Next Article in Journal / Special Issue
Unveiling Vernacular Features: Interdisciplinary Knowledge for the Conservation of Villa Murat in the Sorrento Peninsula
Previous Article in Journal
Applying Classic Literature to Facilitate Cultural Heritage Tourism for Youth through Multimedia E-Book
Previous Article in Special Issue
The Representation of Vernacular Architecture in the Gates of Paradise by Lorenzo Ghiberti
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Domestic and Productive Earthen Architecture Conserved In Situ in Archaeological Sites of the Iberian Peninsula

by
Sergio Manzano-Fernández
*,
Camilla Mileto
,
Fernando Vegas López-Manzanares
and
Valentina Cristini
Centro de Investigación en Arquitectura, Patrimonio y Gestión para el Desarrollo Sostenible (PEGASO), Universitat Politècnica de València, 46022 Valencia, Spain
*
Author to whom correspondence should be addressed.
Heritage 2024, 7(9), 5174-5209; https://doi.org/10.3390/heritage7090244
Submission received: 15 July 2024 / Revised: 11 September 2024 / Accepted: 11 September 2024 / Published: 14 September 2024

Abstract

:
For past societies on the Iberian Peninsula, one of the most prolific architectures was earthen construction, with a wealth of typologies and solutions derived from the legacy of local construction and materials. However, its study within the field of archaeology has been limited. The challenges posed by conservation, archaeological identification and social recognition have traditionally limited the dissemination of this type of architecture. Its low profile is perceived as fragile once the original protections collapse. The ethnological information preserved and linked to past ways of life and societies is crucial to the interpretation of the cultural development handed down over generations by different communities and now transmitted to the general public through archaeological sites. This research aims to provide an overview of the main earthen vestiges from domestic, productive and funerary architecture dating from the prehistoric, protohistoric, Roman and medieval periods. For this, a bibliographical review and data collection through fieldwork were conducted for numerous case studies. These included the classification of materials, compositions and construction techniques, creating an integrated comprehensive database with information on geography, measurements and the general state of conservation.

1. Introduction

In their transition to sedentary lifestyles, past societies relied most heavily on the use of earth as a construction material. This material, which was easy to source and handle, could be found in abundance in any type of habitat. This inspired a series of processes of observation, experimentation and improvement of permanent and durable constructions, knowledge of which was handed down over generations. These constructions were produced by the people for the people [1], without architects [2], prioritize economy, the efficient use of resources, functionality and resistance to aesthetics [3].
Overall, the climate and geology of the Iberian Peninsula made it an ideal location for earthen architecture to thrive over almost the whole territory, as can be deduced from evidence from different periods: prehistory [4,5]; protohistory, also boosted by orientalizing influences [6]; the Roman period [7,8]; and the Middle Ages [9]. Since the late 19th century, the search for ethnological and historical information that it can provide and its interpretation as a non-renewable document for sustainability [10] have all promoted growing interest in the processes of documenting and interpreting the technique [11]. It has also prompted the production of different studies and general classifications of techniques, excavations and interpretations since the end of the 20th century [12,13]. These have been developed in keeping with international research [14,15,16], although the establishment of up-to-date databases has been infrequent, even from the public administration.
Archaeology has made it possible to access the different physical remains conserved and to identify the architecture and construction techniques used. There are four major primary groups—mixed structures (Figure 1a), cob (Figure 1b), adobe (Figure 1c) and rammed earth) (Figure 1d)—which also prompt reflection on form and function. However, the highly variable state of conservation of this type of heritage makes this classification a complex task. This is due to both its nature and the wide range of subvariants of construction processes and traditions rooted in different territories or, hypothetically, in specific societies and cultures. Although monumental and defensive structures are more widely studied and recognized by society, this construction style is not limited to the building envelope, and it also covers aspects such as fixed furniture, production systems and burial rituals in the domestic space. While shown to be highly variable compared to other types of architecture, relatively few cases have been identified to date.
In the case of envelopes, although until now roofs have only appeared in a state of collapse, they have been classified based on the diameters of plant imprints burnt into fragments following fire damage. In addition, stone plinths have usually been conserved in walls and, in some of the best-case scenarios, so have one or two floors of earthen elevation. Such is the case, for example, with Cancho Roano, Contrebia Belaisca, Bílbilis and Casas del Turuñuelo. Most frequently, these are less than one metre from the springing (plinth or ground level) [17].
Numerous examples of domestic elements have been classified, with self-construction and adaptation to the space resulting in unique characteristics and layouts. These can be classified into main groups, depending on use, and include benches (Coll del Moro (Gandesa) [18] and Castellet de Banyoles (Tivissa) [19]; shelves for vessels (Cabezo Redondo (Villena) [20]; hearths (Tossal de Manises (Alicante) [21]; platforms (Cerro de San Vicente (Salamanca) [22]; water deposits (Plaza de Moros (Villatobas) [23]; ponds and kilns (Lépida Celsa (Velilla de Ebro) [24]; and workshops and paving.
Many funerary element typologies have also been documented. These include simple graves (Cerro Santuario (Baza)) [25]; central pillars (Tútugi (Galera)) [26]; perimeter walls (Doña Blanca, (El Puerto de Santa María)); outer rings (El Castillo, (Castejón)) [27]; and structures such as those with corbel vaults (Castejón de Arguedas (Arguedas)) [28], with roofs usually found in a state of full collapse.
In addition to kilns for domestic use, the economic activities of the different societies—such as pottery or ironwork—have left behind a specific earthen construction heritage sharing similar problems. While frequent in different societies and historical periods, one particularly notable example is that of the technologies introduced in the Late Iron Age by the inhabitants of the Eastern Mediterranean. These survived until Roman times and beyond, gradually transitioning to a form of hierarchized production that was in contrast with the domestic production of the Bronze Age [29].
In response to the need for high temperatures to transform materials, specific pieces and elements were developed for production kilns. One of the most widely studied innovations is that of kilns with vertical flues, which usually include a combustion chamber below, horizontal compartmentation or a grate and a firing chamber above these. Numerous variants can be found within this typology: with a system supporting a grate, with a central pillar (with axial prolongation or freestanding [30], seen in kilns 2 and 1 in S3-Camposoto (San Fernando), respectively); with perpendicular side walls or rows of walls (La Jericó (Herrera del Pisuerga) [31]) (Figure 2d); or with low radial walls. Differently shaped systems have also been documented: U systems with a compartmented combustion chamber (El Olmo and Mas del Moreno) [32] (Figure 2a); omega systems; circular or oval (in the Roman villa El Ruedo (Almedinilla)) [33]; and quadrangular or rectangular (El Monastil (Elda)) [34]. The construction process often took advantage of the natural earth stratum when selecting the location for the combustion chamber and used a wide variety of pieces. This is the case of the corbel vaults built with plano-convex adobe bricks in kiln 1 in Torrealta (San Fernando) [29]; the steps at the base of the praefornium in La Milagrosa (San Fernando) [35]; and grates with radial adobe bars in Pajar del Artillo (Santiponce) [36].
However, not all this variety is suitably valorized or physically represented with visible structures. Given the vital importance of physical documents as tools for transmission to the wider public, this lack of visibility negatively affects the dissemination and social recognition of this type of architecture, compared with that of the use of carved stone masonry in varying degrees. By ensuring maximum representation of examples of structures conserved in situ in different states of preservation or replacement, their importance and increased value can be highlighted within these enclaves, where they can be maintained and transmitted as part of a cycle of cultural use.
This broad approach to these techniques, employing general concepts whilst steering clear of the detailed and independent study of specific territorial cases, limits a general overview to the search for chronological parallels. This could lead to a more comprehensive joint examination highlighting a richer selection of characteristics. However, as far back as the 1990s, some publications already favoured the presentation of collections of samples, including metrics [37,38], where scope and antiquity make it possible to update a selection of sites still visitable in their original contexts. This collective discussion of techniques, tools and measurements is still relevant in the academic field of archaeology and architecture, lacking consensus on hypothetical connections with specific societies, in stark contrast with the consequent spontaneous need for timely construction solutions.
The main objective of this study Is a clear, painstaking examination of the state of the art and different aspects of earthen structures on the Iberian Peninsula. For this, a database is created following the bibliographical review and data collection in fieldwork for the case studies conserved in situ in archaeological settings. This should boost the analysis and cross-referencing of geographical information systems to detect the patterns and density of case studies while serving as the basis for subsequent vulnerability and risk studies. This general overview has led to debates on a series of statistical observations and reflections on the materials and techniques employed, classified by typology or historical period, while also revealing the main issues or case studies to be addressed during the cultural transfer.

2. Methodology

The methodology selected consists of two main phases: the search and selection of the case studies and the statistical management of data.

2.1. Case Studies

The starting point is the identification of case study locations based on various indirect sources, including national archives (Archive of the Spanish Cultural Heritage Institute (IPCE) of the Ministry of Culture); national archaeological collections (Excavaciones Arqueológicas de España, EAE; Noticiario Arqueológico Hispánico, NAH); regional collections (Serie de Trabajos Varios del Museo de Prehistoria de Valencia, MUPREVA; Anuario Arqueológico de Andalucía, AAA); and other sources, such as repositories (Calaix-GENCAT; the SOS-Tierra research project; publications of the Archaeological Museum of Alicante, MARQ); and dossiers, reports or articles on the territory. The dispersion of the information throughout the Iberian Peninsula has resulted in a more extensive compilation of publications and journal articles, accounting for 46% of the total. Remaining sources are found in lower percentages: 17% came from the IPCE, 13% from national collections, 12% from regional repositories, 10% from regional series of studies and the remaining 5% from research projects and museums (Table 1).
As the research requires examination of remains conserved in situ, geographical limitations were a conditioning factor in regions such as Galicia, Principado de Asturias and Cantabria. Earthen constructions are extensively documented in these areas [39,40], but the predominance of half-timbered techniques greatly limits preservation. Given the organic nature of timber, which did not survive in situ, no cases of half-timber were found, which in turn limited verification tasks to the elements observed in calcined and collapsed fragments. No reliable conclusions have been reached on the absence of other construction techniques in these spaces, possibly due to material and climate issues (abundance of forest masses and high average rainfall) [41]. The social issues (scope of societies) offer a comparison of Celtiberian and Iberian expansion, the latter widely found in the Spanish Levant, with a well-documented culture of adobe and cob [13].
It Is Impossible to establish clear limits for the case study timeframe given the limited number of domestic cases and the inclusion of techniques, such as rammed earth, which appear to be more recent [42]. However, the greater popularity of cases of Iberian origin and the difficulties in characterizing techniques, such as cob compared to adobe, suggest increased representation of the protohistoric period.
Efforts have been made, when examining typologies, to prioritize structures that are vernacular, domestic, productive and funerary and are at greater risk of loss or invisibilization. The high quality of construction of earthen monumental and defensive architecture, inherently larger and thicker, enjoys a privileged position in terms of the social recognition, impact and priority of intervention, which facilitates its survival.
Care has been taken to minimize errors in classifying terminology due to the misuse of synonyms [43], and, whenever possible, a macrovisual review has been provided in cases of ambiguous historical descriptions. The most common confusions involve misuse of the terms adobe, tapia and tapial (adobe, rammed earth and formwork, respectively) generally used to describe amasado (cob).
Based on the above, 170 case studies in different states of conservation and context were preselected (Figure 3) (Appendix A), aiming to represent all the provinces within the territory and recognizing the limitations mentioned above. Field visits were made to 121 of these based on their individual characteristics, collecting data to update information, rapidly changing with this type of heritage at times of unfinished musealization.

2.2. Characteristics and Statistical Management of Information

Information was collected and organized through fiches with a hierarchized sequence to allow the visual interpretation of general and specific characteristics [44]. This article focuses particularly on the urbanistic and territorial situation, featuring typology, use, ownership, urban location, historical period of the structures and geographical location. Given that these conditioning factors can affect the survival of these structures in varying degrees, they were taken into account in the data collection process.
In addition, an urban location can affect the conservation and valorization process, showing the contrast between musealized sites in urban settings and abandoned sites in isolated and non-urbanized natural spaces. Natural events, such as flooding, tend to be occasional and irregular, with the potential to cause different effects on flat surfaces or in settings with evacuation systems vulnerable to overflow caused by torrential rain. This also affects society, as access to human and economic resources reflected in maintenance and cultural and tourist operations can all vary. Observing the locations where these archaeological sites are usually found and their symbiosis with their surroundings is vital to understanding interventions.
Furthermore, assigning typologies can showcase the volume of disseminated finds, which originally served a specific function. Used as the basis for future risk and conservation studies, it can also aid reflection on natural problems, for example, in settings where seismic movements can be minimized by structural geometry and bracing. On social issues, they either help or hinder the general public’s access to information about a broader range of constructions incorporating these materials and techniques.
Ownership may also be a factor of interest when cross-referencing the state of conservation of different case studies. The budget guaranteed by the public administration can facilitate access to resources for the conservation and enhancement of the enclaves, although this continues to be a latent problem in the sector. Given the lack of additional support measures, sites such as Illa de Banyets (El Camepello, Alicante), acquired at a later stage, have lost a high volume of earthen construction since being uncovered.
In addition, the original function of these archaeological remains has given way to a new typology, used for documentation and research (aimed at the specialist public) or for cultural or exhibition purposes (aimed at the general public). During the intermediate phases of excavation, these two uses are often compromised, despite the increased number of initiatives offering guided tours after the different annual excavation campaigns. Different forms of damage can also be observed, depending on their specific predominance.
Ultimately, any examination of the use of the different earthen construction techniques in past societies also requires the approximate dating of any finds. Current knowledge and tools can be applied to those with earlier dating, which are susceptible to review. In this way, a general overview of the situation on the Iberian Peninsula can be deduced from the compilation of periods identified by a series of professionals in charge of the different enclaves.
The text also examines the architectural situation, featuring the identification of the material by element, construction technique, metrics, stabilizing agents, complementary use with other systems and specific features of the structure, when these values are known.
In this regard, depending on the structures conserved, earth can be found in different spots within the same site. Whereas, in monumental and defensive construction, the demand for greater resistance or wealth of construction of many societies resulted in a predominant use of carved stone, in the domestic and production spheres, earth was a key element. Stone masonry was usually limited to use for plinths or additions to load-bearing walls in order to ensure minimum damage to sensitive areas, thus saving on materials that were more expensive to extract and handle.
As regards construction techniques, the classification divides these into four main groups: half-timber techniques, cob, adobe and rammed earth. According to extensive research from the first international classifications [45], a large number of subvariants with these well-established techniques can currently be found on the Iberian Peninsula. However, the territorial misuse of synonyms in the 20th century [43] has resulted in issues that have hindered classification tasks and are still ongoing.
Therefore, some interesting decisions have recently been made to homogenize the terminology [46,47], establishing separate uses for the words adobe and tapial (formwork) to refer to amasado (cob). This also applies to the use of components and terms with negative connotations, such as arena (sand), arcilla (clay) or barro (mud) when referring to earth. Even so, the difficulties of preservation and display in situ can lead to the underrepresentation of this wide range of techniques, meaning that only a small fraction of these can be observed.
Each of these techniques is analyzed independently based on characteristics such as the thickness of construction elements or bricks, bonding or execution systems.
Nevertheless, earthen constructions display several weak points, particularly in the base and upper section, as the material is frequently combined with other types of structures, and only the lower section is conserved following the collapse of the roof. Thanks to the wide range of solutions employed, these elements help improve the quality of the construction and the response to rising damp and major flooding episodes. Identifying the frequency of recurrence of these may be relevant to the classification of these systems.
A general overview, resulting from the use of GIS and statistical management software and filtered by theme of interest, reveals the recurring presence of different cases, through heatmaps, analysis and visual examination. Thus, case density is obtained from the heatmaps for construction techniques using QGIS software and a 70km radius. The results are complemented by interpretations obtained from Real Statistics, software developed by C. Zaiontz, carrying out a Kernel density estimation (KDE) of random variables with a bandwidth of 0.8, overcoming the limitations of histograms for aspects, such as recorded metrics, to test the probability of their appearance in specific ranges or periods. This can be relevant when proposing a response to the question of metrics and their implications, as different experts still consider this variable to Be of interest when finally establishing intersocietal correlations.

