Tourism, Scientific, and Didactic Potential of the Ultrabasic-Alkaline Intrusion in Afrikanda with Perovskite Mineral (Kola Peninsula, N Russia) and of the Related Built Heritage
Abstract
:1. Introduction
2. Geographical and Geological Settings
2.1. Field Observation
2.2. Historical Mine Objects
2.3. Geology and Geomorphology of Afrikanda
3. Materials and Methods
4. Results
- Site 1. The highest level of the main quarry
- Site 2. The main exploitation level of the quarry
- Site 3. The lower part of the quarry
- Site 4. The historical legacy of exploration of this region
- Site 5. Another historical legacy of exploration
- Site 6. Small quarry
- Site 7. Processing facilities
- Site 8. Excavations with pegmatite occurrences
- Site 9. Traces of a former camp
- Site 10. The shore of Lake Iamandra
- Site 11. Afrikanda village
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arzamastsev, A.A.; Arzamastseva, L.V.; Travin, A.V.; Belyatsky, B.V.; Shamatrina, A.M.; Antonov, A.V.; Larionov, A.N.; Rodionov, N.V.; Sergeev, S.A. Duration of formation of magmatic system of polyphase Paleozoic alkaline complexes of the central Kola: U-Pb, Rb-Sr, Ar-Ar data. Dokl. Earth Sci. 2007, 413, 432–436. [Google Scholar] [CrossRef]
- Arzamastsev, A.A.; Arzamastseva, L.V. Geochemical indicators of the evolution of the ultrabasic-alkaline series of Paleozoic massifs of the Fennoscandian shield. Petrology 2013, 21, 249–279. [Google Scholar] [CrossRef]
- Kukharenko, A.A. Caledonian Complex Ultrabasic Alkaline Rocks and Carbonatites of the Kola Peninsula and Northern Karelia; Nedra: Moscow, Russia, 1965; p. 215. (In Russian) [Google Scholar]
- Kogarko, L.N. Conditions of accumulation of radioactive metals in the process of differentiation of ultrabasic alkaline-carbonatite rock associations. Geol. Ore Depos. 2014, 56, 230–238. [Google Scholar] [CrossRef]
- Mitrofanov, A.F. Geological Characteristics of Kola Peninsula; Kola Science Center of Russian Academy of Sciences: Apatity, Russia, 2000; p. 166. [Google Scholar]
- Corfu, F.; Bayanova, T.B.; Shchiptsov, V.; Frantz, N. U-Pb ID-TIMS age of the Tiksheozero carbonatite: Expression of 2.0 Ga alkaline magmatism in Karelia, Russia. Open Geosci. 2011, 3, 302–308. [Google Scholar] [CrossRef]
- Arzamastsev, A.A.; Vesolovskiy, R.V.; Travin, A.V.; Yudin, D.S.; Belyatsky, B. Paleozoic tholeiitic magmatism of the Kola province: Spatial distribution, age, and relation to alkaline magmatism. Petrology 2017, 25, 42–65. [Google Scholar] [CrossRef]
- Arzamastsev, A.; Bea, F.; Arzamastseva, L.V.; Montero, P. Proterozoic Gremyakha-Vyrmes Polyphase Massif, Kola Peninsula: An example of mixing basic and alkaline mantle melts. Petrology 2006, 14, 361–389. [Google Scholar] [CrossRef]
- Kramm, U.; Kogarko, L.; Kononova, V.; Vartiainen, H. The Kola Alkaline Province of the CIS and Finland: Precise RbSr ages define 380–360 Ma age range for all magmatism. Lithos 1993, 30, 33–44. [Google Scholar] [CrossRef]
- Kogarko, L. Zirconium and hafnium fractionation in differentiation of alkali carbonatite magmatic systems. Geol. Ore Depos. 2016, 58, 173–181. [Google Scholar] [CrossRef]
