A Stochastic View of Varying Styles in Art Paintings
Abstract
:1. Introduction
2. Quantifying the Variability in Art Painting through the 2D Climacogram
3. Stochastic Evaluation in Arts
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Berlyne, D.E. Reviewed Work: Studies in the New Experimental Aesthetics: Steps toward an Objective Psychology of Aesthetic Appreciation. J. Aesthet. Art Crit. 1975, 34, 86–87. [Google Scholar]
- Fayn, K.; Silvia, P.J.; Erbas, Y.; Tiliopoulos, N.; Kuppens, P. Nuanced aesthetic emotions: Emotion differentiation is related to knowledge of the arts and curiosity. Cogn. Emot. 2017, 32, 593–599. [Google Scholar] [CrossRef] [PubMed]
- Mulkay, M.; Chaplin, E. Aesthetics and the Artistic Career: A Study of Anomie in Fine-Art Painting. Sociol. Q. 1982, 23, 117–138. [Google Scholar] [CrossRef]
- Gordon, D.A. Methodology in the Study of Art Evaluation. J. Aesthet. Art Crit. 1952, 10, 338. [Google Scholar] [CrossRef]
- Bourgeon-Renault, D. Evaluating Consumer Behaviour in the Field of Arts and Culture Marketing. Int. J. Arts Manag. 2000, 3, 4–18. [Google Scholar]
- Lombardi, T.E. The Classification of Style in Fine-Art Painting, School of Computer Science and Information Systems; Pace University: New York, NY, USA, 2005. [Google Scholar]
- Thomasson, A.L. The Ontology of Art and Knowledge in Aesthetics. J. Aesthet. Art Crit. 2005, 63, 221–229. [Google Scholar] [CrossRef]
- Swami, V. Context matters: Investigating the impact of contextual information on aesthetic appreciation of paintings by Max Ernst and Pablo Picasso. Psychol. Aesthet. Creat. Arts 2013, 7, 285–295. [Google Scholar] [CrossRef]
- Winston, A.S.; Cupchik, G.C. The evaluation of high art and popular art by naive and experienced viewers. Visual Arts Research 1992, 18, 1–14. [Google Scholar]
- Chiotinis, Μ. Beauty in Architecture As an Experience of Ontological Donation; National Technichal University of Athens: Athens, Greece, 2018. [Google Scholar] [CrossRef]
- Augello, A.; Infantino, I.; Maniscalco, U.; Pilato, G.; Rizzo, R.; Vella, F. Robotic intelligence and computational creativity. Encycl. Semantic Comput. Robot. Intell. 2018, 2, 1850011. [Google Scholar] [CrossRef]
- Carbonneau, M.-A.; Cheplygina, V.; Granger, E.; Gagnon, G. Multiple Instance Learning: A Survey of Problem Characteristics and Applications. Pattern Recognit. 2018, 77, 329–353. [Google Scholar] [CrossRef] [Green Version]
- Castellano, G.; Vessio, G. Towards a Tool for Visual Link Retrieval and Knowledge Discovery in Painting Datasets. In Digital Libraries: The Era of Big Data and Data Science; Ceci, M., Ferilli, S., Poggi, A., Eds.; IRCDL 2020, Communications in Computer and Information Science; Springer: Cham, Switzerland, 2021; Volume 1177. [Google Scholar]
- Collomosse, J.; Bui, T.; Wilber, M.; Fang, C.; Jin, H. Sketching with Style: Visual Search with Sketches and Aesthetic Context. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2679–2687. [Google Scholar]
- Jboor, N.H.; Belhi, A.; Al-Ali, A.K.; Bouras, A.; Jaoua, A. Towards an Inpainting Framework for Visual Cultural Heritage. In Proceedings of the 2019 IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology (JEEIT), Amman, Jordan, 9–11 April 2019; pp. 602–607. [Google Scholar]
- Correia, J.; Machado, P.; Romero, J.; Martins, P. Amílcar Cardoso F. Breaking the Mould An Evolutionary Quest for Innovation Through Style Change. In Computational Creativity. Computational Synthesis and Creative Systems; Veale, T., Cardoso, F., Eds.; Springer: Cham, Swizterland, 2019. [Google Scholar]
- Neumann, A.; Alexander, B.; Neumann, F. Evolutionary Image Transition and Painting Using Random Walks. Evol. Comput. 2020, 28, 643–675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carballal, A.; Santos, A.; Romero, J.; Machado, J.T.A.P.; Correia, J.; Castro, L. Distinguishing paintings from photographs by complexity estimates. Neural Comput. Appl. 2018, 30, 1957–1969. [Google Scholar] [CrossRef]
- De Caro, L.; Matricciani, E.; Fanti, G. Imaging Analysis and Digital Restoration of the Holy Face of Manoppello—Part II. Heritage 2018, 1, 349–364. [Google Scholar] [CrossRef] [Green Version]