3. Results

Case studies have been identified from a series of perspectives, offering a context, a general and detailed framework of the enclave and construction techniques. The geographical distribution of the territory studied has been analyzed, observing dispersion, whilst analyzing the historic, urbanistic, typological, use, architectural and construction characteristics according to the bibliography consulted and a macrovisual review. Microscopic studies have also been considered in the course of these processes.

3.1. Historical, Urbanistic, Typological and Use Characteristics

3.1.1. Geographical Distribution

Geographical distribution was observed from the total number of case studies, including the 170 preselected ones, and considering all communities except Galicia, Principado de Asturias and Cantabria, mentioned above. While this dispersion appears to be logical, with a tendency to show higher case study percentages in certain communities, some territories display a characteristic accumulation of documented remains. Although these include the Ebro valley and the south of Alicante, this may not necessarily be due to strategic issues of proximity to the sea, commercial ports or major rivers.
Case studies worth noting include the vast territory of Andalucía, with 19% of cases; the Levant, with 19% in Catalonia, 18% in Comunidad Valenciana, 11% in Aragón and 5% in Región de Murcia; and a lower representation inland, with 10% in Castilla y León, 6% in Castilla-La Mancha, 4% in Comunidad de Madrid, 3% in Comunidad Foral de Navarra, 2% in Extremadura, 1% in the Basque Country and 1% of cases in the La Rioja. Cases are also found in the south, east and north of Portugal as well as in 3 different districts (Bragança, Evora and Faro), making up 2% of the total.

3.1.2. Urban Location

According to the sample, 69% of case studies are in isolated locations, while 21% are in built-up and unbuilt areas and have an infrastructure for water evacuation, as in the cases of the Roman villa El Ruedo (Almedinilla) (Figure 4b), Tossal de Manises (Alicante) and Casa del Mitreo (Mérida). 10% of cases are in built-up plots, occupying the ground or basement floors of the construction (Domus Avinyó (Barcelona)) (Figure 4d). They are also found in historic town centres or below pedestrian level, as in El Molinete (Cartagena) (Figure 4c). Although archaeological finds are often uncovered during the construction of infrastructures, this architectural typology has mainly been conserved in natural surroundings far from urban nuclei.

3.1.3. Typology

Non-defensive earthen architecture in archaeological sites shows viewers a variety of constructions dedicated to domestic life (Figure 5a) (Figure 5b), pottery production (Figure 5c) and death rituals (Figure 5d). In the sample obtained, 41% of the structures, such as walls or fragments of roof, are linked to the dwelling envelope. Furthermore, 25% are linked to production activity, including kilns; 33% are associated with domestic elements, as in the case of fixed furniture; 5% are linked to funeral architecture, found in different types of burial sites; and 3% correspond to a completely religious typology. Finally, despite not being a subject of study, 2% of cases also incorporate at least one structure above ground, which could be linked to defensive typology. It should be noted that earthen residential architecture and earthen productive architecture are both present in 4% of sites, while in 21% of sites, productive architecture can be found in isolation. As with the rest of the factors, these figures are very broad-ranging in relation to the current condition of these enclaves, and the discovery of new sectors could alter the number of case studies.

3.1.4. Ownership

In contrast, attempts have been made to identify general ownership of the different case studies. In this respect, the results obtained show that 64% of cases are publicly owned, like Contrebia Belaisca (Botorrita, Zaragoza) (Figure 6a), compared to 21%, which are privately owned, like the site of Tos Pelat (Moncada) (Figure 6b). In 16% of cases, this information could not be confirmed.

3.1.5. Use

For most of the cases of the sample valorized, except those where the remains found have been either deliberately or accidentally destroyed [48], research and exhibition purposes should be assessed. This ensures occasional scientific use while protecting cultural transmission of the knowledge they hold. However, not all archaeological sites offer optimum conditions for conservation or valorization, and, for a number of reasons, there are high levels of re-burial, which lessen loss, abandonment and even destruction.
Thus, 51% of cases are visible for cultural and exhibition use (Figure 7a); 24% are not visible and are buried; 4% are not visible as the excavation is underway (Figure 7b); 12% have been temporarily abandoned (Figure 7c); and 10% have been destroyed (Figure 7d) or dismantled due to geographical location or the lack of measures for supporting the earthen structures.

3.1.6. Historical Period

Based on the selected sample, 4% of structures can be dated to prehistory (Figure 8a), 53% to protohistory (Figure 8b), 29% to Roman times (Figure 8c) and 6% to the Middle Ages (Figure 8d). More precise dating processes show that 6% of cases can be dated to the Bronze Age, 7% to the Late Bronze Age, and 18% to Iron Age I and II. Although the medieval era has been selected to include rammed earth case studies, most structures can be dated to protohistory, followed by the Roman period, which largely continued these construction traditions. Therefore, the lower representation of this medieval period does not necessarily equate to a lower number of case studies, and it is merely the result of bibliography and typology. However, correlations can be established between the techniques identified and their frequency. The lack of prehistoric cases conserved could be due to their greater antiquity and, thus, the greater probabilities of collapse. A more widespread use of timber and earth for load-bearing structures also makes situ conservation practically impossible.
These percentages, referring to all case studies, have been compiled and observed for the different construction techniques. It should be noted that the profuse adobe structures in isolated locations can be outnumbered by cob and rammed earth, although, proportionally, these are in the minority in built-up settings.
Notable inequalities can also be found in the remaining factors, such as the notable presence of cob in residential structures, as it is more likely to be found in domestic furniture than in the walls themselves. Furthermore, an abundant use of adobe has also been documented in most productive elements, although it is also found in the natural terrain excavated. However, rammed earth has almost been relegated to residential and structural use. This is only to be expected, as it is harder to execute, less adaptable when used on joints and smaller construction elements as well as elements thought to have been added at later stages.
As regards ownership, while all systems display a balanced public–private ratio, according to the research, ownership remains unknown in higher percentages in the cob case studies documented. In terms of use, a similar pattern can be observed, with 50% of the buried case study typologies compared to approximately 50% of the musealized ones. Nevertheless, a significantly higher number of cases of cob construction is believed to have been lost In relation to the overall figures for the technique, while most examples of rammed earth have survived (Table 2).

3.2. Architectural and Construction Characteristics

The general and detailed architectural classification of the structures found is key to identifying the most frequent systems and subvariants. In addition, the location of the earthen material, the monolithic or built construction system, its measurements, the presence or absence of stabilizing agents and the combinations with other materials and techniques can potentially determine different responses. Thus, a more precise representation of the different behaviours, degradations and intervention methodologies is obtained. In turn, ensuring maximum precision in sample classification can help form a solid database for further research.

3.2.1. Presence of Earth

The sample studied shows a distribution of 67% of cases using earth-on-wall elevations raised on plinths in different materials and 12% at the base of the wall, due to the absence of a plinth, which is more common in internal compartmentations. Additionally, 49% correspond to domestic elements (Figure 9a), usually at ground level and with little elevation; 29% to production structures, especially pottery kilns (Figure 9b); 7% to funerary elements; 59% to paving (Figure 9c); and 36% to protective renderings of the load-bearing structure (Figure 9d). These are usually irregular in appearance as this is the first layer to be sacrificed.

3.2.2. Construction Techniques

The different construction techniques identified in the case studies belong to the four major families identified in recent years, both within and outside the peninsula.
The structures resulting from the mix of water and earth covering the timber substructure, also used as internal supporting reinforcement, are considered examples of mixed techniques (torchis or técnicas mixtas). This technique was widely observed on the Iberian Peninsula from as early as the Neolithic [49], and was also found in Roman times [50]. It survives to this day thanks to half-timber, although the only archaeological remains found conserved in situ are collapsed fragments. Therefore, all the cases observed are interpretative reconstructions used to disseminate and identify some of the usual subvariants. This is the case with woven reed (Figure 10a) and braided reed (Figure 10b), found in 4% of the case studies, with thicknesses of around 27 cm, as seen in Castellón Alto (Galera, Granada) and Numancia (Garray, Soria).
Furthermore, the construction technique of cob (bauge or amasado/pared de mano) used plastic applications of simple earth to form monolithic walls, which, despite often appearing as piles of units, were individual homogeneous masses [51]. This technique was predominant in the 3rd and 2nd millennia, along with mixed techniques [52]. In this case, layers of earth, naturally stabilized with plant fibres or anthropically with lime, were applied in heaps, usually in easy-to-manipulate spherical shapes. Walls could be made either with or without formwork, being later smoothed off using forks, planes and other tools. In this classification, this group includes elements linked to domestic fixed furniture, such as hearths, kilns, shelves for vessels and benches all built in the same way.
The identification of cob in archaeological sites has been widely debated in the field, as it has been traditionally considered adobe or rammed earth. Thus, this has contributed to both the protohistoric standardization of adobe and its underrepresentation in the sample. Nineteen percent of all the sites feature some form of cob structure, including La Olmeda (Pedrosa de la Vega, Palencia) (Figure 11a) and Caramoro I (Elche, Alicante) (Figure 11b). Walls around 37–45 cm thick are found, as well as ones that are 25–30 cm thick for interior compartmentations and 60–80 cm thick in the case of domestic structures. Moreover, the paving category was filtered, and 48% of cases were identified as compacted earth and 16% as clay.
Adobe (brique crue or adobe) is the most widely documented variant in the group of earthen walls. It is normally made with raw earth units mixed with straw and coarse sand to improve resistance and durability. It is serially manufactured with moulds and pieces dried in the open air, suggesting a possible quick execution process, although moulds were not necessarily involved in many of the variants documented. Although terminological issues have obscured discussion of the origins of the term, there is conclusive evidence of its existence in the Late Bronze Age and Early Iron Age [6], when it was linked to orientalizing influences in the south and southeast of the Iberian Peninsula. Subsequently, from the second half of the 6th century BC, it spread across the peninsula and has been documented in some settlements predating the Phoenicians [13]. Among the different case studies selected and reliably dated to these periods, only Cerro de la Mota (Medina del Campo, Valladolid) has conserved and musealized remains in situ.
Given the extremely variable placement of units, in keeping with the high number of variants, solutions can be achieved that can satisfy construction requirements in terms of resistance and thickness. Load-bearing walls, for example, tend to use stretcher and header bonds for good adhesion and resistance, as seen in El Turuñuelo (Guareña, Badajoz) [53]. Header configurations are found in walls of one foot in Puntal dels Llops (Olocau, Valencia) [54]; double stretcher configurations are found in Cancho Roano (Zalamea de la Serena, Badajoz) [55]; and to a lesser extent, square ones, with a better seismic response, are found in Mas Castellar (Pontós, Girona) [56]. When thinner constructions are sought, stretcher configurations can be seen, as in the case of the upper floors or the partition walls of Tossal de Sant Miquel (Lliria, Valencia) [57]; in the funerary sphere, in El Castillo (Castejón, Navarra) [58]; or in shiner bond, as in La Celadilla (Ademuz, Valencia). These thicknesses can also be achieved with stretcher configurations in smaller modules (15–20 cm wide), as in Puntal dels Llops (Olocau, Valencia) [59].
The system is also found in other contexts, including paving, in Castellet de Banyoles (Tivissa, Tarragona) [60] or smaller domestic elements, such as benches with stretcher configurations in Coll del Moro (Gandesa, Tarragona) [18], kilns in La Jericó (Herra del Pisuerga, Palencia) [31] or in Mas del Moreno (Foz-Calanda, Teruel) [32], platforms like those in Cerro de San Vicente (Salamanca) [22] or hearths or water deposits. In some enclaves, although information is not conclusive, research suggests the possible construction of corbel domes in the dwellings in El Turuñuelo (Guareña, Badajoz), using lightweight modules that were easier to manipulate [61]. It was also used for coating in Alto de la Cruz (Cortes, Navarra) [62] and was more common in productive architecture, as seen in kiln 3 in Torrealta, kiln 4 in Camposoto (San Fernando, Cádiz) [29] and in La Cabrera (Torredonjimeno, Jaén) [63].
Finally, these pieces have successfully adapted special geometries for concrete elements, usually structural ones in productive settings. A notable example is that of large plano-convex elements documented as a system to support combustion chambers in Pajar del Artillo (Santiponce, Sevilla) [36]. Other pseudotriangular structures are found, such as kiln 4 in Torrealta (San Fernando, Cádiz), as well as tegulae inserts, as in the production sector in El Ruedo (Almedinilla, Córdoba) [33].
Adobe has historically been the most widely recognized construction system, with at least one structure in 88% of the case studies. Moreover, the measurements collected provide an overview of the different construction scenarios, using probability to identify those most frequently repeated in specific periods. This is particularly complex in the case of adobe, given its variability (Figure 12) and numerous conditioning factors, including mould size, type of execution, construction culture, spontaneity and simple needs to cope with construction issues. In order to combine the metrics documented by the different specialists (Appendix B), the probable measurement ranges for adobe bricks put forward by the KDE have been observed: prehistoric (44/52 × 26/30 × 7/10 cm), protohistoric (36/43 × 19/25 × 10/12 cm) and Roman (40/51 × 29/40 × 10/11 cm) (Figure 13).
Rammed earth (pisé or tapia), the result of using a rammer to compact layers of earthen elements within a wooden formwork (tapial), was conclusively identified on the Iberian Peninsula in the Roman domus in Ampurias [42]. Although its origin is still subject to debate, on an international scale, it can be dated back to the Punic period in Carthage [64]. While the range of subvariants currently known for earthen construction with rammed earth is very high [9], the variability found in the archaeological case studies selected is significantly lower. This includes rammed earth walls in Rábita Califal (Guardamar del Segura, Alicante) (Figure 14a), as well as walls in masonry and gypsum or with gypsum reinforcement, such as those found in the Mosque of Cortijo del Centeno (Lorca, Murcia) and Medina Siyasa (Cieza, Murcia) [65] (Figure 14b).
According to the sample, 15% of case studies feature at least one historic structure in rammed earth, dated in 9% of cases to the Roman period and in 6% to the Islamic Middle Ages. While the range of metrics is much wider, given the smaller database sample, these structures can be found in a range of 30 to 80 cm in Roman times, peaking between 30 and 50 cm. This metric increased slightly to 100 cm in the Middle Ages, although 50 cm remains be the most common measurement. As these ranges only varied relatively recently, measurements of between 40 and 90 cm can be found in rammed earth constructions in Comunidad Valenciana [66].

3.2.3. Stabilizing Agents

In 86% of case studies, it was not possible to identify stabilizing agents, as information on their composition is limited by the general lack of microscopic studies on the fragments found. This lack of information can mostly be attributed to much of the prospecting carried out predating the existence of solid professional knowledge of earthen construction. This means that the assessment is currently being called into question, although the widespread use of plant elements in their composition is assumed.
Cases with the confirmed use of stabilizing agents are distributed as follows: plant elements were used in 12% of cases; lime additions in 2%; stones, such as aggregate or other smaller stones, were used in 2% due to the limitations of the moulds or joints. Carbons, ceramic and gypsum are each found in 1% of case studies. It should be noted that according to these studies, no stabilizing agents are found in 1% of the sample, which are composed solely of raw earth.