- Kogarko, L.N. A New Geochemical Criterion for Rare-Metal Mineralization of High-Alkalic Magmas (Lovozero Deposit, Kola Peninsula). Dokl. Earth Sci. 2019, 487, 922–924. [Google Scholar] [CrossRef]
- Kozlov, E.N.; Arzamastsev, A.A. Petrogenesis of metasomatic rocks in the fenitized zones of the Ozernaya Varaka alkaline ultrabasic complex, Kola Peninsula. Petrology 2015, 23, 45–67. [Google Scholar] [CrossRef]
- Bayanova, T.B.; Pozhylienko, V.I.; Smolkin, V.F.; Kudryshov, N.M.; Kaulina, T.V.; Vetrin, V.R. Katalogue of the Geochronology Data of N-E Part of the Baltic Shield; Kola Science Center of Russian Academy of Sciences: Apatity, Russia, 2002; p. 53. (In Russian) [Google Scholar]
- Kogarko, L.N. Fractionation of zirconium and hafnium during evolution of a highly alkaline magmatic system, Lovozero massif, Kola Peninsula. Dokl. Earth Sci. 2015, 463, 792–794. [Google Scholar] [CrossRef]
- Britvin, S.N.; Ivanov, G.Y.; Yakuvenchuk, V.N. Mineralogical Accessory on the Kola Peninsula; World of Stones: Apatity, Russia, 1995; p. 56. (In Russian) [Google Scholar]
- Huber, M. Ultrabassic -Alkaline Intrusion in Afrikanda (N Russia) Petrology–Geochemistry Analysis; Sciences Publisher: Lublin, Poland, 2017; p. 87. (In Polish) [Google Scholar]
- Boruckiy, B.E. Rock-Forming Minerals of the High-Alkaline Complexes; Nauka Publ.: Apatity, Russia, 1989; p. 214. (In Russian) [Google Scholar]
- Glebovitsky, V.A. Early Precambrian of the Baltic Shield; Nauka: St Petersburg, Russia, 2005; p. 710. [Google Scholar]
- Pozhilienko, V.I.; Gavrilenko, B.V.; Zhirov, C.V.; Zhabin, S.V. Geology of Mineral Areas of the Murmansk Region; Kola Scientific Center, Russian Academy of Sciences: Moscow, Russia, 2002; p. 360. (In Russian) [Google Scholar]
- Kiptenko, V.; Lyubitseva, O.; Malska, M.; Rutynskiy, M.; Zan’Ko, Y.; Zinko, J. Geography of Tourism of Ukraine. In The Geography of Tourism of Central and Eastern European Countries; Springer International Publishing AG: Wroclaw, Poland, 2017; pp. 509–551. [Google Scholar]
- Popa, R.-G.; Andrășanu, A. The SEA and Big-S Models for Managing Geosites as Resources for Local Communities in the Context of Rural Geoparks. Geoheritage 2016, 9, 175–186. [Google Scholar] [CrossRef]
- Fanasev, B.V. Mineral Resources of the Alkaline –Ultrabasic Massifs of the Kola Peninsula; Kola Science Center of Russian Academy of Sciences: Apatity, Russia, 2011; p. 151. (In Russian) [Google Scholar]
- Huber, M.; Iakovleva, O.; Zhigunova, G.; Menshakova, M.; Ramziya, R.G.; Moroniak, M. Geoheritage of the Western Khibiny Ingenious Alkaline Rocks Intrusion (Kola Peninsula, Arctic Russia): Evaluation and Geotourism opportunities. Geoheritage 2021, 13, 1–18. [Google Scholar] [CrossRef]
- Konstantinova, A.S.; Koryakin, O.A. P Makarova, V.V. Bianchi—Kemerovo, A.A. Red Book of the Murmansk Region, 2nd ed.; Asia-print: Moscow, Russia, 2014; p. 584. [Google Scholar]
- Historical Portal of Murmansk Region. Available online: http://region.murman.ru/history/kola_land/ (accessed on 1 October 2019).
