A Non-Invasive and Sustainable Characterization of Pigments in Wall Paintings: A Library of Apulian Colors
Abstract
:1. Introduction
2. Materials
2.1. Experimental Replicas
2.2. Pigments and Mixtures
3. Analysis Methods
3.1. X-ray Power Diffraction (XRPD)
3.2. Portable Digital Microscopy
3.3. Spectrophotocolorimetry
3.4. Fiber Optic Reflectance Spectroscopy
4. Results and Discussion
4.1. Mineralogical Analysis of Pigment Powders
4.2. Microscopic Observation
4.2.1. Pure Pigments Replicas
4.2.2. Mixtures Replicas
4.3. Color Coordinates
4.3.1. Pure Pigments Replicas
4.3.2. Mixtures Replicas
4.4. Reflectance Fingerprint
4.4.1. Pure Pigments Replicas
4.4.2. Mixtures Replicas
4.5. Key Points
- Generally, ochres and earths are very recognizable pigments owing to their opaque aspect, rounded shape, low saturation and low brightness of color, size distribution;
- Cinnabar is clearly recognizable for its angular shape and very thick edge, as well as the particular red-magenta color;
- Fine pigments such as, in this research, minium and hematite are certainly more difficult to identify because the morphological features of particles are not observable to the microscope magnification. However, even if it cannot be considered a distinctive parameter, certainly the visible color suggests preliminary information to hypothesize under the microscope and verified by other analytical techniques, i.e., FORS;
- Malachite and azurite are recognizable because they both show a typical color and a fractured appearance;
- Verdigris is identifiable because it includes acicular cyan particles with high saturation and brightness;
- Egyptian blue and lapis lazuli were similar but different in color and shape, which is typically tabular in lapis lazuli;
- Bianco San Giovanni shows large and spherical particles;
- Among the black pigments, the vine black is clearly revealable because consists of a tabular particle with high gloss;
- As a rule, the microscopic identification seems to be easier for blue and green colors and for mixtures that contain contrasting colors (i.e., hematite and bianco San Giovanni, red ochre and vine black, yellow ochre and vine black);
- In mixing composed of vine black and very limited amounts of red or yellow ochres (a recipe widespread in the Apulia wall painting to realize differently shaded black), which appeared black to the naked eye, the identification of all the pigment within is feasible. Conversely, mixtures including similar (in terms of color) pigments, such as hematite and red ochre, red ochre and brown earth, and yellow ochre and massicot, are obviously unrecognizable.
- Concerning the colorimetric data, results indicated the following:
- Very noteworthy is the linear positive correlation of a* and b* values in all mixtures including hematite.
- Acquiring and interpreting FORS spectra revealed the following significant aspects:
- The comparison between mixtures and pure pigments allowed a better understanding of the light reflection and scattering phenomena that occur when a mix of pigments is present;
- All pigments can be easily detected by the presence of absorption bands, inflection points, or other diagnostic spectral features. The exceptions are black and white pigments, where the spectrum is a nearly flat curve;
- Pigments having a very similar curve, but which nonetheless allow the identification, are ochres (red and yellow) and brown earth;
- Green pigments, although having comparable spectra, can be clearly identified by the presence of more or less large absorption bands centered at different wavelengths;
- Blue pigments show very different and characteristic reflectance spectra, therefore in this case, their identification is rather simplified;
- The type of binder used (water or lime) has no influence on the spectral features since the lime-based plaster incorporates the pigment similarly in the case of fresco and mezzo fresco painting, also because the chemical composition of the involved materials (plaster and lime as a binder) is the same. This analogy cannot be definitely extended to the other binders used in painting as well;
- The analysis of mixtures containing pigments with similar reflectance spectra (red ochre + yellow ochre, red ochre + hematite, red ochre + brown earth) is rather difficult;
- In mixtures containing more than 75% of black pigments, the contribution of the latter hides the spectral features of the other pigments;
- The presence of inflection points could allow the identification of corresponding pigments even in more complex mixtures, for example in those containing yellow ochre and massicot.