3.2.4. Complementary Techniques and Materials

According to the case studies, the most common complementary solution was the use of stone masonry. It is found in 86% of the total samples, acting as a plinth or stem wall in 53% of cases, as seen in Casa de los Grifos (Alcalá de Henares, Madrid). However, as documented in 17% of cases, fired brick was also frequently used. Stone masonry was generally found together with other materials from the start of the 1st century BC [13], as confirmed in 1% of plinths from Roman times or later, in El Molinete (Cartagena, Murcia) and Contrebia Belaisca (Botorrita, Zaragoza). This setting is displayed with the same percentages in the opus caementicium, visible in sites such as Els Munts (Altafulla, Tarragona) [67]. Finally, stone slabs are documented in 7% of the sample, specially positioned for thresholds and other systems; while ashlar and timber are each found in 5% of samples, although the latter is not conserved in situ, as mentioned above. Despite mainly being combined with other techniques in plinths, stone slabs are not found in the remaining 46% of cases. This is the case particularly in most domestic furniture and in thinner interior partitions, such as those in la Rábita Califal (Guardamar del Segura, Alicante) [68], where certain types of wall sprang from the ground itself. This absence can be attributed to a number of general factors: the smaller size of elements, material availability, savings or quality of construction. These factors tend to be noticed mostly in the supporting system of the building. For the most part, these plinths are under 100 cm high, with numerous examples of around 50 and 23 cm. Their thickness tends to be in line with the documented elevations, and most of the sample displays thicknesses of between 30 and 50 cm, with peaks at 40 and 50 cm (Figure 15).
These architectural statistics can also be observed by establishing a direct relation between the construction techniques and their degree of exposure, location, stabilization and complementation. In keeping with the descriptions above, some additional results to be extracted include the higher degree of exposure of rammed earth compared to the total case studies or the notable burial and destruction of cob.
Furthermore, the greater presence of cob in lower sections of walls is in direct correlation to its greater presence in domestic elements, which tend to be low and have no plinth. When examining similar executions in rendering and continuous paving, it can be observed in 92 and 95% of case studies, respectively. In contrast, limited use is made of adobe with no plinth, which appears complemented in up to 89% of the case studies complemented. Its lower presence in rendering and paving of less than 15% should also be noted. Rammed earth is only detected in the execution of walls.
Finally, the proportionally high combination of rammed earth and fired brick in the sample should also be noted, as should the exclusive use of adobe with ashlar and its predominance with flat stone. Although, statistically, the higher number of cases of this technique is also widely complemented with masonry, especially in relation to cob, andthe use of rammed earth is remarkably only 20% lower in the use of these plinths compared to the total case studies selected for the individual techniques (Table 3).

4. Discussion

The overview of earthen architecture constructions in archaeological sites on the Iberian Peninsula provides a broad variety of case studies and construction techniques. This makes it possible to identify some of the most frequent characteristics, documented separately for their independent and combined examination.
Based on the sample observed, the most common urbanistic profile is that of an isolated context that is neither urbanized nor built up. These are usually found in small mounds in strategic locations and are the result of the material collapse of the habitats and the passing of time. These spaces account for almost a third of the samples, are mostly publicly owned, and are dedicated to exhibition or cultural use. This solution is the main strategy supporting the conservation and operation of these heritage enclaves, which are not suited for residential or administrative use. Another strategy is the re-burial of the remains or granting professionals and academics priority access over the general public, postponing valorization until a later stage. It should be noted that the state of abandonment or destruction is seen in a fifth of the sample, where preservation is at great risk and the sites may be irrecoverable.
Furthermore, the most common visitable typological profiles on the Iberian Peninsula are those with residential functions, mostly structural (41%) or with fixed furniture (33%). Of these, only 4% are located in the same area as earthen production structures, as in the case of Ampurias (La Escala, Girona). Less than 1% are found together with funerary structures. This expands the joint vision of the general use in different sectors, characteristic of these techniques. It also enables the valorization of finds with mostly independent typologies but with wide distribution across the whole peninsula.
In the specific analysis of structures, in the case studies, the observed earthen techniques are identified in wall elevations, paving and domestic elements. The most prevalent combination is that of uncarved stone plinths over fired brick or ashlar. In addition, there are only a few cases of walls built with earth from the base, something found more frequently in fixed furniture, where it usually springs from the flooring inside the rooms.
The recurring construction techniques have provided information on the different forms of conservation represented. While mixed structure systems are completely lost in situ, reconstructions can be found in smaller geographical settings, clustered in the provinces of Granada (Andalucía) and Soria (Castilla y León) (Figure 16).
In contrast, adobe is widely identified throughout the Iberian Peninsula (Figure 17). In this case, the sample displays a higher density of exposed and visible cases in the Levant, with a greater concentration in Catalonia and Alicante, as well as in other parts of the provinces of Zaragoza, Valencia, Badajoz and Jaén. However, the locations with the highest number of buried structures analyzed in the sample are the provinces of Zaragoza, already mentioned, and Murcia, Madrid, Valladolid and Seville. These are thus concentrated in the central Iberian Peninsula, most notably the valley of the river Ebro or the area surrounding the estuary of the river Segura. Although these elements can remain unaltered thanks to the earthen protection of natural substrate, they entail the introduction of new social risk factors, potentially muting and hindering the dissemination of this knowledge.
Cob (Figure 18) and rammed earth (Figure 19) are the second and third most observed categories for monolithic walls, while the first includes indoor fixed furniture featuring no brick constructions. In spite of this, fewer cases of cob walls have been identified, and rammed earth walls are recorded in domestic buildings from Roman times. Although both can provide solutions with a wealth of varied construction techniques, their presence is quite limited, and some variations, such as ball cob or gypsum-reinforced rammed earth, are especially scarce in domestic constructions.
The limitation of the sample and the variability of the fixed furniture also constrain conclusive results in terms of metrics and dimensions, as the main purpose of these was to provide precise answers to individual construction needs. However, peaks have been recorded for 50-cm-thick rammed earth walls in Roman times, while cob walls between 35 and 45 cm thick have also been found.
Adobe is the most frequently found construction technique for the periods and cases consulted. It is overwhelmingly found in the sample, possibly because of standardization in the Iron Age and its practicality and ease of execution. This may also be due to overuse of the term and more straightforward identification of the pieces. Found in all types of bond, adobe is also the only technique used to build kilns combined with the removal of earth from the terrain. This earth is then used to render and construct low walls, pillars or grates. Adobe is far more frequently represented than cob or rammed earth monolithic systems.
Although probability studies seemingly reflect a representative attribution of metrics and dimensions for the different historical periods, no clear distinction has been identified that will allow the use of these characteristics to study the scope and construction traits of particular societies. In general, pieces that are over 30 cm wide and 10 cm thick have been documented from the Roman period, although length barely differs. Protohistoric pieces are considerably longer and broader in relation to the other periods, at times reaching lengths of 40 cm and widths of 20 cm. Case study samples from the Bronze Age show that these pieces, which are between 37 and 50 cm long, are also thinner (around 7 cm). Although width is highly variable, the most common range tends to be 30–35 cm. Nevertheless, given the general high variations in metrics, it is advisable to err on the side of caution. Considering that these chronological variations may not be conclusive but rather just another factor based on construction needs as dictated by individual situations, buildings or pieces of furniture to be executed, this approach becomes significant.
It should be stressed that there is work still to be done in these classifications, conducting microscopic studies, such as micromorphology [69], petrography [70] or XRD [71]. Those are needed to analyze the composition of the different subvariants, including the presence of lime, gypsum or carbon in the original mixes.
In up to four-fifths of the sample, this information is yet to be completed but should enrich the original assumed use of plants. This can often remain unnoticed in macrovisual surveys as the decomposition of fibres caused by water runoff on surfaces during degradation processes leaves spaces that are then filled in.

5. Conclusions

The overview provided in this analysis is a documentary and statistical basis for the current conservation situation of earthen architecture, capable of combining the results and finds in current society. The keen interest in representing this current state of the art in the field of study is motivated by the dispersion of the data, which tend to be managed and presented on a regional or individual basis. After collating different forms of data, information can be handled in GIS, enabling search and filtering tasks to be carried out in relation to context and architectural characteristics.
Although this could be considered a limited sample for the purposes of obtaining correlations in an extremely complex context, a degree of convergence can be observed between case studies. This establishes a solid basis for developing future case studies for risk prevention and minimization. Thus, this type of architecture is characterized as generally isolated, public and mostly involving domestic and productive typologies that can be visible or buried as well as widely developed in protohistory. The construction richness observed sheds light in the different uses and degree of conservation of techniques, such as cob, adobe or rammed earth on the Iberian Peninsula, depending on architectural or technological needs. It also highlights the compromised exposure of certain systems, such as mixed techniques.
Furthermore, a partial response, limited to the selected sample, is provided for the metrics of this type of heritage. Kernel density estimations provide a visual synthesis of thickness probabilities according to the database and also provide brick lengths and widths, identifying major groups by period. Although there is notable interest in the field of archaeology in linking metrics to periods, societies and locations, a single potentially high and variable metric should be borne in mind, as it only answers to the adaptation of constructions according to the needs dictated by the circumstances.
The difficulties of classification and the legacy of the lack of professional knowledge of these types of techniques when studying the past societies of the Iberian Peninsula compromise the accuracy of its scope. The undocumented loss due to the absence of relief measures calls for a growing multidisciplinary involvement in identifying these systems and joining forces to offer new reflections, backed by geographical scope and recurring cases. Likewise, monitoring and reviewing information on systems from different periods has helped update their in-situ implementation and dissemination. Their lack of protection is directly associated with the existence of rapid and intense changes in the state of preservation over short periods of time. This in turn entails the loss or temporary or long-term burial of physical documents in situ.
Reflection on case studies and pressing needs currently presents the main challenge as the tasks of prevention, planning and intervention [72]. The general identification of issues, complemented by the painstaking study of individual case studies, constitute fundamental pillars to be developed in parallel to the suitable characterization, both present and future, of finds based on the new knowledge generated. The consideration of sustainability requirements [73] for this type of heritage, as well as the selection of conservation methods that address the contradiction that stems from retaining authenticity without maintenance, are necessary to its survival. By paying as much attention as possible to minimum interventions, the use of materials analogous to the original ones or recurring surface consolidation can help consolidate and enhance future studies transmitted to coming generations.

Author Contributions

Conceptualization, S.M.-F., C.M., F.V.L.-M. and V.C.; methodology, S.M.-F., C.M. and F.V.L.-M.; software, S.M.-F.; validation, S.M.-F.; formal analysis, S.M.-F.; investigation, S.M.-F.; resources, S.M.-F., C.M., F.V.L.-M. and V.C.; data curation, S.M.-F.; writing—original draft preparation, S.M.-F.; writing—review and editing, S.M.-F., C.M., F.V.L.-M. and V.C.; visualization, S.M.-F.; supervision, C.M., F.V.L.-M. and V.C.; project administration, C.M. and F.V.L.-M.; funding acquisition, C.M. and F.V.L.-M. All authors have read and agreed to the published version of the manuscript.

Funding

This work is part of the research project “Risk-Terra: La arquitectura de tierra en la Península Ibérica: Estudio de los riesgos naturales, sociales y antrópicos y estrategias de intervención e incremento de la resiliencia” (Ref. RTI2018-095302-B-I00; main researchers: Camilla Mileto and Fernando Vegas), funded by the Spanish Ministry of Science, Innovation and University. This research has been developed within a doctoral thesis funded by the Spanish Ministry of Science, Innovation and University (Ref. PRE2019-089629).

Data Availability Statement

The original contributions presented in the study are included in the article, and further inquiries can be directed to the corresponding author.

Acknowledgments

We give our thanks to the Ministry of Science and Innovation of Spain for funding the research that is part of the present study at the Research Centre for Architecture, Heritage, and Management for Sustainable Development (PEGASO) at the Polytechnic University of Valencia. Also, we thank the guides at the different archaeological sites for sharing their experiences and knowledge of the preservation and dissemination of each of them.

Conflicts of Interest

The authors declare no conflicts of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript or in the decision to publish the results.

Appendix A. Selected Archaeological Sites as Case Studies

Comprehensive list of selected archaeological sites for general overview with domestic, productive or funerary earthen structures mainly preserved in situ.
Table A1. List of case studies used for the development of this research.
Table A1. List of case studies used for the development of this research.
Archaeological SiteArchaeological Site
1. El Amarejo23. Horno Camp d’en Ventura de l’Oller
2. Libisosa24. Doña Blanca
3. Tossa de les Basses25. Horno de la Torrealta y Camposoto
4. Tossal de Manises26. Puig de la Nau
5. Peña Negra27. Orpesa la Vella
6. Illeta dels Banyets28. Cerro de las cabezas
7. El Arsenal29. Cerro de la Cruz
8. Caramoro I30.Horno villa romana El Ruedo
9. La Alcudia31. Turó Rodó
10. El Monastil32. Mas Castellar
11. La Fonteta 33. Ampurias
12. Rábita Califal34. Horno Clos Miquel
13. El Oral35. Illa d’en Reixac
14. Cabezo Redondo36. Cerro Santuario/Basti
15. Los Millares37. Cerro Cepero/Basti
16. La Mata38. Necrópolis de Tútugi
17. Casas del Turuñuelo39. Castellón Alto
18. Casa del Mitreo40. Cerro de la Virgen
19. Cancho Roano41. Cástulo
20. Domus Avinyó42. Vilars d’Arbeca
21. Ca L’Arnau y Can Rodón43. Casa de los grifos
22. Turó d’en Roïna/Can Taco44. Casa de Hippolytus
45. El Molinete93. Castro de las Cogotas
46. Medina Siyasa94. Turó de la Font de la Canya/
47. Coimbra del barranco ancho95. Turó del Font del Roure
48. Villa de Los Cipreses96. Turó de la Florida Nord
49. Mezquita cortijo del centeno97. Can Roqueta
50. Villa romana de Los Torrejones98. Bòbila Madurell
51. Villa Romana Piecordero I99. Horno Sant Vicenç dels Horts
52. Alto de la Cruz100. Can Vinyalets
53. Horno La Jericó101. Casa del Sótano-Rauda
54. Villa romana La Olmeda102. Hornos La Milagrosa
55. Cerro de San Vicente103. Torrelló de Boverot
56. Numancia104. Vinarragell
57. Moleta del Remei105. Mas d’Aragó
58. Villa romana Els Munts106. Sitjar Baix
59. Tossal del Moro 107. C/Isabel Losa (Córdoba)
60. Calvari el Molar108. Ercávica
61. Horno de Fontscaldes109. Los Dornajos
62. Coll del Moro110. Espinhaço de Cão
63. Castellet de Banyoles111. Conjunto megalítico de Alcalar
64. Turó del Calvari112. Ciudad ibérica Ullastret
65. Ciutat Ibèrica de Calafell113. Alfar La Cartuja
66. El Palao114. Cerro de La Encina
67. Cabezo de Alcalá115. El Ceremeño
68. La Caridad116. Castanheiro do Vento
69. Hornos Mas de Moreno117. C/Ciudad de Aracena, 10 (Huelva)
70. San Cristóbal118. Castellones del Ceal
71. Plaza de los moros119. Puente Tablas
72. La Celadilla120. La Cabrera
73. Alquería de Bofilla121. Libia
74. Castellet de Bernabé122. Hornos de Lancia
75. Los Villares/Kelin123. Els Missatges
76. Tossal de Sant Miquel-Edeta124. C/Hospital Viejo (Logroño)
77. Bastida de les Alcusses125. El Pelícano
78. Tos Pelat126. C/Santa Juana
(Cubas de la Sagra)
79. Lloma de Betxí127. Loranca (Fuenlabrada)
80. Cerro de La Mota128. Cerro Redondo
81. Soto de Medinilla129. Morro de Mezquitilla
82. Contrebia Belaisca130. Horno de Arroyo Villalta
83. Bílbilis131. Poblado de San Telmo
84. Lépida Celsa132. Acinipo
85. La Oruña133. Toscanos
86. La Hoya134. Las Chorreras
87. Alto de Castejón135. El Castellar
88. La Casa Grande136. Cementerio islámico de San Nicolás
89. Niuet137. Castejón de Arguedas
90. Saladares138. El Castillo
91. Necrópolis de Villaricos /Baria139. El Castillar
92. Alfar La Rumina140. Vertabillo el Viejo Breto
141. La Solana156. Tossal Montañés
142. Alfar de Cauca157. Cerro de la Mesa
143. Cuéllar (Cuéllar)158. La Alberquilla
144. C/Juan de Ortega, 24 (Carmona)159. La Cervera
145. Horno C/Montánchez, 4
(Carmona)
160. Puntal dels Llops
146. Hornos cerámicos de Orippo161. Las Quintanas/Pintia
147. Cerro Macareno162. Castro El Pesadero
148. Horno Pajar del Artillo163. Bursau
149. Las Eras/Ciadueña164. Loma de los Brunos
150. Casa del acueducto de Tiermes165. Cabezo de Monleón
151. Sant Jaume166. Cabezo Muel
152. Puig Roig167. El Calvario
153. Barranc de la Premsa Cremada168. Cabezo de la Cruz
154. Horno de l’Aumedina169. Los Castellazos
155. Alto Chacón170. Caesaraugusta

