in the Mediterranean. Weather Clim. Extrem. 2021, 34, 100380. [Google Scholar] [CrossRef]
- Georgoulias, A.K.; Akritidis, D.; Kalisoras, A.; Kapsomenakis, J.; Melas, D.; Zerefos, C.S.; Zanis, P. Climate Change Projections for Greece in the 21st Century from High-Resolution EURO-CORDEX RCM Simulations. Atmos. Res. 2022, 271, 106049. [Google Scholar] [CrossRef]
- Giglio, F.; Frontera, P.; Malara, A.; Armocida, F. Materials and Climate Change: A Set of Indices as the Benchmark for Climate Vulnerability and Risk Assessment for Tangible Cultural Heritage in Europe. Sustainability 2024, 16, 2067. [Google Scholar] [CrossRef]
- Gómez-Bolea, A.; Llop, E.; Ariño, X.; Saiz-Jimenez, C.; Bonazza, A.; Messina, P.; Sabbioni, C. Mapping the Impact of Climate Change on Biomass Accumulation on Stone. J. Cult. Herit. 2012, 13, 254–258. [Google Scholar] [CrossRef]
- Ciantelli, C.; Palazzi, E.; Von Hardenberg, J.; Vaccaro, C.; Tittarelli, F.; Bonazza, A. How Can Climate Change Affect the UNESCO Cultural Heritage Sites in Panama? Geosciences 2018, 8, 296. [Google Scholar] [CrossRef]
- Bonazza, A.; Sardella, A. Climate Change and Cultural Heritage: Methods and Approaches for Damage and Risk Assessment Addressed to a Practical Application. Heritage 2023, 6, 3578–3589. [Google Scholar] [CrossRef]
- Kapsomenakis, J.; Douvis, C.; Poupkou, A.; Zerefos, S.; Solomos, S.; Stavraka, T.; Melis, N.S.; Kyriakidis, E.; Kremlis, G.; Zerefos, C. Climate Change Threats to Cultural and Natural Heritage UNESCO Sites in the Mediterranean. Environ. Dev. Sustain. 2023, 25, 14519–14544. [Google Scholar] [CrossRef]
- Tringa, E.; Tolika, K. Analysis of the Outdoor Microclimate and the Effects on Greek Cultural Heritage Using the Heritage Microclimate Risk (HMR) and Predicted Risk of Damage (PRD) Indices: Present and Future Simulations. Atmosphere 2023, 14, 663. [Google Scholar] [CrossRef]
- Esteban-Cantillo, O.J.; Menendez, B.; Quesada, B. Climate Change and Air Pollution Impacts on Cultural Heritage Building Materials in Europe and Mexico. Sci. Total Environ. 2024, 921, 170945. [Google Scholar] [CrossRef]
- Brandano, M.G.; Conti, C.; Modica, M.; Urso, G. Mapping Cultural Heritage Sites at Risk: A Support Tool for Heritage Sites Management. J. Urban Manag. 2025, S222658562500007X. [Google Scholar] [CrossRef]
- Orr, S.A.; Richards, J.; Fatorić, S. Climate Change and Cultural Heritage: A Systematic Literature Review (2016–2020). Hist. Environ. Policy Pract. 2021, 12, 434–477. [Google Scholar] [CrossRef]
- Graham, E.; Martens, V.V.; Ayers-Rigsby, S. A Global Perspective: The Need for Climate Change Action in Heritage Management Now. J. Field Archaeol. 2025, 50, 1–5. [Google Scholar] [CrossRef]
- Noah’s Ark Project: Global Climate Change Impact on Built Heritage and Cultural Landscapes. Available online: https://www.heritageresearch-hub.eu/project/noahs-ark-project/ (accessed on 7 May 2025).
- CLIMATE FOR CULTURE: Damage Risk Assessment, Economic Impact and Mitigation Strategies for Sustainable Preservation of Cultural Heritage in the Times of Climate Change. Available online: https://www.heritageresearch-hub.eu/project/climate-for-culture/ (accessed on 7 May 2025).
- European Commission. Safeguarding Cultural Heritage through Technical and Organisational Resources Management (STORM). Available online: https://www.heritageresearch-hub.eu/project/storm (accessed on 7 May 2025).