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Galli, A.; Caccia, M.; Bonizzoni, L.; Gargano, M.; Ludwig, N.; Poldi, G.; Martini, M. Deep inside the Color: How Optical Microscopy Contributes to the Elemental Characterization of a Painting. Microchem. J. 2020, 155, 104730. [Google Scholar] [CrossRef]
- Corradini, M.; de Ferri, L.; Pojana, G. Fiber Optic Reflection Spectroscopy–Near-Infrared Characterization Study of Dry Pigments for Pictorial Retouching. Appl. Spectrosc. 2021, 75, 445–461. [Google Scholar] [CrossRef] [PubMed]
- Delaney, J.K.; Ricciardi, P.; Glinsman, L.D.; Facini, M.; Thoury, M.; Palmer, M.; de la Rie, E.R. Use of Imaging Spectroscopy, Fiber Optic Reflectance Spectroscopy, and X-Ray Fluorescence to Map and Identify Pigments in Illuminated Manuscripts. Stud. Conserv. 2014, 59, 91–101. [Google Scholar] [CrossRef]
- Raicu, T.; Zollo, F.; Falchi, L.; Barisoni, E.; Piccolo, M.; Izzo, F.C. Preliminary Identification of Mixtures of Pigments Using the paletteR Package in R—The Case of Six Paintings by Andreina Rosa (1924–2019) from the International Gallery of Modern Art Ca’ Pesaro, Venice. Heritage 2023, 6, 524–547. [Google Scholar] [CrossRef]
- Piccolo, A.; Bonato, E.; Falchi, L.; Lucero-Gómez, P.; Barisoni, E.; Piccolo, M.; Balliana, E.; Cimino, D.; Izzo, F.C. A Comprehensive and Systematic Diagnostic Campaign for a New Acquisition of Contemporary Art—The Case of Natura Morta by Andreina Rosa (1924–2019) at the International Gallery of Modern Art Ca’ Pesaro, Venice. Heritage 2021, 4, 4372–4398. [Google Scholar] [CrossRef]
- Krämer, M.; Henniges, U.; Brückle, I.; Lenfant, L.; Drüppel, K. Analysis of Red Chalk Drawings from the Workshop of Giovanni Battista Piranesi Using Fiber Optics Reflectance Spectroscopy. Herit. Sci. 2021, 9, 112. [Google Scholar] [CrossRef]
- Zaleski, S.; Montagnino, E.; Brostoff, L.; Muller, I.; Buechele, A.; Lynn Ward-Bamford, C.; France, F.; Loew, M. Application of Fiber Optic Reflectance Spectroscopy for the Detection of Historical Glass Deterioration. J. Am. Ceram. Soc. 2020, 103, 158–166. [Google Scholar] [CrossRef]
- Gulmini, M.; Idone, A.; Diana, E.; Gastaldi, D.; Vaudan, D.; Aceto, M. Identification of Dyestuffs in Historical Textiles: Strong and Weak Points of a Non-Invasive Approach. Dyes Pigm. 2013, 98, 136–145. [Google Scholar] [CrossRef]
- Bacci, M.; Baldini, F.; Carlà, R.; Linari, R. A Color Analysis of the Brancacci Chapel Frescoes. Appl. Spectrosc. 1991, 45, 26–31. [Google Scholar] [CrossRef]
- Cheilakou, E.; Troullinos, M.; Koui, M. Identification of Pigments on Byzantine Wall Paintings from Crete (14th Century AD) Using Non-Invasive Fiber Optics Diffuse Reflectance Spectroscopy (FORS). J. Archaeol. Sci. 2014, 41, 541–555. [Google Scholar] [CrossRef]
- Pagano, S.; Germinario, C.; Alberghina, M.F.; Covolan, M.; Mercurio, M.; Musmeci, D.; Piovesan, R.; Santoriello, A.; Schiavone, S.; Grifa, C. Multilayer Technology of Decorated Plasters from the Domus of Marcus Vipsanus Primigenius at Abellinum (Campania Region, Southern Italy): An Analytical Approach. Minerals 2022, 12, 1487. [Google Scholar] [CrossRef]
- Picollo, M.; Bacci, M.; Casini, A.; Lotti, F.; Porcinai, S.; Radicati, B.; Stefani, L. Fiber Optics Reflectance Spectroscopy: A Non-Destructive Technique for the Analysis of Works of Art. In Optical Sensors and Microsystems; Martellucci, S., Chester, A.N., Mignani, A.G., Eds.; Kluwer Academic Publishers: Boston, MA, USA, 2002; pp. 259–265. [Google Scholar] [CrossRef]
- Cosentino, A. FORS Spectral Database of Historical Pigments in Different Binders. e-cons 2014, 2, 54–65. [Google Scholar] [CrossRef]
- Dupuis, G.; Elias, M.; Simonot, L. Pigment Identification by Fiber-Optics Diffuse Reflectance Spectroscopy. Appl. Spectrosc. 2002, 56, 1329–1336. [Google Scholar] [CrossRef]