Appendix B. Metrics of Case Studies

The metrics used for the various analyses correspond to different instances of data collection in the case studies selected, including reconstructions, and using the bibliography consulted for the sites [8,17,18,22,26,28,33,35,36,42,53,55,56,57,58,59,60,61,62,63,65,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168], in combination with compilations and metric studies of original pieces previously carried out for different volumes [36,37].
Table A2. Metrics of length, width and height of different adobes.
Table A2. Metrics of length, width and height of different adobes.
Archaeological SiteLWHSourceArchaeological SiteLWHSource
El Amarejo302010Broncano, 1985 [74]Cerro de la Mota-35-Manzano, 2023 [17]
40308Broncano, 1985 [74]50--Manzano, 2023 [17]
45 *40 *8 *Manzano, 2023 [17]-15-Manzano, 2023 [17]
Libisosa50409Uroz et al., 2004 [75]Soto de Medinilla38 **19 **-Arnaiz et al., 2017 [83]
48388Uroz et al., 2004 [75]Contrebia Belaisca403010Beltrán, 1981 [84]
Tossa de les Basses50 **30 **8 **Rosser y Fuentes, 2007 [76] 302010Beltrán, 1982 [85]
Tossal de Manises40258Pérez, 2008 [77]50308Beltrán, 1981 [84]
40358Pérez, 2008 [77]Bílbilis29108Uribe, 2006 [8]
40 *30 *8 *Manzano, 2023 [17]403510Manzano, 2023 [17]
Peña Negra30-10González, 1983 [78]Lépida Celsa31-10Beltrán, 1991a, b [86,87]
40 *30 *8 *Manzano, 2023 [17]26-7Beltrán, 1991a, b [86,87]
38 *32 *9 *Manzano, 2023 [17]453010Manzano, 2023 [17]
Illeta dels Banyets40-10Olcina et al., 2009 [79]La Hoya502510Llanos, 1974 [88]
55 *34 *9 *Manzano, 2023 [17]302010Llanos, 1974 [88]
La Alcudia19149Ramos, 1983 [80]La Casa Grande30179Broncano et al., 1988 [89]
50 *30 *12 *Manzano, 2023 [17]3622-Broncano et al., 1988 [89]
El Monastil45 *30 *9 *Manzano, 2023 [17]Saladares35 **-8 **Arteaga et al., 1979 [90]
La Fonteta40329Rouillard et al., 2007 [81]Los Villaricos554310Astruc, 1951 [91]
55309Rouillard et al., 2007 [81]Castro de las Cogotas402010Menéndez, 2010 [92]
36.5289Rouillard et al., 2007 [81]Bòbila Madurell302117Miret, 1992 [93]
El Oral302010Abad et al., 1993 [37]Casa del Sótano20119Abarquero et al., 2012 [94]
4030-Abad et al., 1993 [37]221210Abarquero et al., 2012 [94]
5040-Abad et al., 1993 [37]Hornos La Milagrosa301610Bernal et al., 2004 [35]
La Mata381910D74/2020, 2021 [82]2112.510Bernal et al., 2004 [35]
502512D74/2020, 2021 [82]Vinarragell454012Mesado et al., 1979 [95]
40 *20 *10 *Manzano, 2023 [17]60307Mesado, 1974 [96]
Casas del
Turuñuelo
4020-Rodríguez et al., 2017 [61]C/Isabel Losa-20 **8 **Ruiz, 2003 [97]
55408Celestino et al., 2016 [53]
Cancho Roano48359Celestino et al., 2016 [53]Alfar La Cartuja251410Moreno et al., 2017 [108]
37296Hernández et al., 2000 [55]271612Moreno et al., 2017 [108]
48359Manzano, 2023 [17]El Ceremeño-1510Cerdeño et al., 2002 [109]
Domus Avinyó28-8Huertas, 2017 [98]3222-Cerdeño et al., 2002 [109]
20129Vilardell, 2006 [99]2020-Cerdeño et al., 2002 [109]
Ca L’arnau/
Can Rodón
42 **29 **-Martín, 2002 [100]C/Ciudad de
Aracena
584010Prera et al., 2003 [110]
Turó d’en Roina47 **27 **10 **Chorén et al., 2007 [101]322010Prera et al., 2003 [110]
4525-Manzano, 2023 [17]La Cabrera303010Moreno et al., 1996 [63]
Hornos Torrealta y Camposoto40 **20 **11 **Sáez, 2008 [102]62338Moreno et al., 1996 [63]
Puig de la Nau251210Gusi et al., 1995 [103]Libia40-9.5Marcos et al., 1979 [111]
251217Gusi et al., 1995 [103]31-10Marcos et al., 1979 [111]
37 *28 *11 *Manzano, 2023 [17]Els missatges4530-Badias et al., 2002 [112]
Orpesa la Vella40-10Gusi et al., 2014 [104]3515-Badias et al., 2002 [112]
Cerro de
las cabezas
302010Vélez et al., 1987 [105]251412Badias et al., 2002 [112]
40 *20 *10 *Manzano, 2023 [17]C/Hospital Viejo6030-Martínez, 2013 [113]
Cerro de la Cruz503010Manzano, 2023 [17]402815Martínez, 2013 [113]
413410Vaquerizo et al., 1994 [106]El Pelícano41 **28 **8 **Juan, 2013 [114]
261912.5Vaquerizo et al., 1994 [106]C/Santa Juana34 **25 **-Juan, 2013 [114]
35328Vaquerizo et al., 1994 [106]Loranca50 **30 **-Juan, 2013 [114]
Horno El Ruedo66337Muñiz, 2001 [33]Cerro Redondo47257.5Blasco et al., 1985 [115]
30105Muñiz, 2001 [33]4030-Blasco et al., 1985 [115]
66337Manzano, 2023 [17]5525-Blasco et al., 1985 [115]
Turó Rodó40 *22 *10 *Manzano, 2023 [17]Morro de
Mezquitilla
523612Díes, 2001 [116]
Mas Castellar5030-Pons et al., 2016 [56] 40 **--Schubart, 1985 [117]
25256.5Pons et al., 2016 [56]Horno
Arroyo Villalta
333010Fernández, 2010 [118]
35259Pons et al., 2016 [56]Toscanos402012Díes, 2001 [116]
Ampurias44229De Chazelles, 1990 [42]Las Chorreras20123Aubet, 1974 [119]
Illa d’en Reixac35 **25 **8 **Martín et al., 1999 [107]El Castellar503518Ros, 1989 [120]
Cerro Cepero30157Adroher, 2019 [121]482810Ros, 1989 [120]
4040-Adroher, 2019 [121]402210Ros, 1989 [120]
45307Adroher, 2019 [121]Castejón de Arguedas4019-Castiella et al., 2002 [28]
Necrópolis de Tútugi603020Rodríguez, 2008 [26]5027-Castiella et al., 2002 [28]
403010Rodríguez, 2008 [26]31297Bienes, 1994 [130]
Cerro de
la Virgen
37.5 **18 **-Schüle et al., 1966 [122]El Castillo40 **30 **8 **Faro et al., 2003 [58]
20 **20 **-Schüle et al., 1966 [122]El Castillar42.525.510Fonseca et al., 2021 [131]
28 *21 *-Manzano, 2023 [17]401214Castiella, 1987 [132]
Cástulo-50-Manzano, 2023 [17]403015Castiella, 1987 [132]
-60 *-Manzano, 2023 [17]Vertavillo el viejo Breto3212.512.5Abarquero et al., 2006 [133]
Vilars d’Arbeca39 **20 **-G.I.P, 2005 [123]201311Abarquero et al., 2006 [133]
37 *35 *8 *Manzano, 2023 [17]15139Abarquero et al., 2006 [133]
Coimbra del barranco ancho402010Molina et al., 1976 [124]Alfar de Cauca44198Blanco, 1992 [134]
60 *40 *10 *Manzano, 2023 [17]47209Blanco, 1992 [134]
Piecordero I50 **25 **-Gómara et al., 2020 [125]Cuéllar42227.75Barrio, 1999 [135]
Alto de la Cruz402010Maluquer et al., 1986 [62]2814.58.5Barrio, 1999 [135]
-28-Maluquer et al., 1986 [62]C/Juan de Ortega42-10Gómez, 2003 [136]
-2310Maluquer et al., 1986 [62]50-10Gómez, 2003 [136]
Horno La Jericó403010Ayto. H. de Pisuerga, 2020 [126]Horno C/Montánchez602510Cardenete et al., 1991 [137]
-308Manzano, 2023 [17]Cerro Macareno49268Pellicer et al., 1983 [138]
Cerro de San Vicente40 **20 **-Blanco et al., 2022 [22]5234-Pellicer et al., 1983 [138]
26 **24 **-Blanco et al., 2022 [22]Horno Pajar del Artillo42 **35 **10 **Luzón, 1973 [36]
Numancia40-12Mélida, 1908 [127]Casa del acueducto 47238Argente et al., 1994 [139]
45-12Mélida, 1908 [127]271912Argente et al., 1994 [139]
40 *-9 *Manzano, 2023 [17]Horno de l’Aumedina302210Pérez y Rams, 2010 [140]
Moleta del Remei25 *25 *9 *Manzano, 2023 [17]Alto Chacón30277Atrián, 1976 [141]
Els Munts50 **--Tarrats, 1997 [128]Tossal Montañes2212.510Moret, 2001 [142]
Tossal del Moro362213Arteaga et al., 1990 [129]2210.58Moret, 2001 [142]
35208Manzano, 2023 [17]Cerro de la Mesa242010Charro et al., 2009 [143]
45289Manzano, 2023 [17]331712Charro et al., 2009 [143]
Coll del Moro502513Rafel et al., 1994 [18]La Alberquilla47278Gutiérrez et al., 2007 [144]
401414Rafel et al., 1994 [18]30198Gutiérrez et al., 2007 [144]
Castellet de Banyoles55 **28 **-Sanmartí et al., 2012 [60]44278Gutiérrez et al., 2007 [144]
352510Vilaseca, 1949 [145]La Cervera28 **25 **7 **López et al.,2013 [153]
Turó del Calvari351812Manzano, 2023 [17]Puntal dels Llops40309.5Bonet et al., 1984 [59]
Calafell482410Pou et al., 1995 [146]302010Bonet et al., 1984 [59]
30 *15 *8 *Manzano, 2023 [17]Las Quintanas/Pintia472010Gómez et al., 1993 [154]
El Palao38 289Melguizo et al., 2021 [147]El Pesadero5424-Misiego et al., 2013 [155]
40 *23 *8 *Manzano, 2023 [17]4421-Misiego et al., 2013 [155]
Cabezo de Alcalá402515Beltrán, 1976 [148]1916-Misiego et al., 2013 [155]
La Caridad443010Herce et al., 1991 [149]Bursau303015Royo et al., 1981 [156]
-30 *-Manzano, 2023 [17]402010Royo et al., 1981 [156]
Mas de Moreno35208Manzano, 2023 [17]Loma de los Brunos1697Eiroa, 1982 [157]
San Cristóbal36229Fatás et al., 2005 [150]Cabezo de Monleón38 **-7 **Beltrán, 1962 [158]
461717Fatás et al., 2005 [150]45 **-15 **Beltrán, 1962 [158]
401515Manzano, 2023 [17]Cabezo Muel40269Zapater et al., 1989 [159]
Plaza de los moros28 *20 *9 *Manzano, 2023 [17]331510Zapater et al., 1989 [159]
La Celadilla402813Manzano, 2023 [17]Cabezo de la Cruz312010Picazo et al., 2009 [160]
Castellet de
Bernabé
453310Guérin, 2003 [151]432010Picazo et al., 2009 [160]
40308Guérin, 2003 [151]Los Castellazos15108Maestro et al., 1991 [161]
40 *30 *10 *Manzano, 2023 [17]452510Maestro et al., 1991 [161]
Los Villares35 **25 **8 **Mata et al., 1991 [152]Caesaraugusta503010Galve, 1987-88 [162]
40 *30 *9 *Manzano, 2023 [17]18-10Galve, 1996 [163]
Tossal de
Sant Miquel
35308Bonet, 1995 [57]Bastida de les
Alcusses
403010Bonet, 2011 [164]
311511Bonet, 1995 [57]352512Fletcher et al., 1965 [165]
272010Bonet, 1995 [57]40 *30 *10 *Manzano, 2023 [17]
* Measurements from in situ reconstructions of the case studies. ** Metric approach drawn up by the manuscript authors based on original graphic documentation.
Table A3. Metrics of length, width and height of different rammed earth structures.
Table A3. Metrics of length, width and height of different rammed earth structures.
Archaeological SiteLWHSourceArchaeological SiteLWHSource
Rábita Califal-37-Manzano, 2023 [17]Calafell-50-Manzano, 2023 [17]
Cerro de la Cruz-70 **-Manzano, 2023 [17] La caridad-46-Herce et al., 1991 [149]
Ampurias-50-De Chazelles, 1990 [42]Alquería de Bofilla-47.5-Manzano, 2023 [17]
-45-Manzano, 2023 [17]Los Dornajos-100 **-Galán, 2016 [166]
Medina
Siyasa
-80-Navarro et al., 2011 [65]Cementerio de
San Nicolás
-45 **-Navarro, 1985 [167]
-65-Manzano, 2023 [17]Casa de los grifos-30-Manzano, 2023 [17]
-30-Manzano, 2023 [17]Libisosa-40 **45 **Uroz, 2006 [168]
** Metric approach drawn up by the manuscript authors based on original graphic documentation.