- European Commission HERACLES—HEritage Resilience Against CLimate Events on Site. Available online: https://cordis.europa.eu/project/id/700395 (accessed on 7 May 2025).
- European Commission ProteCHt2save: Risk Assessment and Sustainable Protection of Cultural Heritage in Changing Environment; European Commission: Brussels, Belgium, 2025.
- ARCH | Project—Saving Cultural Heritage. Available online: https://savingculturalheritage.eu/about/project (accessed on 7 May 2025).
- SHELTER Project. Available online: https://shelter-project.com/ (accessed on 7 May 2025).
- STRENCH—Strengthening Resilience of Cultural Heritage at Risk in a Changing Environment through Proactive Transnational Cooperation. Available online: https://www.donau-uni.ac.at/en/university/faculties/education-arts-architecture/departments/building-environment/research/strench.html (accessed on 7 May 2025).
- ICCROM NetZero: Heritage for Climate Action. Available online: https://www.iccrom.org/projects/net-zero-heritage-climate-action (accessed on 7 May 2025).
- PROCULTHER-NET: Building a European Community for Protecting Cultural Heritage at Risk of Disaster. Available online: https://www.proculther.eu/ (accessed on 7 May 2025).
- TRIQUETRA: Toolbox for Assessing and Mitigating Climate Change Risks and Natural Hazards Threatening Cultural Heritage. Available online: https://triquetra-project.eu/ (accessed on 7 May 2025).
- Ioannidis, C.; Verykokou, S.; Soile, S.; Istrati, D.; Spyrakos, C.; Sarris, A.; Akritidis, D.; Feidas, H.; Georgoulias, A.K.; Tringa, E.; et al. Safeguarding Our Heritage—The TRIQUETRA Project Approach. Heritage 2024, 7, 758–793. [Google Scholar] [CrossRef]
- Sesana, E.; Gagnon, A.S.; Ciantelli, C.; Cassar, J.; Hughes, J.J. Climate Change Impacts on Cultural Heritage: A Literature Review. WIREs Clim. Chang. 2021, 12, e710. [Google Scholar] [CrossRef]
- Choirokoitia—UNESCO World Heritage Centre. Available online: https://whc.unesco.org/en/list/848/ (accessed on 7 May 2025).
- Hellenic Ministry of Culture and Sports Temple of Apollo in Aegina; Hellenic Ministry of Culture and Sports. Available online: http://odysseus.culture.gr/h/3/gh351.jsp?obj_id=2452 (accessed on 7 May 2025).
- UNESCO World Heritage Centre Sanctuary of Asklepios at Epidaurus—UNESCO World Heritage Centre. Available online: https://whc.unesco.org/en/list/491/ (accessed on 7 May 2025).
- Fuchs, J. A Bronze Foundry of Classical Times in the Sanctuary at Kalapodi (Central Greece). In Proceedings of the XXth International Congress on Ancient Bronzes: Resource, Reconstruction, Representation, Role; BAR Publishing: Oxford, UK, 2019; pp. 319–329. [Google Scholar]
- Klein Tank, A.M.G.; Wijngaard, J.B.; Können, G.P.; Böhm, R.; Demarée, G.; Gocheva, A.; Mileta, M.; Pashiardis, S.; Hejkrlik, L.; Kern-Hansen, C.; et al. Daily Dataset of 20th-century Surface Air Temperature and Precipitation Series for the European Climate Assessment. Int. J. Climatol. 2002, 22, 1441–1453. [Google Scholar] [CrossRef]
- McKinnon, K.; National Center for Atmospheric Research Staff. The Climate Data Guide: GHCN-D: Global Historical Climatology Network Daily Temperatures. Available online: https://climatedataguide.ucar.edu/climate-data/ghcn-d-global-historical-climatology-network-daily-temperatures (accessed on 7 May 2025).