- Liang, H.; Saunders, D.; Cupitt, J.A. A new multispectral imaging system for examining paintings. J. Imaging Sci. Technol. 2005, 49, 551–562. [Google Scholar]
- Bonizzoni, L.; Caglio, S.; Galli, A.; Poldi, G. A non invasive method to detect stratigraphy, thicknesses and pigment concentration of pictorial multilayers based on EDXRF and vis-RS: In situ applications. Appl. Phys. A 2008, 92, 203–210. [Google Scholar] [CrossRef]
- Pozo-Antonio, J.S.; Cardell, C.; Sánchez, S.; Montes Rueda, J. Reflectance of Oil Paintings: Influence of Paint Layer Thickness and Binder Amount. Coatings 2022, 12, 601. [Google Scholar] [CrossRef]
- Cavaleri, T.; Giovagnoli, A.; Nervo, M. Pigments and Mixtures Identification by Visible Reflectance Spectroscopy. Procedia Chem. 2013, 8, 45–54. [Google Scholar] [CrossRef]
- Elias, M.; Chartier, C.; Prévot, G.; Garay, H.; Vignaud, C. The Colour of Ochres Explained by Their Composition. Mater. Sci. Eng. B 2006, 127, 70–80. [Google Scholar] [CrossRef]
- Miriello, D.; Bloise, A.; Crisci, G.; De Luca, R.; De Nigris, B.; Martellone, A.; Osanna, M.; Pace, R.; Pecci, A.; Ruggieri, N. Non-Destructive Multi-Analytical Approach to Study the Pigments of Wall Painting Fragments Reused in Mortars from the Archaeological Site of Pompeii (Italy). Minerals 2018, 8, 134. [Google Scholar] [CrossRef]
- Lorusso, S.; Natali, A.; Matteucci, C. Colorimetry Applied to the Field of Cultural Heritage: Examples of Study Cases. Conserv. Sci. Cult. Herit. 2007, 7, 187–220. [Google Scholar] [CrossRef]
- Villafana, T.; Edwards, G. Creation and Reference Characterization of Edo Period Japanese Woodblock Printing Ink Colorant Samples Using Multimodal Imaging and Reflectance Spectroscopy. Herit. Sci. 2019, 7, 94. [Google Scholar] [CrossRef]
- Pinto, D.; Laviano, R.; Bianchi, V. Archaeometric Investigations on Wall Paintings from the Hypogeum of S. Marco (Fasano - Brindisi, Southern Italy). Plinius 2008, 34, 348. [Google Scholar]
- Capitanio, D.; Laviano, R.; Menga, A.; Meo-Evoli, N.; Vona, F.; Vurro, F. Intonaci e Pitture Murali Dell’ipogeo Di S. Matteo All’Arena, Monopoli (Bari). In Proceedings of the Sulle Pitture Murali, Conference Scienza e Beni Culturali (XXI), Bressanone, Italy, 12–15 July 2005; Arcadia Ricerche ed: Marghera-Venezia, Italy, 2005; pp. 1137–1146. [Google Scholar]
- Fioretti, G.; Garavelli, A.; Germinario, G.; Pinto, D. Archaeometric Study of Wall Rock Paintings from the Sant’Angelo in Criptis Cave, Santeramo in Colle, Bari: Insights on the Rupestrian Decorative Art in Apulia (Southern Italy). Archaeol. Anthropol. Sci. 2021, 13, 168. [Google Scholar] [CrossRef]
- Calia, A.; Giorgi, M.; Quarta, G.; Masieri, M. Le pitture della cripta del Gonfalone a Tricase (Lecce): Problematiche storico-artistiche e contributo alla identificazione dei pigmenti attraverso FRX portatile. In Proceedings of the Conference BENI Culturali in Puglia Dialoghi Multidisciplinari per la Ricerca, la Tutela e la Valorizzazione, Bari, Italy, 16–17 September 2020; Fioretti, G., Ed.; Edizioni Fondazione Pasquale Battista: Milano, Italy, 2021; pp. 125–132. [Google Scholar]
- Fioretti, G.; Raneri, S.; Pinto, D.; Mignozzi, M.; Mauro, D. The Archaeological Site of St. Maria Veterana (Triggiano, Southern Italy): Archaeometric Study of the Wall Paintings for the Historical Reconstruction. J. Archaeol. Sci. Rep. 2020, 29, 102080. [Google Scholar] [CrossRef]
- Calia, A.; Melica, D.; Quarta, G. I Dipinti Murali Del Tempietto: Materiali Costituenti e Tecniche Esecutive. In Masseria Seppannibale Grande in agro di Fasano (BR); Bertelli, G., Lepore, G., Eds.; Adda: Bari, Italy, 2011; pp. 195–206. [Google Scholar]