- James-Williamson, S.A.; Aratram, M.; Green, P.E. Protecting Geoheritage in the Caribbean—Insights from Jamaica. Geoheritage 2017, 9, 195–209. [Google Scholar] [CrossRef]
- Williams, F. Safeguarding Geoheritage in Ethiopia: Challenges Faced and the Role of Geotourism. Geoheritage 2020, 12, 1–22. [Google Scholar] [CrossRef]
- Woo, K.S.; Chun, S.S.; Moon, K.O. Outstanding Geoheritage Values of the Island-Type Tidal Flats in Korea. Geoheritage 2020, 12, 8. [Google Scholar] [CrossRef]
- Brihla, J. Geoheritage: Inventories and Evaluation. In Geoheritage, Assessment, Protection, and Management; Reynard, E., Brilha, J., Eds.; Elsevier: Amsterdam, Holland, 2018; pp. 67–86. [Google Scholar]
- Brilha, J.B. Inventory and Quantitative Assessment of Geosites and Geodiversity Sites: A Review. Geoheritage 2016, 8, 119–134. [Google Scholar] [CrossRef] [Green Version]
- Vujičić, M.D.; Vasiljević, D.A.; Marković, S.B.; Hose, T.A.; Lukić, T.; Hadžić, O.; Janićević, S. Preliminary geosite assessment model (GAM) and its application on Fruška Gora Mountain, potential geotourism destination of Serbia. Acta Geogr. Slov. 2011, 51, 361–377. [Google Scholar] [CrossRef]
- United Nations Educational, Scientific, and Cultural Organization. UNESCO Geoparks Programme—A new initiative to promote a global network of Geoparks safeguarding, and developing selected areas having significant geological features. In Proceedings of the Executive Board Meeting, Hundred, and Fifty-Sixth Session (156 EX/11 Rev.), 15 April 1999; Paris, France; p. 3. [Google Scholar]
- United Nations Educational, Scientific, and Cultural Organization. Global Geoparks Network. Available online: https://en.unesco.org/global-geoparks (accessed on 1 October 2021).
- Sinnyovsky, D.; Sachkov, D.; Tsvetkova, I.; Atanasova, N. Geomorphosite Characterization Method for the Purpose of an Aspiring Geopark Application Dossier on the Example of Maritsa Cirque Complex in Geopark Rila, Rila Mountain, SW Bulgaria. Geoheritage 2020, 12, 26. [Google Scholar] [CrossRef]
- Pijet-Migoń, E.; Migoń, P. Promoting and Interpreting Geoheritage at the Local Level—Bottom-up Approach in the Land of Extinct Volcanoes, Sudetes, SW Poland. Geoheritage 2019, 11, 1227–1236. [Google Scholar] [CrossRef] [Green Version]
- Farsani, N.T.; Esfahani, M.A.G.; Shokrizadeh, M. Understanding Tourists’ Satisfaction and Motivation Regarding Mining Geotours (Case Study: Isfahan, Iran). Geoheritage 2018, 11, 681–688. [Google Scholar] [CrossRef]
- Gravis, I.; Németh, K.; Twemlow, C.; Németh, B. The Case for Community-Led Geoheritage and Geoconservation Ventures in Māngere, South Auckland, and Central Otago, New Zealand. Geoheritage 2020, 12, 1–24. [Google Scholar] [CrossRef]
- Murmansk Visitor Center. Available online: https://visitmurmansk.info/en/ (accessed on 17 July 2021).
- Koizumi, T.; Chakraborty, A. Geoecotourism and environmental conservation education: Insights from Japan. Geojournal 2015, 81, 737–750. [Google Scholar] [CrossRef]
- Brock, M.; Semeniuk, V. Geoheritage and geoconservation—history, definition, scope, and scale. J. R. Soc. West. Aust. 2007, 90, 53–87. [Google Scholar]
- Crofts, R.; Gordon, J.E.; Santucci, V.L. Geoconservation in protected areas. In Protected Area Governance and Management; Worboys, G.L., Ed.; ANU Press: Canberra, Australia, 2015; pp. 533–568. [Google Scholar]