- Jacob, D.; Petersen, J.; Eggert, B.; Alias, A.; Christensen, O.B.; Bouwer, L.M.; Braun, A.; Colette, A.; Déqué, M.; Georgievski, G.; et al. EURO-CORDEX: New High-Resolution Climate Change Projections for European Impact Research. Reg. Environ. Chang. 2014, 14, 563–578. [Google Scholar] [CrossRef]
- Colette, A. Climate Change and World Heritage: Report on Predicting and Managing the Impacts of Climate Change on World Heritage and Strategy to Assist States Parties to Implement Appropriate Management Responses; UNESCO World Heritage Centre: Paris, France, 2007. [Google Scholar]
- Fabbri, K.; Bonora, A. Two New Indices for Preventive Conservation of the Cultural Heritage: Predicted Risk of Damage and Heritage Microclimate Risk. J. Cult. Herit. 2021, 47, 208–217. [Google Scholar] [CrossRef]
- UNI 10829; Works of Art of Historical Importance—Ambient Conditions for the Conservation—Measurement and Analysis. Ente Nazionale Italiano di Unificazione (UNI): Milano, Italy, 1999.
- EN15757; Conservation of Cultural Heritage—Specifications for Temperature and Relative Humidity to Limit Climate-Induced Mechanical DamageiTeh Standards. iTeh Standards: Newark, DE, USA, 2010.
- Camuffo, D. Microclimate for Cultural Heritage: Conservation, Restoration, and Maintenance of Indoor and Outdoor Monuments, 2nd ed.; Elsevier: Amsterdam, The Netherlands; Boston, MA, USA, 2014; ISBN 978-0-444-63296-8. [Google Scholar]
CH Site | Country | Longitude (°N) | Latitude (°E) | Elevation EURO-CORDEX (m) |
---|---|---|---|---|
Choirokoitia | Cyprus | 33.3439 | 34.7964 | 115 |
Aegina | Greece | 23.4236 | 37.7501 | 30 |
Epidaurus | Greece | 23.1576 | 37.6259 | 251 |
Kalapodi | Greece | 22.8954 | 38.6365 | 362 |
Ventotene | Italy | 13.4300 | 40.8013 | 0 |
Climatic Variable | Description | Units |
---|---|---|
PR | Precipitation | mmday−1 |
TAS | Near-Surface Air Temperature | °C |
TASMAX | Daily Maximum Near-Surface Air Temperature | °C |
TASMIN | Daily Minimum Near-Surface Air Temperature | °C |
HUSS | Near-Surface Specific Humidity | gkg−1 |
RH | Near-surface Relative Humidity | % |
RSDS | Radiation | Wms−1 |
WS | Wind Speed | ms−1 |
Index | Index Full Name | Description | Units |
---|---|---|---|
HD | Hot Days | Number of days within a year with TASMAX > 35 °C | days |
FD | Frost Days | Number of days with TASMIN < 0 °C | days |
DTR | Diurnal temperature range | Annual mean of the daily differences between TASMAX and TASMIN | °C |
PD20 | Very heavy precipitation days | Number of days within a year with PR > 20 mm | days |
RX1DAY | Highest 1-day precipitation amount | The PR for the day with the highest precipitation in a year | mmday−1 |
CDD | Consecutive dry days | The largest number of consecutive days within a year with PR < 1 mm | days |
ECV/Index | 2021–2050 (RCP2.6) | 2071–2100 (RCP2.6) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
PR (mmday−1) | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | + |
TAS (°C) | + | + | + | + | + | + | + | + | + | + |
TASMAX (°C) | + | + | + | + | + | + | + | + | + | + |
TASMIN (°C) | + | + | + | + | + | + | + | + | + | + |
HUSS (gkg−1) | + | + | + | + | + | + | + | + | + | + |