- Pinto, D. Analisi Di Alcuni Campioni Di Intonaco Dipinto Della Cupola Orientale. In Masseria Seppannibale Grande in agro di Fasano (BR); Bertelli, G., Lepore, G., Eds.; Adda: Bari, Italy, 2011; pp. 207–209. [Google Scholar]
- De Benedetto, G.E.; Fico, D.; Margapoti, E.; Pennetta, A.; Cassiano, A.; Minerva, B. The Study of the Mural Painting in the 12th Century Monastery of Santa Maria Delle Cerrate (Puglia-Italy): Characterization of Materials and Techniques Used: Study of Painting at the Santa Maria Delle Cerrate Church. J. Raman Spectrosc. 2013, 44, 899–904. [Google Scholar] [CrossRef]
- Fico, D.; Pennetta, A.; Rella, G.; Savino, A.; Terlizzi, V.; De Benedetto, G.E. A Combined Analytical Approach Applied to Medieval Wall Paintings from Puglia (Italy): The Study of Painting Techniques and Its Conservation State: Study of Painting Techniques and Its Conservation State. J. Raman Spectrosc. 2016, 47, 321–328. [Google Scholar] [CrossRef]
- Calia, A.; Giannotta, M.T. La tomba dei Festoni in via Crispi a Taranto: Individuazione e riconoscimento dei pigmenti utilizzati nelle pitture. In Proceedings of the III Congresso Nazionale di Archeometria, Bressanone, Italy, 13–14 February 2004; D’amico, C., Ed.; Pàtron: Bologna, Italy, 2005; pp. 271–278. [Google Scholar]
- Frezzato, F. Cennino Cennini. In IL Libro Dell’Arte; Neri Pozza: Vicenza, Italy, 2009. [Google Scholar]
- Piovesan, R.; Mazzoli, C.; Maritan, L.; Cornale, P. Fresco and Lime-Paint: An Experimental Study and Objective Criteria for Distinguishing between These Painting Techniques: Distinguishing between Fresco and Lime-Paint. Archaeometry 2012, 54, 723–736. [Google Scholar] [CrossRef]
- Regazzoni, L.; Cavallo, G.; Biondelli, D.; Gilardi, J. Microscopic Analysis of Wall Painting Techniques: Laboratory Replicas and Romanesque Case Studies in Southern Switzerland. Stud. Conserv. 2018, 63, 326–341. [Google Scholar] [CrossRef]
- McLaren, K. XIII—The development of the CIE 1976 (L* a* b*) uniform colour space and colour difference formula. J. Soc. Dye Colour 1976, 92, 338–341. [Google Scholar] [CrossRef]
- Menges, F. Spectragryph-Optical Spectroscopy Software, Version 1.2.16; Oberstdorf, Germany. 2022. Available online: https://www.effemm2.de/spectragryph/ (accessed on 30 June 2022).
- Mastrotheodoros, G.P.; Beltsios, K.G. Pigments—Iron-Based Red, Yellow, and Brown Ochres. Archaeol. Anthropol. Sci. 2022, 14, 35. [Google Scholar] [CrossRef]
- Gliozzo, E.; Burgio, L. Pigments—Arsenic-Based Yellows and Reds. Archaeol. Anthropol. Sci. 2022, 14, 4. [Google Scholar] [CrossRef]
- Cáceres-Rivero, C.; Tupa-Quispe, A.L.; Torres-Casas, R.; Bedregal, P. Identification of adulterants in artistic earth pigments using a multi-technique approach. Results Chem. 2022, 4, 100561. [Google Scholar] [CrossRef]
- Cardell, C.; Herrera, A.; Guerra, I.; Navas, N.; Rodríguez Simón, L.; Elert, K. Pigment-size effect on the physico-chemical behavior of azurite-tempera dosimeters upon natural and accelerated photo aging. Dyes Pigm. 2017, 141, 53–65. [Google Scholar] [CrossRef]
- Schmidt Patterson, C.; Walton, M.; Trentelman, K. Characterization of Lapis Lazuli Pigments Using a Multitechnique Analytical Approach: Implications for Identification and Geological Provenancing. Anal. Chem. 2009, 81, 8513–8518. [Google Scholar] [CrossRef]
- González-Cabrera, M.; Arjonilla, P.; Domínguez-Vidal, A.; Ayora-Cañada, M.J. Natural or synthetic? Simultaneous Raman/luminescence hyperspectral microimaging for the fast distinction of ultramarine pigments. Dyes Pigm. 2020, 178, 108349. [Google Scholar] [CrossRef]
- Van Loon, A.; Boon, J.J. Characterization of the deterioration of bone black in the 17th century Oranjezaal paintings using electron-microscopic and micro-spectroscopic imaging techniques. Spectrochim. Acta Part B At. Spectrosc. 2004, 59, 1601–1609. [Google Scholar] [CrossRef]