References

  1. Oliver, P. Encyclopedia of Vernacular Architecture of the World; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
  2. Rudofsky, B. Architecture without Architects: A Short Introduction to Non-Pedigreed Architecture; University of New Mexico Press: Albuquerque, NM, USA, 1964. [Google Scholar]
  3. Díes Cusí, E. Estudio Arqueológico de Estructuras: Léxico y Metodología; Colegio Oficial de Doctores y Licenciados en Filos: Valencia, Spain, 2003. [Google Scholar]
  4. Jover Maestre, F.J.; Pastor Quiles, M. La Edificación Con Tierra Las Evidencias Constructivas En Galanet. In El Neolítico en el Bajo Vinalopó: (Alicante, España); Jover Maestre, F.J., Torregrosa Giménez, P., García Atiénzar, G., Eds.; British Archaeological Reports; Archaeopress: Alicante, Spain, 2014; pp. 209–215. [Google Scholar]
  5. Bruno, P.; Faria, P.; Candeias, A.; Mirao, J. Earth Mortars Use on Prehistoric Habitat Structures in Southern Portugal. J. Iber. Archaeol. 2010, 13, 51–67. [Google Scholar]
  6. Belarte Franco, M.C. L’utilisation de Brique Crue Dans Péninsule Ibérique Durant Protohistoire et Période Romaine; De De Chazelles, C.-A., Klein, A., Pousthomis, N., Eds.; Editions de l’Espérou: Montpellier, France, 2011. [Google Scholar]
  7. Beltrán Lloris, M. La Casa Hispanorromana. Modelos. Bolskam 2003, 20, 13–63. [Google Scholar]
  8. Uribe Agudo, P. La Construcción Con Tierra En La Arquitectura Doméstica Romana Del Nordeste de La Península Ibérica. Salduie 2006, 6, 213–223. [Google Scholar] [CrossRef]
  9. García-Soriano, L. La Restauración de Arquitectura de Tapia de 1980 a la Actualidad a Través de los Fondos del Ministerio de Cultura y del Ministerio de Fomento del Gobierno de España. Criterios, Técnicas y Resultados. Ph.D. Thesis, Universitat Politècnica de València, Valencia, Spain, 2015. Available online: https://riunet.upv.es/handle/10251/58607 (accessed on 23 June 2024).
  10. Manzano-Fernández, S.; Vegas López-Manzanares, F.; Mileto, C.; Cristini, V. Principles and Sustainable Perspectives in the Preservation of Earthen Architecture from the Past Societies of the Iberian Peninsula. Sustainability 2024, 16, 5172. [Google Scholar] [CrossRef]
  11. Matero, F. Making Archaeological Sites: Conservation as Interpretation of an Excavated Past (2006); Sullivan, S., Mackay, R., Eds.; The Getty Conservation Institute: Los Angeles, CA, USA, 2013. [Google Scholar]
  12. Sánchez García, A. La Técnicas Constructivas Con Tierra En La Arqueología Prerromana Del País Valenciano. Quad. Prehist. Arqueol. Castelló 1999, 20, 161–188. [Google Scholar]
  13. Pastor Quiles, M. La Construcción con Tierra en Arqueología. Teoría, Método, Técnicas y Aplicación; Publicaciones de la Universidad de Alicante: Alicante, Spain, 2017. [Google Scholar]
  14. Sénépart, I.; Wattez, J.; Jallot, L.; Hamon, T.; Onfray, M. La Construction En Terre Crue Au Néolithique. Archeopages 2016, 42, 6–19. [Google Scholar] [CrossRef]
  15. Daneels, A.; Romo de Vivar, A.; Chávez, L.; Reyes, M.; Tapia, E.; León, M.; Cienfuegos, E.; Otero, F.J. Bitumen-Stabilized Earthen Architecture: The Case of the Archaeological Site of La Joya, on the Mexican Gulf Coast. J. Archaeol. Sci. Rep. 2020, 34, 102619. [Google Scholar] [CrossRef]
  16. Lorenzon, M.; Nitschke, J.L.; Littman, R.J.; Silverstein, J.E. Mudbricks, Construction Methods, and Stratigraphic Analysis: A Case Study at Tell Timai (Ancient Thmuis) in the Egyptian Delta. Am. J. Archaeol. 2020, 124, 105–131. [Google Scholar] [CrossRef]
  17. Manzano-Fernández, S. Arquitectura de Tierra Yacimientos Arqueológicos de Península Ibérica: Estudio de Riesgos Naturales, Sociales, Antrópicos y Estrategias de Intervención. Ph.D. Thesis, Universitat Politècnica de València, Valencia, Spain, 2023. Available online: https://riunet.upv.es/handle/10251/197994 (accessed on 23 June 2024).
  18. Rafel Fontanals, N.; Blasco Arasanz, M.; Sales Carbonell, J. Un Taller Ibérico de Tratamiento de Lino En El Coll Del Moro de Gandesa (Tarragona). Trab. Prehist. 1994, 51, 121–136. [Google Scholar] [CrossRef]
  19. Asensio Vilaró, D.; Jornet Niella, R.; Miró Alaix, M.T.; Sanmartí Grego, J. L’excavació de La Zona 3 En El Castellet de Banyoles (Tivissa, Ribera d’Ebre), Un Nou Fragment de Trama Urbana En l’angle Sud-Oest de La Ciutat Ibèrica. In Actes de les I Jornades d’Arqueologia de les Terres de l’Ebre 2016.; Martínez, J., Diloli, J., Villalbí, M., Eds.; Generalitat de Catalunya, Departament de Cultura: Barcelona, Spain, 2016; pp. 330–342. [Google Scholar]
  20. Hernández Pérez, M.S.; García Atiénzar, G.; Barciela González, V. Cabezo Redondo; Universidad de Alicante: Villena, Spain, 2016. [Google Scholar]
  21. Olcina Doménech, M.; Pérez Jiménez, R. Lucentum (Tossal de Manises, Alicante); Biblioteca Virtual Miguel de Cervantes: Alicante, Spain, 2005. [Google Scholar]
  22. Blanco González, A.; Padilla Fernández, J.J.; Alario García, C.; Macarro Alcalde, C.; Alarcón García, E.; Martín Seijo, M.; Chapon, L.; Iriarte, E.; Pazos García, R.; Sanjurjo Sánchez, J.; et al. Un Singular Ambiente Doméstico Del Hierro I En El Interior de La Península Ibérica: La Casa 1 Del Cerro de San Vicente (Salamanca, España). Trab. Prehist. 2022, 79, 346–361. [Google Scholar] [CrossRef]
  23. Martínez, V. Yacimiento Carpetano de Plaza de Moros. Available online: https://www.facebook.com/people/Yacimiento-Carpetano-de-Plaza-de-Moros/100063580448285/ (accessed on 3 March 2024).
  24. Hernández Pardos, A.; Franco Calvo, J.G. La Intervención Arqueológica En El Yacimiento Arqueológico de Lepida Celsa (Velilla de Ebro, Zaragoza) en 2002. Memorias Arqueol. Aragon. 2002, 2002, 1–13. [Google Scholar]
  25. Baza, C. Tour Virtual 360. Ciya Baza. Available online: https://www.ciyabaza.es/visitaVirtual/ (accessed on 3 March 2024).
  26. Rodríguez-Ariza, M.O.; Gómez Cabeza, F.; Montes Moya, E. El Túmulo 20 de La Necrópolis Ibérica de Tútugi (Galera, Granada). Trab. Prehist. 2008, 65, 169–180. [Google Scholar] [CrossRef]
  27. Faro Carballa, J.A.; Unzu Urmeneta, M. La Necrópolis de La Edad Del Hierro de El Castillo (Castejón, Navarra). Primeras Valoraciones: Campañas 2000–2002. Complutum 2006, 17, 145–166. [Google Scholar]
  28. Castiella Rodríguez, A.; Bienes Calvo, J.J. La Vida y La Muerte Durante La Protohistoria En El Castejón de Arguedas (Navarra). Cuad. Arqueol. Univ. Navarra 2002, 10, 7–216. [Google Scholar]
  29. García Vargas, E.; García Fernández, F.J. Los Hornos Alfareros de Tradición Fenicia En El Valle Del Guadalquivir y Su Perduración En Época Romana: Aspectos Tecnológicos y Sociales. SPAL Rev. Prehist. Arqueol. Univ. Sevilla 2012, 21, 9–39. [Google Scholar]
  30. Cuomo di Capio, N. Proposta Di Classificazione Delle Fornaci per Ceramica e Laterizi Nell’area Italiana, Dalla Preistoria a Tutta l’epoca Romana. Sibrium 1971, 11, 371–461. [Google Scholar]
  31. Marcos Herrán, F.J. Guía Turística de Herrera de Pisuerga. Un Paseo por su Historia; Centro de Iniciativas y Turismo de Herrera de Pisuerga: Herrera de Pisuerga, Spain, 2016. [Google Scholar]
  32. Gorgues, A.; Benavente Serrano, J.A. The Organisation of Work and Technology in the Late Iberian Potters’ Workshop of Mas de Moreno (Foz-Calanda, Teruel): A Provisional Asesment of the Research (2005–2011). In Iberos del Ebro. Actas del II Congreso Internacional (Alcañiz-Tivissa, 16–19 de Noviembre de 2011); Institut Català d’Arqueologia Clàssica (ICAC): Tarragona, Spain, 2012; pp. 273–290. [Google Scholar]
  33. Muñiz Jaén, I. Seguimiento Arqueológico En La Villa Romana de ‘El Ruedo’ (Almedinilla-Córdoba) II. Anu. Arqueol. Andalucía 1998 2001, 3, 215–223. [Google Scholar]
  34. Peidro Blanes, J. El Valle de Elda, de Los Romanos Al Final de La Antigüedad. In Elda, Arqueología y Museo: Ciclo Museos Municipales en el MARQ; Azuar Ruiz, R., Ed.; MARQ Museo Arqueológico Provincial de Alicante: Alicante, Spain, 2008; pp. 78–95. [Google Scholar]
  35. Bernal Casasola, D.; Díaz Rodríguez, J.J.; Expósito Álvarez, J.A.; Sáez Romero, A.M.; Lorenzo Martínez, L. Los Hornos Púnicos de Praefurnium Escalonado (Ss. III y II AC): Reflexiones a Raíz Del Alfar de La Milagrosa (San Fernando, Cádiz). In Figlinae Baeticae: Talleres Alfareros y Producciones Cerámicas en la Bética Romana (ss. II aC-VII dC): Actas del Congreso Internacional, Cádiz, 12–14 de Noviembre de 2003; Lagóstena Barrios, L.G., Bernal Casasola, D., Eds.; John W Hedges: Cádiz, Spain, 2004; pp. 607–620. [Google Scholar]
  36. Luzón Nogué, J.M. Excavaciones En Italica: Estratigrafia En El Pajar de Artillo. Excavaciones Arqueol. España 1973, 78, 17–19. [Google Scholar]
  37. Abad Casal, L.; Sala Sellés, F. El Poblado Ibérico de el Oral (San Fulgencio, Alicante); Diputación Provincial de Valencia, Servicio de Investigación Prehistórica: Valencia, Spain, 1993.
  38. Asensio Esteban, J.Á. Arquitectura de Tierra y Madera En La Protohistoria Del Valle Medio Del Ebro y Su Relación Con La Del Mediterráneo. Caesaraugusta 1995, 71, 23–56. [Google Scholar]
  39. Rodríguez del Cueto, F. Arquitecturas de Barro y Madera Prerromanas En El Occidente de Asturias: El Castro de Pendia. Arqueol. Arquit. 2012, 9, 83–101. [Google Scholar] [CrossRef]
  40. Ruano Posada, L. La Arquitectura En Tierra En La Fachada Cantábrica Durante La Edad Del Hierro: Una Revisión de Materiales y Técnicas Constructivas Desde La Arqueometría y La Arqueología Virtual. Anejos Cuad. Prehist. Arqueol. 2021, 5, 217–243. [Google Scholar]
  41. Instituto Geográfico Nacional. España En Mapas. Una Síntesis Geográfica; Centro Nacional de Información Geográfica, Ministerio de Fomento: Madrid, Spain, 2019. [Google Scholar] [CrossRef]
  42. De Chazelles, C.-A. Les Constructions En Terre Crue d’Empúries a L’époque Romaine. Cypsela 1990, 8, 101–118. [Google Scholar]
  43. De Chazelles, C.-A.; Poupet, P. La Fouille Des Structures de Terre Crue. Définitions et Difficultés. Aquitania Une Rev. Inter-Rég. D’Archéol. 1985, 3, 149–160. [Google Scholar] [CrossRef]
  44. Manzano-Fernández, S.; Mileto, C.; Vegas, F.; Cristini, V. Construcción Con Tierra En Arqueología de España: Metodología de Estudio Para Análisis de Riesgos. In Seminario Iberoamericano de Arquitectura y Construcción con Tierra, 20. Memorias.; Ferreiro, A., Salcedo Gutiérrez, Z., Neves, C., Eds.; PROTERRA/Oficina del Conservador: Trinidad, Cuba, 2021; pp. 427–437. [Google Scholar]
  45. Craterre. La Roue Des Techniques. In Bâtir en Terre: Du Grain de Sable à L’architecture; Anger, R., Fontaine, L., Doat, P., Houben, H., Van Damme, H., Eds.; Belin, Cité des Sciences et de L’industrie: Paris, France, 2009; p. 26. [Google Scholar]
  46. Mileto, C.; Vegas, F. Proyecto COREMANS. Criterios de Intervención En La Arquitectura de Tierra; Ministerio de Educación, Cultura y Deporte: Madrid, Spain, 2017. [Google Scholar]
  47. Knoll, F.; Pastor Quiles, M.; De Chazelles, C.-A.; Cooke, L. On Cob Balls, Adobe, and Daubeb Straw Plaits. A Glossary on Traditional Earth Building Techniques for Walls in Four Languages; Landesamt für Denkmalpflege und Archäologie Sachsen-Anhalt: Halle, Germany, 2019. [Google Scholar]
  48. Manzano-Fernández, S.; Mileto, C.; Vegas López-Manzanares, F.; Cristini, V. Conservation and In Situ Enhancement of Earthen Architecture in Archaeological Sites: Social and Anthropic Risks in the Case Studies of the Iberian Peninsula. Heritage 2024, 7, 2239–2264. [Google Scholar] [CrossRef]
  49. Bernabeu Aubán, J.; Pascual Benito, J.L.; Orozco Köhler, T.; Badal García, E.; Fumanal García, M.P.; García Puchol, O. Niuet (L’ Alqueria d’ Asnar). Poblado Del III Milenio a.C. Recer. Mus. d’Alcoi 1994, 3, 9–74. [Google Scholar]
  50. De Chazelles, C.-A.; De Poupet, P. L’emploi de La Terre Crue Dans l’habitat Gallo-Romain En Milieu Urbain: Nimes. Rev. Archéol. Narbonnaise 1984, 17, 71–101. [Google Scholar] [CrossRef]
  51. Pastor Quiles, M.; Jover Maestre, F.J.; Martínez Monleón, S.; López Padilla, J.A. La Construcción Mediante Amasado de Barro En Forma de Bolas de Caramoro I (Elche, Alicante): Identificación de Una Nueva Técnica Constructiva Con Tierra En Un Asentamiento Argárico. Cuad. Prehist. Arqueol. Univ. Auton. Madrid 2018, 44, 81–99. [Google Scholar] [CrossRef]
  52. De Chazelles, C.-A. Les Origines de La Construction En Adobe En Extreme-Occident. In Sur les Pas des Grecs en Occident, Hommages à André Nickels; Nickels, A., Arcelin, P., Eds.; Errance: Paris, France, 1995; pp. 49–58. [Google Scholar]
  53. Celestino Pérez, S.; Rodríguez González, E.; Lapuente Martín, C. La Arquitectura En Adobe En Tarteso: El Turuñuelo de Gaureña (Badajoz), Un Ejemplo Excepcional Para El Conocimiento de Las Técnicas Constructivas. In Arquitectura en Tierra, Patrimonio Cultural: XII CIATTI 2015. Congreso Internacional de Arquitectura de Tierra, Tradición e Innovación; Jové Sandoval, F., Sainz Guerra, J.L., Eds.; Universidad de Valladolid, Cátedra Juan de Villanueva: Valladolid, Spain, 2016; pp. 41–50. [Google Scholar]
  54. Bonet Rosado, H.; Mata Parreño, C. El Puntal Dels Llops: Un Fortín Edetano; Diputación Provincial de Valencia, Servicio de Investigación Prehistórica: Valencia, Spain, 2002.
  55. Hernández Alfranca, F.; Anta Fernández, I.; Del Pozo González, M.V. Análisis de Los Sistemas Constructivos Del Palacio-Santuario de Cancho Roano (Zalamea de La Serena, Badajoz). In Actas del Tercer Congreso Nacional de Historia de la Construcción; Graciani García, A., Ed.; Instituto Juan Herrera: Madrid, Spain, 2000; pp. 501–506. [Google Scholar]
  56. Pons, E.; Asensio, D.; Morer, J.; Jornet, R. Un Edifici Singular Del Segle V AC Trobat Sota La Torre de Defensa de l’oppidum Ibèric (Mas Castellar-Pontós, Alt Empordà). Ann. L’Institut D’Estudis Empord. 2016, 47, 13–46. [Google Scholar] [CrossRef]
  57. Bonet Rosado, H. El Tossal de Sant Miquel de Llíria. La Antigua Edeta y Su Territorio; Diputación Provincial de Valencia: Valencia, Spain, 1995.