- Burek, C.V.; Prosser, C.D. The history of geoconservation: An introduction. Geol. Soc. Lond. Spéc. Publ. 2008, 300, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Prosser, C.D. Geoconservation, Quarrying and Mining: Opportunities and Challenges Illustrated Through Working in Partnership with the Mineral Extraction Industry in England. Geoheritage 2018, 10, 259–270. [Google Scholar] [CrossRef]
- Dos Santos, W.F.S.; Carvalho, I.; Brilha, J. Public Understanding on Geoconservation Strategies at the Passagem das Pedras Geosite, Paraíba (Brazil): Contribution to the Rio do Peixe Geopark Proposal. Geoheritage 2019, 11, 2065–2077. [Google Scholar] [CrossRef]
- Burek, C. The Role of LGAPs (Local Geodiversity Action Plans) and Welsh RIGS as Local Drivers for Geoconservation within Geotourism in Wales. Geoheritage 2012, 4, 45–63. [Google Scholar] [CrossRef]
- Henriques, M.H.; Dos Reis, R.P.; Brilha, J.B.; Mota, T. Geoconservation as an Emerging Geoscience. Geoheritage 2011, 3, 117–128. [Google Scholar] [CrossRef] [Green Version]
Name of Site | Geographic Position | |
---|---|---|
Site 1. The highest level of the main quarry | 67°25′53.5″ N | 32°45′28.6″ E |
Site 2. The main exploitation level of the quarry | 67°25′51.4″ N | 32°45′20.2″ E |
Site 3. The lower part of the quarry | 67°25′52.7″ N | 32°45′16.4″ E |
Site 4. The historical legacy of exploration of this region | 67°25′59.4″ N | 32°45′21.1″ E |
Site 5. Another historical legacy of exploration | 67°26′02.3″ N | 32°45′12.8″ E |
Site 6. Small quarry | 67°25′52.9″ N | 32°44′34.4″ E |
Site 7. Processing facilities | 67°26′26.5″ N | 32°43′46.1″ E |
Site 8. Excavations with pegmatite occurrences | 67°26′15.9″ N | 32°44′42.3″ E |
Site 9. Traces of a former camp | 67°26′18.1″ N | 32°43′57.5″ E |
Site 10. The shore of Lake Iamandra | 67°26′43.0″ N | 32°46′08.8″ E |
Site 11. Afrikanda village | 67°26′28.0″ N | 32°45′59.6″ E |
Site No. | Values Type | Total | |||
---|---|---|---|---|---|
Geology | Natural | Historical | Inanimate Nature | ||
1 | 0.5 | 0.5 | 0.25 | 0.25 | 1.50 |
2 | 1.00 | 0.00 | 0.25 | 0.5 | 1.75 |
3 | 1.00 | 0.00 | 0.25 | 0.25 | 1.50 |
4 | 1.00 | 0.00 | 0.5 | 0.25 | 1.75 |
5 | 1.00 | 0.75 | 0.5 | 0.25 | 2.50 |
6 | 0.75 | 0.75 | 0.25 | 0.25 | 2.00 |
7 | 0.00 | 0.00 | 0.25 | 0.00 | 0.25 |
8 | 1.00 | 0.75 | 0.25 | 0.25 | 2.25 |
9 | 0.00 | 0.25 | 0.75 | 0.00 | 1.00 |
10 | 0.25 | 0.25 | 0.00 | 0.75 | 1.25 |
11 | 0.00 | 0.00 | 0.25 | 0.00 | 0.25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huber, M.; Iakovleva, O. Tourism, Scientific, and Didactic Potential of the Ultrabasic-Alkaline Intrusion in Afrikanda with Perovskite Mineral (Kola Peninsula, N Russia) and of the Related Built Heritage. Heritage 2021, 4, 3892-3907. https://doi.org/10.3390/heritage4040213
Huber M, Iakovleva O. Tourism, Scientific, and Didactic Potential of the Ultrabasic-Alkaline Intrusion in Afrikanda with Perovskite Mineral (Kola Peninsula, N Russia) and of the Related Built Heritage. Heritage. 2021; 4(4):3892-3907. https://doi.org/10.3390/heritage4040213
Chicago/Turabian StyleHuber, Miłosz, and Olga Iakovleva. 2021. "Tourism, Scientific, and Didactic Potential of the Ultrabasic-Alkaline Intrusion in Afrikanda with Perovskite Mineral (Kola Peninsula, N Russia) and of the Related Built Heritage" Heritage 4, no. 4: 3892-3907. https://doi.org/10.3390/heritage4040213
APA StyleHuber, M., & Iakovleva, O. (2021). Tourism, Scientific, and Didactic Potential of the Ultrabasic-Alkaline Intrusion in Afrikanda with Perovskite Mineral (Kola Peninsula, N Russia) and of the Related Built Heritage. Heritage, 4(4), 3892-3907. https://doi.org/10.3390/heritage4040213