- Elert, K.; Herrera, A.; Cardell, C. Pigment-binder interactions in calcium-based tempera paints. Dyes Pigm. 2018, 148, 236–248. [Google Scholar] [CrossRef]
- Hradil, D.; Grygar, T.; Hradilová, J.; Bezdička, P. Clay and Iron Oxide Pigments in the History of Painting. Appl. Clay Sci. 2003, 22, 223–236. [Google Scholar] [CrossRef]
- Cotte, M.; Susini, J.; Metrich, N.; Moscato, A.; Gratziu, C.; Bertagnini, A.; Pagano, M. Blackening of Pompeian Cinnabar Paintings: X-Ray Microspectroscopy Analysis. Anal. Chem. 2006, 78, 7484–7492. [Google Scholar] [CrossRef]
- Miguel, C.; Pinto, J.V.; Clarke, M.; Melo, M.J. The Alchemy of Red Mercury Sulphide: The Production of Vermilion for Medieval Art. Dyes Pigm. 2014, 102, 210–217. [Google Scholar] [CrossRef]
- Gliozzo, E. Pigments—Mercury-Based Red (Cinnabar-Vermilion) and White (Calomel) and Their Degradation Products. Archaeol. Anthropol. Sci. 2021, 13, 210. [Google Scholar] [CrossRef]
- Gliozzo, E.; Ionescu, C. Pigments—Lead-Based Whites, Reds, Yellows and Oranges and Their Alteration Phases. Archaeol. Anthropol. Sci. 2022, 14, 17. [Google Scholar] [CrossRef]
- Keune, K.; Mass, J.; Mehta, A.; Church, J.; Meirer, F. Analytical Imaging Studies of the Migration of Degraded Orpiment, Realgar, and Emerald Green Pigments in Historic Paintings and Related Conservation Issues. Herit. Sci. 2016, 4, 10. [Google Scholar] [CrossRef]
- Kotulanová, E.; Bezdička, P.; Hradil, D.; Hradilová, J.; Švarcová, S.; Grygar, T. Degradation of Lead-Based Pigments by Salt Solutions. J. Cult. Herit. 2009, 10, 367–378. [Google Scholar] [CrossRef]
- Švarcová, S.; Hradil, D.; Hradilová, J.; Čermáková, Z. Pigments—Copper-Based Greens and Blues. Archaeol. Anthropol. Sci. 2021, 13, 190. [Google Scholar] [CrossRef]
- Favaro, M.; Guastoni, A.; Marini, F.; Bianchin, S.; Gambirasi, A. Characterization of Lapis Lazuli and Corresponding Purified Pigments for a Provenance Study of Ultramarine Pigments Used in Works of Art. Anal. Bioanal. Chem. 2012, 402, 2195–2208. [Google Scholar] [CrossRef]
- Salvadó, N.; Butí, S.; Aranda MA, G.; Pradell, T. New Insights on Blue Pigments Used in 15th Century Paintings by Synchrotron Radiation-Based Micro-FTIR and XRD. Anal. Methods 2014, 6, 3610. [Google Scholar] [CrossRef]
- Ganio, M.; Pouyet, E.S.; Webb, S.M.; Schmidt Patterson, C.M.; Walton, M.S. From Lapis Lazuli to Ultramarine Blue: Investigating Cennino Cennini’s Recipe Using Sulfur K-Edge XANES. Pure Appl. Chem. 2018, 90, 463–475. [Google Scholar] [CrossRef]
- Tomasini, E.; Siracusano, G.; Maier, M.S. Spectroscopic, Morphological and Chemical Characterization of Historic Pigments Based on Carbon. Paths for the Identification of an Artistic Pigment. Microchem. J. 2012, 102, 28–37. [Google Scholar] [CrossRef]
- Clark, R.N. Reflectance Spectra. In Rock Physics and Phase Relations: A Handbook of Physical Constants; Ahrens, T.J., Ed.; American Geophysical Union: Washington, DC, USA, 1995; Volume 3, pp. 178–188. [Google Scholar]
Color | Samples | Pigment | Kremer Code | Grain Size | Chemical Composition | |
---|---|---|---|---|---|---|
Frescos | Lime Painting | |||||
Red | P01 | PL01 | Hematite | 48651 | 1.25 ± 0.15 μm | Fe2O3 |
P02 | PL02 | Red ochre | 11273 | 0–80 μm | - | |
P03 | PL03 | Minium | 42500 | - | Pb3O4 | |
P04 | PL04 | Cinnabar | 10625 | 20–50 μm | HgS | |
P05 | PL05 | Realgar | 10800 | 175 µm | As4S4 | |
Yellow | P06 | PL06 | Yellow ochre | 11272 | 0–80 μm | - |
P07 | PL07 | Massicot | 43010 | 8–11 µm | PbO | |
Green | P08 | PL08 | Green earth | 11010 | 0–80 μm | K(MgFe3+)(Si4O10)(OH)2 |
P09 | PL09 | Malachite | 10300 | 0–120 µm | CuCO3·Cu(OH)2 | |
P10 | PL10 | Verdigris | 44450 | - | C4H6CuO4·H2O, Cu(CH3COO)2·[Cu(OH)2]3·2H2O | |