  58. Faro Carballa, J.A.; Cañada Palacio, F.; Unzu Urmeneta, M. Necrópolis de El Castillo (Castejón, Navarra): Primeras Valoraciones, Campañas 2000–2001–2002. Trab. Arqueol. Navarra 2003, 16, 45–77. [Google Scholar]
  59. Bonet Rosado, H.; Pastor Cubillo, I. Técnicas Constructivas y Organización Del Hábitat En El Poblado Ibérico de Puntal Dels Llops (Olocau, Valencia). Saguntum Papeles Lab. Arqueol. Val. 1984, 18, 163–188. [Google Scholar]
  60. Sanmartí Grego, J.; Asensio Vilaró, D.; Miró Alaix, M.T.; Jornet Niella, R. El Castellet de Banyoles (Tivissa): Una Ciudad Ibérica En El Curso Inferior Del Río Ebro. Arch. Español Arqueol. 2012, 85, 43–63. [Google Scholar] [CrossRef]
  61. Rodríguez González, E.; Celestino Pérez, S. Las Estancias de Los Dioses: La Habitación 100 Del Yacimiento de Casas Del Turuñuelo (Guareña, Badajoz). Cuad. Prehist. Arqueol. Univ. Autónoma Madrid 2017, 43, 179–194. [Google Scholar] [CrossRef]
  62. Maluquer de Motes, J.; Gracia Alonso, F.; Munilla Cabrillana, G. Alto de La Cruz, Cortes (Navarra). Campaña 1986. Trab. Arqueol. Navarra 1986, 5, 111–132. [Google Scholar]
  63. Moreno Rosa, A.; Muñoz Jiménez, J. Intervención Arqueológica En El Trazado Del Gaseoducto Tarifa-Córdoba Por La Provincia de Jaén. Anu. Arqueol. Andalucía 1996, 2001, 270–284. [Google Scholar]
  64. Lancel, S.; Carrié, J.-M.; Deneauve, J.; Gros, P.; Sanviti, N.; Thuillier, J.-P.; Villedieu, F.; Saumagne, C. Mission Archéologique Française à Carthage. Byrsa I. Rapports Préliminaires Des Fouilles (1974–1976); Publications de l’École Française de Rome: Rome, Italy, 1979. [Google Scholar]
  65. Navarro Palazón, J.; Jiménez Castillo, P. Materiales y Técnicas Constructivas En La Murcia Andalusí (Siglos x-Xiii). Arqueol. Arquit. 2011, 8, 85–120. [Google Scholar] [CrossRef]
  66. Font, F.; Hidalgo, P. El Tapial: Una Tècnica Constructiva Millenària; Fermín Font i Mezquita i Pere Hidalgo i Chulio: Castellón, Spain, 1990. [Google Scholar]
  67. Tarrats Bou, F.; Remolà Vallverdú, J.A. La Vil·la Romana Dels Munts (Altafulla, Tarragonès). Fòrum Temes D’Hist. I D’Arqueol. Tarragonines 2007, 13, 95–117. [Google Scholar]
  68. Azuar, R.; Rouillard, P.; Gailledrat, E.; Moret, P.; Sala Selles, F.; Badie, A. El Asentamiento Orientalizante e Ibérico Antiguo de ‘La Rábita’, Guardamar Del Segura (Alicante). Avance de Las Excavaciones 1996–1998. Trab. Prehist. 1998, 55, 111–126. [Google Scholar] [CrossRef]
  69. Mateu Sagués, M.; Bergadà, M.M.; Garcia i Rubert, D. Manufacturing Technical Differences Employing Raw Earth at the Protohistoric Site of Sant Jaume (Alcanar, Tarragona, Spain): Construction and Furniture Elements. Quat. Int. 2013, 315, 76–86. [Google Scholar] [CrossRef]
  70. Cutillas-Victoria, B.; Lorenzon, M.; Yagüe, F.B. Earthen Architecture and Craft Practices of Early Iron Age Ramparts: Geoarchaeological Analysis of Villares de La Encarnación, South-Eastern Iberia. Open Archaeol. 2023, 9, 1–17. [Google Scholar] [CrossRef]
  71. Ortiz Villarejo, A.J.; Gutiérrez Soler, L.M.; Alejo Armijo, M. Más Que Adobes. La Construcción Con Tierra Durante Los Siglos IV-III a.C. En El Área 11 de Giribaile (Vilches, Jaén). Lucentum 2019, 38, 171–187. [Google Scholar] [CrossRef]
  72. Bizzarri, S.; Degli Esposti, M.; Careccia, C.; De Gennaro, T.; Tangheroni, E. Traditional Masonry and Archaeological Restoration. A Case Study from Salūt, Oman. Loggia, Arquit. Restauración 2021, 34, 46–61. [Google Scholar] [CrossRef]
  73. Ordóñez Martín, M.; Gómez de Cózar, J.C. Coberturas Sostenibles En Excavaciones Arqueológicas. Metodología de Aplicación Al Caso de Mosaicos En El Conjunto Arqueológico de Itálica (Santiponce, Sevilla). Ge-conservacion 2020, 17, 202–214. [Google Scholar] [CrossRef]
  74. Broncano Rodríguez, S.; Blanquez Pérez, S. El Amarejo (Bonete, Albacete). Excavaciones Arqueol. España 1985, 139, 34–35. [Google Scholar]
  75. Uroz Sáez, J.; Molina Vidal, J.; Poveda Navarro, A.M.; Márquez Villora, J.C. Aproximación Al Conjunto Arqueológico y Monumental de Libisosa (Cerro Del Castillo, Lezuza, Albacete). In Investigaciones arqueológicas en Castilla la Mancha: 1996–2002; Junta de Comunidades de Castilla-La Mancha: Toledo, Spain, 2004; pp. 181–192. [Google Scholar]
  76. Rosser, P.; Fuentes, C. Tossal de Les Basses. Seis Mil Años de Historia de Alicante; Ayuntamiento de Alicante, Patronato Municipal de Cultura: Alicante, Spain, 2007. [Google Scholar]
  77. Pérez Jiménez, R. Restauración Arquitectónica y Conservación en Yacimientos Arqueológicos. F.R.A.C. (Fichas de Restauración Arquitectónica y Conservación); MARQ Museo Arqueológico Provincial de Alicante: Alicante, Spain, 2008. [Google Scholar]
  78. González Prats, A. Estudio Arqueológico del Poblamiento Antiguo de La Sierra de Crevillente (Alicante); Universidad de Alicante: Alicante, Spain, 1983. [Google Scholar]
  79. Olcina Doménech, M.; Martínez Carmona, A.; Sala Sellés, F. La Illeta dels Banyets, (El Campello, Alicante): Épocas Ibérica y Romana I, Historia de la Investigación y Síntesis de Las Intervenciones Recientes (2000–2003); MARQ Museo Arqueológico Provincial de Alicante: Alicante, Spain, 2009. [Google Scholar]
  80. Ramos Fernández, R. Estratigrafía Del Sector 5-F de La Alcudia de Elche. Lucentum 1983, 2, 147–172. [Google Scholar] [CrossRef]
  81. Rouillard, P.; Gailledrat, É.; Sala Sellés, F. L’établissement Protohistorique de La Fonteta (Fin VIIIe—Fin VIe Siècle Av. J.-C.). Fouilles de la Rábita de Guardamar II; Casa de Velázquez: Madrid, Spain, 2007. [Google Scholar]
  82. Decree 74/2020, of 9 December, Declaring the Archaeological Site of “La Mata” in the Municipal District of Cultural Interest of the Archaeological Site of “La Mata” in the Municipal District of Campanario (Badajoz), with the Category of Archaeological Zone. Boletín Oficial del Estado, 241. 8 October 2021. Available online: https://www.boe.es/diario_boe/txt.php?id=BOE-A-2021-16386 (accessed on 6 April 2024).
  83. Arnaiz Alonso, M.Á. La I Edad Del Hierro En La Cuenca Media Del Duero: Arquitectura Doméstica y Formas de Poder Político Durante La Facies Soto (Siglos IX-VII a.C.). Trab. Prehist. 2017, 74, 86–107. [Google Scholar] [CrossRef]
  84. Beltrán Martínez, A. Cabezo de Las Minas. Rev. Arqueol. 1981, 13, 8–17. [Google Scholar]
  85. Beltrán Martínez, A. El Gran Edificio de Adobe de Contrebia Belaisca. Boletín Mus. Zaragoza 1982, 1, 95–108. [Google Scholar]
  86. Beltrán Lloris, M. La Casa Urbana Hispanorromana. In La Casa Urbana Hispanorromana: Ponencias y Comunicaciones; Diputación Provincial de Zaragoza, Institución ‘Fernando el Católico’: Zaragoza, Spain, 1991; pp. 7–10. [Google Scholar]
  87. Beltrán Lloris, M. La Colonia Celsa. In La Casa Urbana Hispanorromana: Ponencias y Comunicaciones; Diputación Provincial de Zaragoza, Institución ‘Fernando el Católico’: Zaragoza, Spain, 1991; pp. 131–164. [Google Scholar]
  88. Llanos Ortiz de Landaluze, A. Urbanismo y Arquitectura En Poblados Alaveses de La Edad Del Hierro. Estud. Arqueol. Alavesa 1974, 6, 101–146. [Google Scholar]
  89. Broncano Rodríguez, S.; Coll Conesa, J. Horno de Cerámico Ibérico de La Casa Grande, Alcalá de Júcar (Albacete). Not. Arqueol. Hisp. 1988, 30, 187–228. [Google Scholar]
  90. Arteaga Matute, O.; Serna, M.R. Las Primeras Fases Del Poblado de Los Saladares (Orihuela, Alicante). Una Contribución Al Estudio Del Bronce Final En La Península Ibérica (Estudio Crítico 1). Empúries Rev. Món Clàss. Antig. Tardana 1979, 41–42, 65–137. [Google Scholar]
  91. Astruc, M. La Necrópolis de Villaricos; Ministerio de Educación Nacional, Comisaría General de Excavaciones Arqueológicas: Madrid, Spain, 1951; Volume 25. [Google Scholar]
  92. Menéndez Valderrey, J.L. Castro de Las Cogotas. Available online: https://www.asturnatura.com/turismo/castro-de-las-cogotas/3609.html (accessed on 22 June 2024).
  93. Miret Mestre, J. Bòbila Madurell 1987–88. Estudi Dels Tovots i Les Argiles Endurides Pel Foc. Arraona Rev. d’història 1992, 11, 67–72. [Google Scholar]
  94. Abarquero Moras, F.J.; Palomino Lázaro, Á.L. Arquitectura Doméstica y Mundo Simbólico En La Ciudad Vaccea de Rauda. In La ‘Casa Del Sótano’ En Las Eras de San Blas, Roa (Burgos); Academia Burgense de Historia y Bellas Artes, Institución Fernán González: Burgos, Spain, 2012. [Google Scholar]
  95. Mesado Oliver, N.; Arteaga Matute, O. Vinarragell (Burriana, Castellón). II; Diputación Provincial de Valencia, Servicio de Investigación Prehistórica: Valencia, Spain, 1979.
  96. Mesado Oliver, N. Vinarragell (Burriana, Castellón); Diputación Provincial de Valencia, Servicio de Investigación Prehistórica: Valencia, Spain, 1974.
  97. Ruiz Nieto, E. Informe–Memoria de La Intervención Arqueológica de Urgencia En La C/Isabel Losa, Esquina a Plaza Ruiz de Alda, (Córdoba). Anu. Arqueol. Andalucía 2003, 3, 266–272. [Google Scholar]
  98. Huertas Arroyo, J.; Peña Cervantes, Y.; Miro Alaix, C. La Panadería de La Calle Avinyó y El Artesanado Tardorromano En La Ciudad de Barcino (Barcelona). SPAL Rev. Prehist. Arqueol. Univ. Sevilla 2017, 26, 237–258. [Google Scholar] [CrossRef]
  99. Vilardell Fernández, A. Memòria Conjunta de La Intervenció Arqueològica Del Carrer Avinyó Núm. 15 i Del Carrer Pou Dolç Núm. 4 de Barcelona (Bercelonès); Barcelona, Spain. 2006. Available online: https://arxiu.arqueologiabarcelona.bcn.cat/memoria-conjunta-de-la-intervencio-arqueologica-del-carrer-avinyo-num-15-i-del-carrer-del-pou-dolc-num-4-de-barcelona-juny-2003-juny-2004 (accessed on 10 September 2024).
  100. Martín, A. El Conjunt Arqueològic de Ca l’Arnau (Cabrera de Mar, Maresme): Un Assentament Romano-Republicà. Trib. D’Arqueol. 2002, 1998–1999, 211–228. [Google Scholar]
  101. Chorén, J.; Mercado, M.; Rodrigo, E. El Jaciment de Can Tacó: Un Assentament Romà de Caràcter Excepcional Al Vallès Oriental. Ponències. Rev. Cent. D’Estudis Granollers 2007, 11, 57–76. [Google Scholar]
  102. Sáez Romero, A.M. La Producción Cerámica en Gadir en Época Tardopúnica (Siglos -III/-I); British Archaeological Reports International Series; Archaeopress: Oxford, UK, 2008. [Google Scholar]
  103. Gusi Jener, F.; Oliver Foix, A.; Gómez Bellard, F.; Arenal, I.; Pérez-Pérez, A.; Valdés, L.; Cubero, C.; López de Roma, M.T.; Burjachs, F.; Castaños Ugarte, P.; et al. El Puig de la Nau: Un Hábitat Fortificado Ibérico en el Ámbito Mediterráneo Peninsular; Diputació de Castelló: Castellón, Spain, 1995. [Google Scholar]
  104. Gusi Jener, F.; Olària Puyoles, C. Un Asentamiento Fortificado del Bronce Medio y Bronce Final en El Litoral Mediterráneo: Orpesa la Vella (Orpesa Del Mar, Castellón, España); Diputació de Castelló, Servei d’Investigacions Arqueològiques i Prehistòriques: Castellón, Spain, 2014. [Google Scholar]
  105. Vélez Rivas, J.; Pérez Avilés, J.J. El Yacimiento Protohistórico Del Cerro de Las Cabezas (Valdepeñas, Ciudad Real). Oretum 1987, 3, 167–196. [Google Scholar]
  106. Vaquerizo Gil, D.; Quesada Sanz, F.; Murillo Redondo, J.F. Unidades de Hábitat y Técnicas Constructivas En El Yacimiento Ibérico Del Cerro de La Cruz (Almedinilla, Córdoba). An. Arqueol. Cordobesa 1994, 5, 61–98. [Google Scholar]
  107. Martín, A.; Buxó, R.; López, J.B.; Mataró, M. Excavacions Arqueològiques a l’Illa d’en Reixac (1987–1992); Generalitat de Catalunya, Departament de Cultura: Ullastret, Spain, 1999. [Google Scholar]
  108. Moreno Pérez, A.S.; Orfila Pons, M. El Complejo Alfarero Romano de Cartuja (Granada). Nuevos Datos a Partir de Las Actuaciones Arqueológicas Desarrolladas Entre 2013-2015. SPAL Rev. Prehist. Arqueol. Univ. Sevilla 2017, 26, 187–210. [Google Scholar] [CrossRef]
  109. Cerdeño, M.L.; Juez, P. El Castro Celtibérico de ‘El Ceremeño’ (Herreriía, Guadalajara). In Monografías Arqueológicas del Seminario de Arqueología y Etnología Turolense, 8; Junta de Comunidades de Castilla-La Mancha: Teruel, Spain, 2002. [Google Scholar]
  110. Prera Ramírez, A.; Guerrero Chamero, O.; García Díaz, P.V.; Rodríguez Pujazón, R. Intervención Arqueológica de Urgencia En C/Ciudad de Aracena, No 10 Huelva. Anu. Arqueol. Andalucía 2003, 3, 535–542. [Google Scholar]
  111. Marcos Pous, A.; Castiella Rodríguez, A.; Molestina Zaldumbide, M.C. Trabajos Arqueológicos en la Libia de los Berones (Herramélluri, Logroño); Servicio de Cultura de la Excma; Diputación Provincial: Logroño, Spain, 1979.
  112. Badías, J.; Garcés Estalló, I.; Saula Briansó, O.; Solanes, E. El Camp de Sitges Ibèric de Missatges (Tàrrega, Urgell). Trib. D’Arqueol. 2002, 2001–2002, 143–166. [Google Scholar]
  113. Martínez González, M.M. La Producción Cerámica En La Baja Edad Mediael Alfar de La Calle Hospital Viejo de Logroño (La Rioja), Universidad de La Rioja. 2013. Available online: https://investigacion.unirioja.es/documentos/5c13b162c8914b6ed37766f8 (accessed on 20 May 2024).
  114. Juan Tovar, L.C.; Vázquez, J.S.; Baztán, P.O.; Cobo, E.P. Hornos Cerámicos Bajoimperiales y Tardoantiguos En El Sur de La Comunidad de Madrid: Presentación Prelimina. In Hornos, Talleres y Focos de Producción Alfarera en Hispania; Bernal Casasola, D., Juan Tovar, L.C., Bustamante Álvarez, M., Díaz Rodríguez, J.J., Eds.; Universidad de Cádiz, Ex Officina Hispana, Sociedad de Estudios de la Cerámica Antigua en Hispania (SECAH): Cádiz, Spain, 2013; pp. 421–437. [Google Scholar]
  115. Blasco Bosqued, M.C.; Alonso Sánchez, M.A. Cerro Redondo, Fuente El Saz Del Jarama, Madrid; Ministerio de Cultura, Dirección General de Bellas Artes y Archivos; Servicio Nacional de Arqueología y etnología: Madrid, Spain, 1985; Volume 143. [Google Scholar]
  116. Díes Cusí, E. La Influencia de La Arquitectura Fenicia En Las Arquitecturas Indígenas de La Península Ibérica (s. VIII-VII). In Arquitectura oriental y Orientalizante en la Península Ibérica; Ruiz Mata, D., Celestino Pérez, S., Eds.; Consejo Superior de Investigaciones Científicas, CSIC, Instituto de Historia: Madrid, Spain, 2001; pp. 69–122. [Google Scholar]