RH (%) | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ |
RSDS (Wms−1) | + | + | + | + | + | + | + | + | + | + |
WS (ms−1) | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ |
HD (days) | + | + | + | + | ○ | + | + | + | + | ○ |
FD (days) | − | − | − | − | − | − | − | − | − | − |
DTR (°C) | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ |
PD20 (days) | ○ | ○ | ○ | ○ | + | ○ | ○ | ○ | + | + |
RX1DAY (mmday−1) | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | + |
CDD (days) | ○ | ○ | + | ○ | ○ | ○ | ○ | ○ | ○ | ○ |
2021–2050 (RCP4.5) | 2071–2100 (RCP4.5) | |||||||||
PR (mmday−1) | − | ○ | − | − | ○ | − | − | − | − | ○ |
TAS (°C) | + | + | + | + | + | + | + | + | + | + |
TASMAX (°C) | + | + | + | + | + | + | + | + | + | + |
TASMIN (°C) | + | + | + | + | + | + | + | + | + | + |
HUSS (gkg−1) | + | + | + | + | + | + | + | + | + | + |
RH (%) | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ |
RSDS (Wms−1) | + | + | + | + | + | + | + | + | + | + |
WS (ms−1) | ○ | ○ | ○ | ○ | ○ | − | ○ | ○ | ○ | − |
HD (days) | + | + | + | + | ○ | + | + | + | + | ○ |
FD (days) | − | − | − | − | − | − | − | − | − | − |
DTR (°C) | ○ | ○ | ○ | + | − | ○ | ○ | ○ | ○ | − |
PD20 (days) | ○ | ○ | ○ | ○ | + | − | ○ | − | ○ | + |
RX1DAY (mmday−1) | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | + |
CDD (days) | + | + | + | + | ○ | + | + | + | + | ○ |
2021–2050 (RCP8.5) | 2071-2100 (RCP8.5) | |||||||||
PR (mmday−1) | − | ○ | ○ | ○ | ○ | − | − | − | − | − |
TAS (°C) | + | + | + | + | + | + | + | + | + | + |
TASMAX (°C) | + | + | + | + | + | + | + | + | + | + |
TASMIN (°C) | + | + | + | + | + | + | + | + | + | + |
HUSS (gkg−1) | + | + | + | + | + | + | + | + | + | + |
RH (%) | ○ | − | − | ○ | ○ | ○ | − | − | − | + |
RSDS (Wms−1) | + | + | + | + | + | + | + | + | + | + |
WS (ms−1) | ○ | ○ | ○ | ○ | ○ | − | ○ | ○ | ○ | − |
HD (days) | + | + | + | + | ○ | + | + | + | + | + |
FD (days) | − | − | − | − | − | − | − | − | − | − |
DTR (°C) | ○ | ○ | ○ | ○ | − | − | − | − | ○ | − |
PD20 (days) | ○ | ○ | ○ | ○ | + | − | − | − | − | + |
RX1DAY (mmday−1) | ○ | ○ | ○ | ○ | + | ○ | ○ | ○ | ○ | + |
CDD (days) | + | ○ | + | + | ○ | + | + | + | + | + |
Choirokoitia | Aegina | Epidaurus | Kalapodi | Ventotene | Choirokoitia | Aegina | Epidaurus | Kalapodi | Ventotene |
Heritage Microclimate Risk | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
1971–2000 | 2021–2050 | 2071–2100 | ||||||||
Site | RCP | Minimum–Low | Moderate–Medium | High–Maximum | Minimum–Low | Moderate–Medium | High–Maximum | Minimum–Low | Moderate–Medium | High–Maximum |
Choirokoitia | 2.6 | 100% | 0% | 0% | 0% | |||||
4.5 | 100% | 0% | 0% | 0% | ||||||
8.5 | 100% | 0% | 0% | 0% | 0% | |||||
Aegina | 2.6 | 100% | 0% | 0% | 0% | |||||
4.5 | 100% | 0% | 0% | 0% | 0% | |||||
8.5 | 100% | 0% | 0% | 0% | 0% | |||||
Epidaurus | 2.6 | 100% | 0% | 0% | 0% | |||||
4.5 | 100% | 0% | 0% | 0% | 0% | |||||
8.5 | 100% | 0% | 0% | 0% | 0% | 0% | ||||
Kalapodi | 2.6 | 100% | 0% | 0% | 0% | |||||
4.5 | 100% | 0% | 0% | 0% | 0% | |||||
8.5 | 100% | 0% | 0% | 0% | 0% | |||||
Ventotene | 2.6 | 100% | 0% | 0% | 0% | |||||
4.5 | 100% | 0% | 0% | 0% | ||||||
8.5 | 100% | 0% | 0% | 0% | 0% |