Blue | P11 | PL11 | Azurite | 10200 | 0–120 μm | 2CuCO3·Cu(OH)2 |
P12 | PL12 | Egyptian blue | 10060 | < 120 µm | CaCuSi4O10 | |
P13 | PL13 | Lapis lazuli | 10520 | - | (Na,Ca)8[(SO4,S,Cl)2(AlSiO4)6] | |
Brown | P14 | PL14 | Brown earth | 11620 | - | - |
Black | P15 | PL15 | Bone black | 47100 | 50–300 µm | C |
P16 | PL16 | Vine black | 47000 | <70 µm (max. 15–50) | C | |
P17 | PL17 | Ivory black | 12000 | ~10 µm | C | |
White | P18 | PL18 | Bianco San Giovanni | 11415 | <150 µm | Ca(OH)2 |
Sample | Color | Pigments | Site | References | |||
---|---|---|---|---|---|---|---|
MR1 | Red | Hematite (70) | Cinnabar (10) | Minium (10) | Realgar (10) | St. Maria Veterana church, 9th–15th century, Triggiano (Bari) | [27] |
MR2a | Red | Red ochre (75) | Hematite (25) | Festoni Tomb, 3rd–2nd century BC, Taranto | [32] | ||
MR2b | Red ochre (50) | Hematite (50) | |||||
MR2c | Red ochre (25) | Hematite (75) | |||||
MR3a | Red | Hematite (75) | Minium (25) | St. Matteo all’Arena Hypogeum, 12th–13th century, Monopoli (Bari) | [24] | ||
MR3b | Hematite (50) | Minium (50) | |||||
MR3c | Hematite (25) | Minium (75) | |||||
MR4a | Dark red | Red ochre (75) | Vine black (25) | St. Angelo in cryptis cave, 11th–16th century, Santeramo in Colle (Bari) | [25] | ||
MR4b | Red ochre (50) | Vine black (50) | |||||
MR4c | Red ochre (25) | Vine black (75) | |||||
MR5a | Dark red | Red ochre (75) | Brown earth (25) | Gonfalone crypt, 9th–16th century, Tricase (Lecce) | [26] | ||
MR5b | Red ochre (50) | Brown earth (50) | |||||
MR5c | Red ochre (25) | Brown earth (75) | |||||
MR6a | Orange | Red ochre (75) | Yellow ochre (25) | St. Maria Veterana church, 9th–15th century, Triggiano (Bari) | [27] | ||
MR6b | Red ochre (50) | Yellow ochre (50) | |||||
MR6c | Red ochre (25) | Yellow ochre (75) | |||||
MR7a | Pink | Hematite (75) | Bianco San Giovanni (25) | St. Maria Veterana church, 9th–15th century, Triggiano (Bari) | [27] | ||
MR7b | Hematite (50) | Bianco San Giovanni (50) | |||||
MR7c | Hematite (25) | Bianco San Giovanni (75) | |||||
MR8 | Pink | BiancoSan Giovanni (50) | Hematite (30) | Yellow ochre (20) | St. Maria Veterana church, 9th–15th century, Triggiano (Bari) | [27] | |
MY1a | Yellow-brown | Yellow ochre (75) | Vine black (25) | St. Angelo in cryptis cave, 11th–16th century, Santeramo in Colle (Bari) | [25] | ||
MY1b | Yellow ochre (50) | Vine black (50) | |||||
MY1c | Yellow ochre (25) | Vine black (75) | |||||
MY2a | Yellow | Yellow ochre (75) | Massicot (25) | St. Maria Veterana church, 9th–15th century, Triggiano (Bari); Santi Stefani crypt at Vaste, 11th–16th century, Lecce; Santa Maria delle Cerrate, 12th–13th century, Lecce | [27,30,31] | ||
MY2b | Yellow ochre (50) | Massicot (50) | |||||
MY2c | Yellow ochre (25) | Massicot (75) | |||||
MG1a | Dark green | Green earth (75) | Malachite (25) | Gonfalone crypt, 9th–16th century, Tricase (Lecce) | [26] | ||
MG1b | Green earth (50) | Malachite (50) | |||||
MG1c | Green earth (25) | Malachite (75) | |||||
MG2 | Green | Green earth (90) | Egyptian blue (10) | Festoni Tomb, 3rd–2nd century BC, Taranto | [32] | ||
MG3 | Green | Green earth (50) | Verdigris (40) | Vine black (10) | St. Maria Veterana church, 9th–15th century, Triggiano (Bari) | [27] | |
MBG1 | Blue-grey | Vine black (50) | Bianco San Giovanni (30) | Yellow ochre (20) | Seppannibale temple, 10th–11th century, Fasano (Bari); St. Maria Veterana church, 9th–15th century, Triggiano (Bari) | [27,28,29] | |
MBG2 | Blue-grey | Vine black (40) | Bianco San Giovanni (30) | Yellow ochre (10) | Red ochre (10) | St. Angelo in cryptis cave, 11th–16th century, Santeramo in Colle (Bari); Festoni Tomb, 3rd–2nd century BC, Taranto | [25,32] |
MBG3 | Blue-grey | Bone black (40) | Bianco San Giovanni (30) | Yellow ochre (10) | Red ochre (10) | St. Maria Veterana church, 9th–15th century, Triggiano (Bari) | [27] |