  117. Schubart, H. El Asentamiento Fenicio Del s. VIII AC En El Morro de Mezquitilla (Algarrobo, Málaga). Aula Orient. 1985, 3, 59–83. [Google Scholar]
  118. Fernández Rodríguez, L.E.; Romero Pérez, M.; Arcas Barranquero, A. El Complejo Alfarero Romano Del Arroyo Villalta, Bobadilla, Antequera (Málaga). Romula 2010, 9, 177–200. [Google Scholar]
  119. Aubet Semmler, M.E. Excavaciones En Las Chorreras (Mezquitilla, Málaga). Pyrenae 1974, 10, 79–108. [Google Scholar]
  120. Ros García, M.M. Dinámica Urbanística y Cultura Material del Hierro Antiguo en El Valle del Guadalentín; Universidad de Murcia: Murcia, Spain, 1989. [Google Scholar]
  121. Adroher Auroux, A.M. Arquitectura en tierra en la Basti íbera. In SOS-Tierra: Restauración y Rehabilitación de la Arquitectura Tradicional de Tierra en la Península Ibérica; López-Manzanares, F.V., Mileto, C., Eds.; manuscript in preparation, submitted.
  122. Schüle, W.; Pellicer, M. El Cerro de La Virgen; Ministerio de Educación Nacional, Dirección General de Bellas Artes, Servicio Nacional de Excavaciones Arqueológicas: Madrid, Spain, 1966; Volume 46. [Google Scholar]
  123. Grup d’Investigació Prehistòrica. Dos Hogares Orientalizantes de La Fortaleza de Els Vilars (Arbeca, Lleida). In El Periodo Orientalizante. Protohistoria del Mediterráneo Occidental: Actas del III Simposio Internacional de Arqueología de Mérida; Jiménez Ávila, J., Celestino Pérez, S., Eds.; Consejo Superior de Investigaciones Científicas, CSIC: Mérida, Spain, 2005; pp. 651–668. [Google Scholar]
  124. Molina García, J.; Molina Gunde, M.; Nordstrom, S. Coimbra Del Baranco Ancho (Jumilla, Murcia); Diputación Provincial de Valencia, Servicio de Investigación Prehistórica: Valencia, Spain, 1976.
  125. Gómara Miramón, M.; Serrano Arnáez, B.; Bonilla Santander, Ó. Un Torcularium de Los Siglos I a.C.—I d.C. Del Yacimiento Romano Piecordero i (Cascante, Navarra). In Estudis Sobre Ceràmica i Arqueologia de L’arquitectura. Homenatge al Dr. Alberto López Mullor; Aquilué Abadías, J., Beltrán de Heredia, J., Caixal Mata, A., Fierro Macià, X., Kirchner, H., Eds.; Diputación Provincial de Barcelona: Barcelona, Spain, 2020; pp. 417–425. [Google Scholar]
  126. Ayuntamiento de Herrera de Pisuerga. Horno Cerámico Romano. Available online: https://herreradepisuerga.es/turismo/visitas/horno-ceramico-romano/ (accessed on 6 May 2024).
  127. Mélida Alinari, J.R. Excavaciones de Numancia; Tipografia de la Revista de Archivos, Bibliotecas y Museos: Madrid, Spain, 1908; pp. 1–69. [Google Scholar]
  128. Tarrats Bou, F.; Macias Solé, J.M.; Ramon Sariñena, E. Noves Intervencions a La Vil·la Romana Dels Munts (Altafulla, Tarragonès). Trib. D’Arqueol. 1997, 1996–1997, 35–56. [Google Scholar]
  129. Arteaga Matute, O.; Sanmartí Grego, E.; Padró Parcerisa, J. El Poblado Ibérico del Tossal Del Moro de Pinyeres (Batea, Terra Alta, Tarragona); Institut de Prehistòria i Arqueología: Barcelona, Spain, 1990. [Google Scholar]
  130. Bienes Calvo, J.J. La Necrópolis Celta de Arguedas. Primeros Datos Sobre Las Campañas de Excavación de 1989–90. In Actas del III Congreso General de Historia de Navarra; Gobierno de Navarra: Pamplona, Spain, 1994; pp. 1–13. [Google Scholar]
  131. Fonseca de la Torre, H.J.; Arróniz Pamplona, L.; Calvo Hernández, C.; Cañada Sirvent, L.; Meana Medio, L.; Bayer Rodríguez, X.; Pérez Legido, D. The Problematic Conservation of Adobe Walls in the Open-Air Site of El Castillar (Mendavia, Navarre, Spain). In Earthen Construction Technology: Proceedings of the XVIII UISPP World Congress; Daneels, A., Torras Freixa, M., Eds.; Achaeopress: Oxford, UK, 2021; pp. 109–117. [Google Scholar]
  132. Castiella Rodríguez, A. Aspectos Generales Del Poblado Protohistórico de El Castillar Mendavia (Navarra). Zephyrus Rev. Prehist. Arqueol. 1987, 39–40, 239–249. [Google Scholar]
  133. Abarquero Moras, F.J.; Palomino Lázaro, Á.L. Vertavillo, Primeras Excavaciones Arqueológicas En Un ‘Oppidum Vacceo’ Del Cerrato Palentino. Publicaciones Inst. Tello Téllez Men. 2006, 77, 31–116. [Google Scholar]
  134. Blanco García, J.F. El Complejo Alfarero Vacceo de Coca (Segovia). Rev. Arqueol. 1992, 13, 34–41. [Google Scholar] [CrossRef]
  135. Barrio Martín, J. La II Edad Del Hierro En Segovia (España): Estudio Arqueológico Del Territorio y La Cultura Material de Los Pueblos Preromanos; British Archaeological Reports International Series; Archaeopress: Oxford, UK, 1999. [Google Scholar]
  136. Gómez Saucedo, M.T. Intervención Arqueológica Preventiva En El Solar de c/Juan de Ortega No 24 de Carmona (Sevilla). Anu. Arqueol. Andalucía 2003, 3, 328–347. [Google Scholar]
  137. Cardenete López, R.; Gómez Saucedo, M.T.; Jiménez, A.; Lineros Romero, R.; Rodríguez, I. Excavaciones Arqueologicas de Urgencia En El Solar de La Calle Montánchez 4, Carmona, Sevilla. Anu. Arqueol. Andalucía 1989 1991, 3, 585–591. [Google Scholar]
  138. Pellicer Catalan, M.; Escacena Carrasco, J.L.; Bendala Galán, M. El Cerro Macareno; Ministerio de Educación, Cultura y Deporte: Madrid, Spain, 1983. [Google Scholar]
  139. Argente Oliver, J.L.; Díaz Díaz, A. Tiermes IV. La Casa Del Acueducto: (Domus Alto Imperial de La Ciudad de Tiermes), Campañas 1979–1986; Ministerio de Cultura, Dirección General de Bellas Artes y Archivos, Instituto de Conservación y Restauración de Bienes Culturales: Madrid, Spain, 1994; Volume 167. [Google Scholar]
  140. Pérez Suñé, J.M.; Rams Folch, P. Memòria. Desmuntatge de Les Estructures Arqueològiques Del Jaciment de l’Aumedina Situades Al PK 20 + 500 de Ka Carretera C-44; Tortosa, Spain. 2010. Available online: http://hdl.handle.net/10687/425594 (accessed on 10 November 2022).
  141. Atrián Jordán, P. El Yacimiento Ibérico de Alto Chacón (Teruel). Campañas Realizadas En 1969-1970-1971 y 1972; Ministerio de Educación Nacional, Comisaría general de excavaciones arqueológicas: Madrid, Spain, 1976; Volume 92. [Google Scholar]
  142. Moret, P. El Tossal Montañés (Valdetormo, Teruel): Une Maison-Tour Ibérique Du VIe Siècle Av. J.-C. Madr. Mitteilungen 2001, 42, 85–101. [Google Scholar] [CrossRef]
  143. Charro Lobato, C.; Chapa Brunet, T.; Pereira Sieso, J. Intervenciones Arqueológicas En El Cerro de La Mesa (Alcolea de Tajo, Toledo). Campañas 2005-2007. In Lusitanos y Vettones: Los Pueblos Prerromanos en la Actual Demarcación Beira Baixa, Alto Alentejo, Cáceres; Sanabria Marcos, P.J., Ed.; Junta de Extremadura, Consejería de Cultura: Cáceres, Spain, 2009; pp. 131–139. [Google Scholar]
  144. Gutiérrez Cuenca, E.; Muñoz Fernández, E.; Morlote Expósito, J.M.; Montes Barquín, R. El Horno de La Alberquilla: Un Centro Productor de Cerámica Carpetana En Toledo. Zo. Arqueol. 2007, 10, 303–323. [Google Scholar]
  145. Vilaseca, S.; Serra-Ràfols, J.C.; Brull Cedo, L. Excavaciones del Plan Nacional en El Castellet de Bañolas, de Tivisa (Tarragona); Ministerio de Educación Nacional, Comisaría General de Excavaciones Arqueológicas: Madrid, Spain, 1949; Volume 20. [Google Scholar]
  146. Pou Vallès, J.; Sanmartí Grego, J.; Santacana Mestre, J. La Reconstrucció Del Poblat Ibèric d’Alorda Park o de Les Toixoneres (Calafell, Baix Penedès). Trib. D’Arqueol. 1995, 1993–1994, 51–62. [Google Scholar]
  147. Melguizo Aísa, S.; Benavente Serrano, J.A.; Marco Simón, F.; Moret, P. El Área Oriental Del ‘Oppidum’ de El Palao (Alcañiz, Teruel). Campañas 2008-2011. Al-qannis Boletín Taller Arqueol. Alcañiz 2021, 14, 131–192. [Google Scholar]
  148. Beltrán Lloris, M. Arqueología e Historia de Las Ciudades Antiguas Del Cabezo de Alcalá de Azaila (Teruel); Librería General: Zaragoza, Spain, 1976. [Google Scholar]
  149. Herce San Miguel, A.I.; Punter Gómez, M.P.; Vicente Redón, J.D.; Escriche Jaime, C. La Caridad (Caminreal, Teruel). In La Casa Urbana Hispanorromana: Ponencias y Comunicaciones; Diputación Provincial de Zaragoza, Institución ‘Fernando el Católico’: Zaragoza, Spain, 1991; pp. 81–130. [Google Scholar]
  150. Fatás Fernández, L.; Catalán Garzarán, S. La Construcción Con Tierra En La Protohistoria Del Bajo Aragón: El Caso de San Cristóbal de Mazaleón. Saldvie Estud. Prehist. Arqueol. 2005, 5, 131–141. [Google Scholar] [CrossRef]
  151. Guérin Fockedey, P.; Adelantado Lliso, P.; Calvo Gálvez, M.; Díes Cusí, E.; Grau Almero, E.; Iborra Eres, M.P.; Pérez Jórda, G.; Rovira Llorens, S.; Sabater Pérez, A.; Sáez Landete, A.; et al. El Castellet de Bernabé y El Horizonte Ibérico Pleno Edetano; Diputación Provincial de Valencia, Servicio de Investigación Prehistórica: Valencia, Spain, 2003.
  152. Mata Parreño, C. Los Villares (Caudete de Las Fuentes, Valencia): Origen y Evolución de La Cultura Ibérica; Diputación Provincial de Valencia, Servicio de Investigación Prehistórica: Valencia, Spain, 1991.
  153. López Serrano, D.; Valero Climent, A.; García Borja, P.; Rodríguez Traver, J.A.; Vives-Ferrándiz Sánchez, J. El Foso Ibérico de La Cervera (La Font de La Figuera, València). In El Naixement d’un Poble: Història i Arquelogia de La Font de la Figuera; García Borja, P., Revert Francés, E., Ribera, A., Biosca Cirujeda, V., Eds.; Ajuntament de la Font de la Figuera: La Font de la Figuera, Spain, 2013; pp. 93–104. [Google Scholar]
  154. Gómez Pérez, A.; Sanz Mínguez, C. El Poblado Vacceo de Las Quintanas, Padilla de Duero (Valladolid): Aproximación a Su Secuencia Estratigráfica. In Arqueología Vaccea. Estudios Sobre el Mundo Prerromano en la Cuenca Media del Duero; Romero Carnicero, F., Sanz Mínguez, C., Escudero Navarro, Z., Eds.; Junta de Castilla y León, Consejería de Cultura y Turismo: Valladolid, Spain, 1993; pp. 335–370. [Google Scholar]
  155. Misiego Tejeda, J.C.; Martín Carbajo, M.A.; Marcos Contreras, G.J.; Sanz García, F.J.; Pérez Rodríguez, F.J.; Doval Martínez, M.; Villanueva Martín, L.A.; Sandoval Rodríguez, A.M.; Redondo Martínez, R.; Ollero Cuesta, F.J.; et al. Las Excavaciones Arqueológicas en el Yacimiento de “La Corona/El Pesadero”, en Manganeses de La Polvorosa; Junta de Castilla y León, Consejería de Cultura y Turismo: Valladolid, Spain, 2013. [Google Scholar]
  156. Royo, J.I.; Aguilera Aragón, I. Avance de La II Campaña de Excavaciones Arqueológicas En Bursau. 1979 (Borja, Zaragoza). Cuad. Estud. Borj. 1981, 7–8, 25–74. [Google Scholar]
  157. Eiroa García, J.J. Aspectos Urbanísticos Del Poblado Hallstáttico de La Loma de Los Brunos (Caspe, Zaragoza). Cuad. Investig. Hist. 1980, 6, 3–18. [Google Scholar]
  158. Beltrán Martínez, A. Dos Notas Sobre El Poblado Hallstáttico Del Cabezo de Monleón: I. La Planta. II. Los Kernoi. Caesaraugusta 1962, 19–20, 149–150. [Google Scholar]
  159. Zapater Baselga, M.Á.; Navarro Chueca, F.J. ‘Cabezo de Muel’ (Escatrón, Zaragoza). Un Asentamiento Ibero-Romano En El Valle Medio Del Ebro; Campaña 1988. Cuad. Estud. Caspolinos 1989, 15, 323–370. [Google Scholar]
  160. Picazo Millán, J.V.; Rodanés Vicente, J.M. Los Poblados del Bronce Final y Primera Edad del Hierro: Cabezo de la Cruz, la Muela, Zaragoza; Gobierno de Aragón, Departamento de Educación, Cultura y Deporte: Zaragoza, Spain, 2009. [Google Scholar]
  161. Maestro, E.; Tramullas, J. Estructuras Arquitectónicas En El Yacimiento de Los Castellazos, Mediana de Aragón (Zaragoza). In Simposi Internacional d’Arqueologia Ibèrica. Fortificacions, la problemàtica de l’Ibèric Plé: (segles IV-III a.C.); Centre d’Estudis del Bages: Manresa, Spain, 1991; pp. 233–239. [Google Scholar]
  162. Galve Izquierdo, M.P. Diario de Excavación de Los Solares de La Calle Predicadores 24–26, Unpublished.
  163. Galve Izquierdo, M.P. Los Antecedentes de Caesaraugusta: Estructuras Domésticas de Salduie (Calle Don Juan de Aragón, 9, Zaragoza); Institución Fernando el Católico: Zaragoza, Spain, 1996. [Google Scholar]
  164. Bonet Rosado, H.; Vives-Ferrándiz Sánchez, J. La Bastida de Les Alcusses: 1928–2010; Diputación Provincial de Valencia: Valencia, Spain, 2011.
  165. Fletcher, D.; Pla, E.; Alcàcer, J. La Bastida de Les Alcuses (Mogente, Valencia); Diputación Provincial de Valencia, Servicio de Investigación Prehistórica: Valencia, Spain, 1965.
  166. Galán Saulnier, C. El Yacimiento Arqueológico de Los Dornajos (La Hinojosa, Cuenca); Arkatros: Madrid, Spain, 2016. [Google Scholar]
  167. Navarro Palazón, J. El Cementerio Islámico de San Nicolás de Murcia. Memoria Preliminar. In Actas del I Congreso de Arqueología Medieval Española, Huesca, 17, 18 y 19 de abril de 1985; Acín Fanlo, J.L., Ed.; Diputación General de Aragón, Departamento de Educación y Cultura: Zaragoza, Spain, 1986; pp. 7–37. [Google Scholar]
  168. Uroz Rodríguez, H. Libisosa. Historia Congelada; Istituto de Estudios Albacetenses ‘Don Juan Manuel’, Diputación de Albacete: Albacete, Spain, 2022. [Google Scholar] [CrossRef]
Figure 1. Groups of earthen architecture constructions identified in the study area: (a) modern reconstruction of a half-timber wall with braided reed in Numancia (Garray, Soria); (b) cob wall in the archaeological site of the Roman villa La Olmeda (Pedrosa de la Vega, Palencia); (c) adobe wall preserved in the Roman houses of Bílbilis (Calatayud, Zaragoza); (d) rammed earth wall in Ampurias (La Escala, Girona).
Figure 1. Groups of earthen architecture constructions identified in the study area: (a) modern reconstruction of a half-timber wall with braided reed in Numancia (Garray, Soria); (b) cob wall in the archaeological site of the Roman villa La Olmeda (Pedrosa de la Vega, Palencia); (c) adobe wall preserved in the Roman houses of Bílbilis (Calatayud, Zaragoza); (d) rammed earth wall in Ampurias (La Escala, Girona).
Heritage 07 00244 g001