Heritage Microclimate Risk | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
1971–2000 | 2021–2050 | 2071–2100 | ||||||||
Site | RCP | Minimum–Low | Moderate–Medium | High–Maximum | Minimum–Low | Moderate–Medium | High–Maximum | Minimum–Low | Moderate–Medium | High–Maximum |
Choirokoitia | 2.6 | 80% | 20% | 0% | ||||||
4.5 | 80% | 20% | 0% | |||||||
8.5 | 50% | 40% | 10% | |||||||
Aegina | 2.6 | 63% | 27% | 10% | ||||||
4.5 | 70% | 20% | 10% | |||||||
8.5 | 73% | 17% | 10% | |||||||
Epidaurus | 2.6 | 60% | 30% | 10% | ||||||
4.5 | 60% | 30% | 10% | |||||||
8.5 | 60% | 30% | 10% | |||||||
Kalapodi | 2.6 | 43% | 43% | 14% | ||||||
4.5 | 33% | 40% | 27% | |||||||
8.5 | 40% | 35% | 25% | |||||||
Ventotene | 2.6 | 67% | 26% | 7% | ||||||
4.5 | 67% | 26% | 7% | |||||||
8.5 | 67% | 26% | 7% |
Predicted Risk of Damage (PRD) | ||||
---|---|---|---|---|
Site | RCP | 1971–2000 | 2021–2050 | 2071–2100 |
Choirokoitia | 2.6 | 5% | 15% | 17% |
4.5 | 5% | 29% | 68% | |
8.5 | 5% | 60% | 87% | |
Aegina | 2.6 | 5% | 12% | 16% |
4.5 | 5% | 20% | 60% | |
8.5 | 5% | 26% | 87% | |
Epidaurus | 2.6 | 5% | 9% | 13% |
4.5 | 5% | 12% | 48% | |
8.5 | 5% | 18% | 87% | |
Kalapodi | 2.6 | 5% | 9% | 15% |
4.5 | 5% | 14% | 51% | |
8.5 | 5% | 23% | 87% | |
Ventotene | 2.6 | 5% | 42% | 44% |
4.5 | 5% | 47% | 81% | |
8.5 | 5% | 44% | 87% | |
Low Risk 0–20 (%) | Moderate Risk 20–40 (%) | Medium Risk 40–60 (%) | High Risk 60–80 (%) | Maximum Risk 80–100 (%) |
Predicted Risk of Damage (PRD) | ||||
---|---|---|---|---|
Site | RCP | 1971–2000 | 2021–2050 | 2071–2100 |
Choirokoitia | 2.6 | 7% | 19% | 6% |
4.5 | 7% | 7% | 6% | |
8.5 | 19% | 7% | 6% | |
Aegina | 2.6 | 16% | 5% | 7% |
4.5 | 15% | 6% | 6% | |
8.5 | 15% | 5% | 5% | |
Choirokoitia | 2.6 | 7% | 19% | 6% |
4.5 | 7% | 7% | 6% | |
8.5 | 19% | 7% | 6% | |
Epidauros | 2.6 | 17% | 6% | 8% |
4.5 | 17% | 6% | 8% | |
8.5 | 17% | 7% | 5% | |
Kalapodi | 2.6 | 21% | 8% | 14% |
4.5 | 32% | 9% | 6% | |
8.5 | 25% | 15% | 5% | |
Ventotene | 2.6 | 15% | 9% | 8% |
4.5 | 15% | 12% | 17% | |
8.5 | 15% | 8% | 14% | |
Low Risk 0–20 (%) | Moderate Risk 20–40 (%) | Medium Risk 40–60 (%) | High Risk 60–80 (%) | Maximum Risk 80–100 (%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tringa, E.; Georgoulias, A.K.; Akritidis, D.; Feidas, H.; Zanis, P. Assessing the Future Risk of Damage to European Cultural Heritage Due to Climate Change. Heritage 2025, 8, 175. https://doi.org/10.3390/heritage8050175
Tringa E, Georgoulias AK, Akritidis D, Feidas H, Zanis P. Assessing the Future Risk of Damage to European Cultural Heritage Due to Climate Change. Heritage. 2025; 8(5):175. https://doi.org/10.3390/heritage8050175
Chicago/Turabian StyleTringa, Efstathia, Aristeidis K. Georgoulias, Dimitris Akritidis, Haralambos Feidas, and Prodromos Zanis. 2025. "Assessing the Future Risk of Damage to European Cultural Heritage Due to Climate Change" Heritage 8, no. 5: 175. https://doi.org/10.3390/heritage8050175
APA StyleTringa, E., Georgoulias, A. K., Akritidis, D., Feidas, H., & Zanis, P. (2025). Assessing the Future Risk of Damage to European Cultural Heritage Due to Climate Change. Heritage, 8(5), 175. https://doi.org/10.3390/heritage8050175