MB1 | Black-brown | Vine black (50) | Yellow ochre (30) | Green earth (20) | St. Maria Veterana church, 9th–15th century, Triggiano (Bari) | [27] | |
MB2 | Black-blue | Vine black (90) | Red ochre (10) | Santi Stefani crypt at Vaste, 11th–16th century, Lecce | [31] | ||
MB3 | Black-blue | Bone black (90) | Red ochre (10) | Santi Stefani crypt at Vaste, 11th–16th century, Lecce | [31] |
Pigment | Mineralogical Phases |
---|---|
Hematite | hematite 1 (Fe2O3); dolomite 2 (CaMg(CO3)2); illite 3 (Al4H12KO18Si8) |
Red ochre | hematite 4 (Fe2O3); quartz 5 (SiO2); gypsum 6 (CaSO4·2H2O); illite 7 (Al4H12KO18Si8); potassium feldspar 8 (KAlSi3O8) |
Minium | minium 9 (Pb3O4) |
Cinnabar | cinnabar 10 (HgS); galena 11 (PbS) |
Realgar | realgar 12 (As4S4); alacranite 13 (AsS); orpiment 14 (As2S3); dimorphite 15 (As4S3); quartz 16 (SiO2); cristobalite 17 (SiO2) |
Yellow ochre | goethite 18 (FeO(OH)); quartz 19 (SiO2); gypsum 20 (CaSO4·2H2O); calcite 21 (CaCO3); chlorite 22 |
Massicot | massicot 23 (PbO); chalcopyrite 24 (CuFeS2); bindheimite 25 (Pb2Sb2O6 (O,OH)); pyrophyllite 26 (Al2Si4O10(OH)2) |
Green earth | calcite 27 (CaCO3); celadonite 28 (K(MgFe3+)(Si4O10)(OH)2); phillipsite 29 (KCa(Si5Al3)O16·6H2O); montmorillonite 30 |
Malachite | malachite 31 (Cu2CO3·(OH)2); quartz 32 (SiO2); orthoferrosilite 33 (FeSiO3) |
Verdigris | copper acetate hydrate 34 ((CH3COO)2Cu·H2O); quartz 35 (SiO2) |
Azurite | azurite 36 (Cu3(CO3)2·(OH)2); quartz 37 (SiO2); kaolinite 38 (Al2(Si2O5)(OH)4); muscovite 39 |
Egyptian blue | cuprorivaite 40 (CaCuSi4O10); |
Lapis lazuli | lazurite 41 (Na6Ca2Al6Si6O24 (SO4)2); wollastonite 42 (CaSiO3); biotite 43 (K(Mg, Fe+2)3(Al, Fe+3) Si3O10 (OH, F)2; sodalite 44 (Na8Si6Al6O24Cl2) |
Brown earth | hematite 45 (Fe2O3); goethite 46 (FeO(OH)); oehmite 47 (AlO(OH)); anatase 48 (TiO2); cristobalite 49 (SiO2) |
Ivory black | hydroxyapatite 50 (Ca10 (PO4)6(OH)2); whitlockite 51 (Ca3(PO4)2) |
Bianco di S. Giovanni | calcite 52 (CaCO3); portlandite 53 (CaOH2) |
Color | Pigment | Sample | Texture | D Moda | Color | Morfology | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Unpolarised Light | Polarised Light | |||||||||||||||
Hue | Saturation | Brightness | Gloss | Hue | Saturation | Brightness | Gloss | Shape | Rounding | Edge | Appearence | |||||
Red | Hematite | P01 | unimodal | n.v. | red | medium | medium | n.v. | red | medium | medium | n.v. | n.v. | n.v. | n.v. | n.v. |
Red ochre | P02 | bimodal | 25 µm | red | medium-low | low | low | red | medium-low | low | low | massive | rounded | sharp | intact | |
n.v. | red | medium-low | low | n.v. | red | medium-low | low | n.v. | n.v. | n.v. | n.v. | n.v. | ||||
Cinnabar | P04 | unimodal | 20 µm | magenta | high | medium | high | magenta | high | medium | low | massive | angular | thick | mixed | |
Brown earth | P14 | bimodal | 20 µm | red | low | low | low | red | low | low | low | massive | rounded | sharp | intact | |
n.v. | red | low | low | low | red | low | low | low | massive | rounded | sharp, thick | intact | ||||
Orange | Minium | P03 | unimodal | n.v. | orange | high | high | n.v. | orange | high | high | n.v. | n.v. | n.v. | n.v. | n.v. |
Realgar | P05 | bimodal | 100 µm | yellow | high | high | high | yellow | high | high | high | prismatic | angular | sharp, thick | intact | |
50 µm | red | high | high | high | red | high | high | high | prismatic | angular | sharp | mixed | ||||
Yellow | Yellow ochre | P06 | bimodal | n.v. | yellow | low | low | n.v. | yellow | low | low | n.v. | n.v. | n.v. | n.v. | n.v. |
30 µm | yellow | low | low | low | yellow | low | low | low | massive | rounded | sharp | intact | ||||