Figure 2. Earthen productive architecture in the study area: (a) two-chamber kiln in adobe partially preserved in the production complex of Mas de Moreno-El Olmo (Foz-Calanda, Teruel); (b) Roman kiln with a central pillar, grate and cupola at Clos Miquel (Sant Miquel de Fluvià, Girona); (c) adobe hearth and flooring in dwellings in Cerro de la Mota (Medina del Campo, Valladolid); (d) single chamber adobe kiln with supporting structures hardened through exposure to high temperatures in La Jericó (Herrera del Pisuerga, Palencia).
Figure 2. Earthen productive architecture in the study area: (a) two-chamber kiln in adobe partially preserved in the production complex of Mas de Moreno-El Olmo (Foz-Calanda, Teruel); (b) Roman kiln with a central pillar, grate and cupola at Clos Miquel (Sant Miquel de Fluvià, Girona); (c) adobe hearth and flooring in dwellings in Cerro de la Mota (Medina del Campo, Valladolid); (d) single chamber adobe kiln with supporting structures hardened through exposure to high temperatures in La Jericó (Herrera del Pisuerga, Palencia).
Heritage 07 00244 g002
Figure 3. Distribution of selected case studies on the Iberian Peninsula and main structures’ period.
Figure 3. Distribution of selected case studies on the Iberian Peninsula and main structures’ period.
Heritage 07 00244 g003
Figure 4. Variability of urban location of the different case studies: (a) isolated and irregular location in Plaza de Moros (Villatobas, Toledo); (b) unbuilt urbanized context in the kiln of El Ruedo (Almedinilla, Córdoba); (c) covered urban context below pedestrian level in El Molinete (Cartagena, Murcia); (d) interior insertion in building of Domus Avinyó (Barcelona).
Figure 4. Variability of urban location of the different case studies: (a) isolated and irregular location in Plaza de Moros (Villatobas, Toledo); (b) unbuilt urbanized context in the kiln of El Ruedo (Almedinilla, Córdoba); (c) covered urban context below pedestrian level in El Molinete (Cartagena, Murcia); (d) interior insertion in building of Domus Avinyó (Barcelona).
Heritage 07 00244 g004
Figure 5. Typological variability of different case studies: (a) earthen walls in a dwelling in La Celadilla (Ademuz, Valencia); (b) fixed earthen domestic shelves for vessels in Cabezo Redondo (Villena, Alicante); (c) earthen productive structures in El Monastil (Elda, Alicante); (d) earthen funerary structures in Cerro Santuario (Baza, Granada).
Figure 5. Typological variability of different case studies: (a) earthen walls in a dwelling in La Celadilla (Ademuz, Valencia); (b) fixed earthen domestic shelves for vessels in Cabezo Redondo (Villena, Alicante); (c) earthen productive structures in El Monastil (Elda, Alicante); (d) earthen funerary structures in Cerro Santuario (Baza, Granada).
Heritage 07 00244 g005
Figure 6. Variable ownership of the different case studies: (a) public, Contrebia Belaisca (Botorrita, Zaragoza); (b) private, Tos Pelat (Moncada, Valencia).
Figure 6. Variable ownership of the different case studies: (a) public, Contrebia Belaisca (Botorrita, Zaragoza); (b) private, Tos Pelat (Moncada, Valencia).
Heritage 07 00244 g006
Figure 7. Variability of use in the different case studies: (a) cultural and display use of the site at Casa del Mitreo (Mérida, Badajoz); (b) site closed to the general public due to the excavation of Casas del Turuñuelo (Guareña, Badajoz); (c) site abandoned following excavation, Tossal del Moro (Pinyeres, Tarragona); (d) destroyed adobe walls in Puntal dels Llops (Olocau, Valencia).
Figure 7. Variability of use in the different case studies: (a) cultural and display use of the site at Casa del Mitreo (Mérida, Badajoz); (b) site closed to the general public due to the excavation of Casas del Turuñuelo (Guareña, Badajoz); (c) site abandoned following excavation, Tossal del Moro (Pinyeres, Tarragona); (d) destroyed adobe walls in Puntal dels Llops (Olocau, Valencia).
Heritage 07 00244 g007
Figure 8. Variability of historical periods in case studies: (a) re-buried prehistoric cob wall in Caramoro I (Elche, Alicante); (b) protohistoric adobe furniture in Coll del Moro (Gandesa, Tarragona); (c) adobe structures in the insulae of Lepida Celsa (Velilla de Ebro, Zaragoza); (d) medieval rammed earth wall over Roman remains in Los Torrejones (Yecla, Murcia).
Figure 8. Variability of historical periods in case studies: (a) re-buried prehistoric cob wall in Caramoro I (Elche, Alicante); (b) protohistoric adobe furniture in Coll del Moro (Gandesa, Tarragona); (c) adobe structures in the insulae of Lepida Celsa (Velilla de Ebro, Zaragoza); (d) medieval rammed earth wall over Roman remains in Los Torrejones (Yecla, Murcia).
Heritage 07 00244 g008
Figure 9. Locations of earthen structures in case studies: (a) adobe bench with no plinth in Mas Castellar (Pontós, Girona); (b) low walls, pillars and renderings with adobe in the production complexes of Torrealta and Camposoto (San Fernando, Cádiz); (c) adobe paving in Cerro de San Vicente (Salamanca); (d) gaps in earthen rendering in structures in Lloma de Betxí (Paterna, Valencia).
Figure 9. Locations of earthen structures in case studies: (a) adobe bench with no plinth in Mas Castellar (Pontós, Girona); (b) low walls, pillars and renderings with adobe in the production complexes of Torrealta and Camposoto (San Fernando, Cádiz); (c) adobe paving in Cerro de San Vicente (Salamanca); (d) gaps in earthen rendering in structures in Lloma de Betxí (Paterna, Valencia).
Heritage 07 00244 g009
Figure 10. Interpretative variants of case studies: (a) enclosure of woven reed in Castellón Alto (Galera, Granada); (b) internal compartmentation of braided reed in Numancia (Garray, Soria).
Figure 10. Interpretative variants of case studies: (a) enclosure of woven reed in Castellón Alto (Galera, Granada); (b) internal compartmentation of braided reed in Numancia (Garray, Soria).
Heritage 07 00244 g010
Figure 11. Interpretative variants in case studies: (a) enclosure of a simple cob wall in La Olmeda Roman villa (Pedrosa de la Vega, Palencia); (b) cob ball wall enclosure in the site of Caramoro I (Elche, Alicante).
Figure 11. Interpretative variants in case studies: (a) enclosure of a simple cob wall in La Olmeda Roman villa (Pedrosa de la Vega, Palencia); (b) cob ball wall enclosure in the site of Caramoro I (Elche, Alicante).
Heritage 07 00244 g011
Figure 12. Interpretative variables in case studies: (a) stretcher and header load-bearing walls; (b) header load-bearing wall; (c) double stretcher load-bearing wall; (d) load-bearing wall with quadrangular adobes; (e) stretcher load-bearing partition walls, upper walls or domestic elements; (f) compartmentation walls in shiner bond, (g) supporting structures, plano-convex or bar-shaped support for grates; (h) pseudotriangular adobe bricks in columns or central pillars.
Figure 12. Interpretative variables in case studies: (a) stretcher and header load-bearing walls; (b) header load-bearing wall; (c) double stretcher load-bearing wall; (d) load-bearing wall with quadrangular adobes; (e) stretcher load-bearing partition walls, upper walls or domestic elements; (f) compartmentation walls in shiner bond, (g) supporting structures, plano-convex or bar-shaped support for grates; (h) pseudotriangular adobe bricks in columns or central pillars.
Heritage 07 00244 g012
Figure 13. Most probable lengths, widths and thicknesses according to kernel density estimations of the different case studies.
Figure 13. Most probable lengths, widths and thicknesses according to kernel density estimations of the different case studies.
Heritage 07 00244 g013
Figure 14. Interpretative variables in case studies: (a) simple rammed earth; (b) rammed earth with gypsum reinforcement.
Figure 14. Interpretative variables in case studies: (a) simple rammed earth; (b) rammed earth with gypsum reinforcement.
Heritage 07 00244 g014
Figure 15. Characteristics of the most probable plinths according to kernel density estimations in earthen elevations in the different case studies: (a) heights; (b) thicknesses.
Figure 15. Characteristics of the most probable plinths according to kernel density estimations in earthen elevations in the different case studies: (a) heights; (b) thicknesses.
Heritage 07 00244 g015
Figure 16. Heatmap showing the density of reconstructed and exposed mixed structure case studies.
Figure 16. Heatmap showing the density of reconstructed and exposed mixed structure case studies.
Heritage 07 00244 g016
Figure 17. Heatmap showing the density of adobe structure case studies which are exposed, buried or lost.
Figure 17. Heatmap showing the density of adobe structure case studies which are exposed, buried or lost.
Heritage 07 00244 g017
Figure 18. Heatmap showing the density of cob structure case studies which are exposed, buried or lost.
Figure 18. Heatmap showing the density of cob structure case studies which are exposed, buried or lost.
Heritage 07 00244 g018
Figure 19. Heatmap showing the density of rammed earth structure case studies which are exposed, buried or lost.
Figure 19. Heatmap showing the density of rammed earth structure case studies which are exposed, buried or lost.
Heritage 07 00244 g019
Table 1. Dispersion of sources consulted and case studies of interest identified.
Table 1. Dispersion of sources consulted and case studies of interest identified.
Sourcen%Sourcen%
MUPREVA95%Publications7946%
MARQ21%SOSTierra Research Project74%
IPCE-Map library106%Calaix2012%
IPCE-Projects1710%AAA-Anuario Arqueológico
de Andalucía
85%
IPCE-Photo library21%EAE-Excavaciones Arqueológicas
de España
95%
IPCE-Inventory00%NAH-Noticiario Arqueológico Hispánico148%
Table 2. Proportions of historical, urbanistic, typological and use characteristics in case studies.
Table 2. Proportions of historical, urbanistic, typological and use characteristics in case studies.
CharacteristicsEarthen Construction Technique
Urban LocationAll TechniquesCobAdobeRammed Earth
   Isolated11768.8%2112.4%10159.4%1710.0%
   Urbanized plot3621.2%84.7%3319.4%42.3%
   Built plot1710.0%31.7%158.8%31.8%
TypologyAll TechniquesCobAdobeRammed Earth
   Residential6940.6%127.0%5331.2%148.2%
   Domestic5632.9%148.2%3621.2%74.1%
   Productive4224.7%63.5%3822.4%00.0%
   Funerary84.7%00.0%84.7%00.0%
   Religious52.9%00.0%21.2%31.8%
   Defensive42.4%00.0%42.4%00.0%
OwnershipAll TechniquesCobAdobeRammed Earth
   Public10964.1%1710.0%9555.9%1810.5%
   Private3520.6%52.9%3319.4%42.4%
   Unknown2816.5%105.9%2313.5%21.2%
UseAll TechniquesCobAdobeRammed Earth
   Exhibition/cultural8650.6%137.6%7644.7%148.2%
   Closed (under excavation)63.5%00.0%63.5%00.0%
   Closed (buried)4023.5%84.7%3721.8%105.8%
   Abandoned2112.4%63.5%1710.0%00.0%
   Destroyed1710.0%52.9%137.6%00.0%
Historical PeriodAll TechniquesCobAdobeRammed Earth
   Prehistoric2816.5%137.6%1710.0%10.6%
   Protohistoric9757.0%158.8%9254.1%116.4%
   Roman4727.6%42.4%4526.4%84.7%
   Middle Ages95.3%00.0%74.1%42.3%
Sites can display different techniques in a single location (elements ≥ sites). Percentages are shown for the total number of sites (170).
Table 3. List of architectural and construction characteristics in case studies.
Table 3. List of architectural and construction characteristics in case studies.
Construction TechniqueSitesVisibleBuriedCollapsed
   Mixed techniques63.5%00.0%00.0%6100.0%
   Cob3218.8%1237.5%1134.3%1031.2%
   Adobe14987.6%6845.6%5536.9%4127.5%
   Rammed earth2414.1%1250.0%1041.6%28.3%
   Compacted earth pavements8248.2%4150.0%3137.8%2226.8%
   Clay pavements2715.8%1140.7%933.3%933.3%
   Unidentified10.6%1100.0%00.0%00.0%
Presence of EarthSitesCobAdobeRammed Earth
   Wall elevations11467.0%97.8%10289.4%2320.1%
   Wall basing2112.3%419.0%1466.6%314.2%
   Domestic elements8449.4%1821.4%7184.5%11.2%
   Production structures5029.4%48.0%4692.0%00.0%
   Funerary structures127.0%216.6%1083.3%00.0%
   Pavements10058.8%9292.0%1313.0%00.0%
   Renderings6135.8%5895.1%34.9%00.0%
Stabilizing AgentsSitesCobAdobeRammed Earth
   Plant2011.7%525.0%1680.0%420.0%
   Lime42.3%125.0%375.0%125.0%
   Ceramics31.7%00.0%2100.0%133,3%
   Gypsum10.6%00.0%1100.0%00.0%
   Small stones42.3%133.3%266.6%133.3%
   Carbons21.1%150.0%00.0%150.0%
   No stabilizing agents10.6%00.0%1100.0%00.0%
   Unknown14182.9%2316.3%12790.0%2114.8%
Complementary TechniquesSites Cob Adobe Rammed Earth
   Masonry14786.4%64.1%12887.0%1610.8%
   Fired brick158.8%16.6%1066.6%426.6%
   Flat stone or stone slabs116.4%00.0%1090.9%19.0%
   Ashlar 84.7%00.0%8100%00.0%
Sites can display different techniques or structures in a single location (elements ≥ sites). The percentages for the columns Visible, Buried, Collapsed, Cob, Adobe and Rammed earth are calculated in relation to the subtotal of case studies (Sites column) for each of the characteristics listed.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Manzano-Fernández, S.; Mileto, C.; Vegas López-Manzanares, F.; Cristini, V. Domestic and Productive Earthen Architecture Conserved In Situ in Archaeological Sites of the Iberian Peninsula. Heritage 2024, 7, 5174-5209. https://doi.org/10.3390/heritage7090244

AMA Style

Manzano-Fernández S, Mileto C, Vegas López-Manzanares F, Cristini V. Domestic and Productive Earthen Architecture Conserved In Situ in Archaeological Sites of the Iberian Peninsula. Heritage. 2024; 7(9):5174-5209. https://doi.org/10.3390/heritage7090244

Chicago/Turabian Style

Manzano-Fernández, Sergio, Camilla Mileto, Fernando Vegas López-Manzanares, and Valentina Cristini. 2024. "Domestic and Productive Earthen Architecture Conserved In Situ in Archaeological Sites of the Iberian Peninsula" Heritage 7, no. 9: 5174-5209. https://doi.org/10.3390/heritage7090244

APA Style

Manzano-Fernández, S., Mileto, C., Vegas López-Manzanares, F., & Cristini, V. (2024). Domestic and Productive Earthen Architecture Conserved In Situ in Archaeological Sites of the Iberian Peninsula. Heritage, 7(9), 5174-5209. https://doi.org/10.3390/heritage7090244

Article Metrics

Back to TopTop