Massicot | P07 | unimodal | 10 µm | yellow | high | high | medium | yellow | high | high | medium | massive | mixed | soft | intact | |
Green | Green earth | P08 | bimodal | n.v. | green | low | medium | n.v. | green | low | low | n.v. | n.v. | n.v. | n.v. | n.v. |
35 µm | green | low | low | low | green | low | low | low | massive | rounded | sharp | intact | ||||
Malachite | P09 | unimodal | 50 µm | green | medium-high | high | high | green | high | high | high | elongated | angular | soft | fractured | |
Blue | Verdigris | P10 | bimodal | 60 µm | cyan | high | high | medium | cyan | high | high | medium | acicular | angular | soft | intact |
80 µm | blue | high | high | medium | blue | high | high | medium | massive | rounded | thick | intact | ||||
Lapis lazuli | P11 | unimodal | 15 µm | blue | high | medium-high | medium | blue | high | medium-high | medium | prismatic | angular | sharp | fractured | |
Egyptian blue | P12 | unimodal | 60 µm | blue | high | high | high | blue | high | high | low | massive | mixed | sharp | intact | |
Lazurite | P13 | unimodal | 10 µm | blue | high | medium-high | low | blue | high | medium-high | low | tabular | mixed | sharp | intact | |
Black | Bone black | P15 | unimodal | n.v. | black | medium | medium-high | medium | black | low | low | low | n.v. | n.v. | n.v. | n.v. |
Vine black | P16 | unimodal | 10 µm | black | medium | medium-high | high | black | low | low | low | tabular | angular | soft | intact | |
Ivory black | P17 | unimodal | 30 µm | black | medium | medium | medium | black | low | low | low | massive | rounded | soft | intact | |
White | Bianco San Giovanni | MR7, MR8, MBG1, MBG2, MBG3 | unimodal | 80 µm | white | n.v. | n.v. | n.v. | white | n.v. | n.v. | n.v. | spherical | rounded | sharp | intact |
Pigment | Sample | FORS Spectral Features |
---|---|---|
Hematite | P01 | ~750 nm (max) |
Red ochre | P02 | ~750 nm (max); absorption after ~800 nm |
Minium | P03 | ~560 nm (i.p.); reflectance increasing from ~535 nm |
Cinnabar | P04 | ~600 nm (i.p.); reflectance increasing from ~570 nm |
Realgar | P05 | ~580 nm (max); sharp positive slope between 500 and 600 nm |
Yellow ochre | P06 | ~770 nm (max) |
Massicot | P07 | ~525 nm (i.p.); reflectance increasing from ~420 nm |
Green earth | P08 | ~570 nm (max); ~810 nm (max) |
Malachite | P09 | ~545 nm (max); 600–900 nm (absorbance band) |
Verdigris | P10 | ~480 nm (max); 510–900 (absorbance band) |
Azurite | P11 | ~625 nm (min) |
Egyptian blue | P12 | ~450 nm (max); ~635 nm (min.); ~800 nm (min); ~360 nm (i.p.) |
Lapis lazuli | P13 | ~450 nm (max); ~600 nm (min.); ~700 nm (i.p.) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fioretti, G.; Clausi, M.; Eramo, G.; Longo, E.; Monno, A.; Pinto, D.; Tempesta, G. A Non-Invasive and Sustainable Characterization of Pigments in Wall Paintings: A Library of Apulian Colors. Heritage 2023, 6, 1567-1593. https://doi.org/10.3390/heritage6020084
Fioretti G, Clausi M, Eramo G, Longo E, Monno A, Pinto D, Tempesta G. A Non-Invasive and Sustainable Characterization of Pigments in Wall Paintings: A Library of Apulian Colors. Heritage. 2023; 6(2):1567-1593. https://doi.org/10.3390/heritage6020084
Chicago/Turabian StyleFioretti, Giovanna, Marina Clausi, Giacomo Eramo, Elisabetta Longo, Alessandro Monno, Daniela Pinto, and Gioacchino Tempesta. 2023. "A Non-Invasive and Sustainable Characterization of Pigments in Wall Paintings: A Library of Apulian Colors" Heritage 6, no. 2: 1567-1593. https://doi.org/10.3390/heritage6020084
APA StyleFioretti, G., Clausi, M., Eramo, G., Longo, E., Monno, A., Pinto, D., & Tempesta, G. (2023). A Non-Invasive and Sustainable Characterization of Pigments in Wall Paintings: A Library of Apulian Colors. Heritage, 6(2), 1567-1593. https://doi.org/10.3390/heritage6020084