- Shen, J. Stochastic modeling western paintings for effective classification. Pattern Recognit. 2009, 42, 293–301. [Google Scholar] [CrossRef]
- Florea, C.; Gieseke, F. Artistic movement recognition by consensus of boosted SVM based experts. J. Vis. Commun. Image Represent. 2018, 56, 220–233. [Google Scholar] [CrossRef]
- Tan, W.R.; Chan, C.S.; Aguirre, H.E.; Tanaka, K. Ceci n’est pas une pipe: A deep convolutional network for fine-art paintings classification. In Proceedings of the 2016 IEEE International Conference on Image Processing (ICIP), Phoenix, AZ, USA, 25–28 September 2016; pp. 3703–3707. [Google Scholar]
- Van Noord, N.; Postma, E. Learning scale-variant and scale-invariant features for deep image classification. Pattern Recognit. 2017, 61, 583–592. [Google Scholar] [CrossRef] [Green Version]
- Tan, W.R.; Chan, C.S.; Aguirre, H.E.; Tanaka, K. ArtGAN: Artwork synthesis with conditional categorical GANs. In Proceedings of the 2017 IEEE International Conference on Image Processing (ICIP), Beijing, China, 17–20 September 2017; pp. 3760–3764. [Google Scholar]
- Fuchs, R.; Hauser, H. Visualization of Multi-Variate Scientific Data. Comput. Graph. Forum 2009, 28, 1670–1690. [Google Scholar] [CrossRef]
- Lecoutre, A.; Negrevergne, B.; Yger, F. Recognizing Art Style Automatically in Painting with Deep Learning. JMLR Workshop Conf. Proc. 2017, 80, 1–17. [Google Scholar]
- Cetinic, E.; Lipic, T.; Grgic, S. Fine-tuning Convolutional Neural Networks for fine art classification. Expert Syst. Appl. 2018, 114, 107–118. [Google Scholar] [CrossRef]
- Cetinic, E.; Lipic, T.; Grgic, S. Learning the Principles of Art History with convolutional neural networks. Pattern Recognit. Lett. 2020, 129, 56–62. [Google Scholar] [CrossRef]
- Babak, S.; Elgammal, A. Large-Scale Classification of Fine-Art Paintings: Learning the Right Metric on the Right Feature. Int. J. Digit. Art Hist. 2016, 2, 70–93. [Google Scholar]
- Sandoval, C.; Pirogova, E.; Lech, M. Two-Stage Deep Learning Approach to the Classification of Fine-Art Paintings. IEEE Access 2019, 7, 41770–41781. [Google Scholar] [CrossRef]
- Wang, Z.; Lian, J.; Song, C.; Zhang, Z.; Zheng, W.; Yue, S.; Ji, S. SAS: Painting Detection and Recognition via Smart Art System with Mobile Devices. IEEE Access 2019, 7, 135563–135572. [Google Scholar] [CrossRef]
- Cetinic, E.; Lipic, T.; Grgic, S. A Deep Learning Perspective on Beauty, Sentiment, and Remembrance of Art. IEEE Access 2019, 7, 73694–73710. [Google Scholar] [CrossRef]
- Hayn-Leichsenring, G.U.; Lehmann, T.; Redies, C. Subjective Ratings of Beauty and Aesthetics: Correlations With Statistical Image Properties in Western Oil Paintings. i-Perception 2017, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sigaki, H.Y.D.; Perc, M.; Ribeiro, H.V. History of art paintings through the lens of entropy and complexity. Proc. Natl. Acad. Sci. USA 2018, 115, E8585–E8594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oomen, E. Classification of Painting Style with Transfer Learning. Master’s Thesis, Tilburg University, Tilburg, The Netherlands, 2018. [Google Scholar]
- Sabatelli, M.; Kestemont, M.; Daelemans, W.; Geurts, P. Deep Transfer Learning for Art Classification Problems; Springer Nature: London, UK, 2019; pp. 631–646. [Google Scholar]
- Carneiro, G.; da Silva, N.P.; Del Bue, A.; Costeira, J.P. Artistic Image Classification: An Analysis on the PRINTART Database. In Computer Vision—ECCV 2012; Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2012; Volume 7575. [Google Scholar]
- Crowley, E.J. Visual Recognition in Art using Machine Learning. Ph.D. Thesis, University of Oxford, Oxford, UK, 2016. [Google Scholar]
- Jafarpour, S.; Polatkan, G.; Brevdo, E.; Hughes, S.; Brasoveanu, A.; Daubechies, I. Stylistic Analysis of Paintings Usingwavelets and Machine Learning. In Proceedings of the 2009 17th European Signal Processing Conference, Glasgow, UK, 24–28 August 2009; pp. 1220–1224. [Google Scholar]
- Johnson, C.R.; Hendriks, E.; Berezhnoy, I.J.; Brevdo, E.; Hughes, S.M.; Daubechies, I.; Li, J.; Postma, E.; Wang, J.Z. Image processing for artist identification. IEEE Signal Process. Mag. 2008, 25, 37–48. [Google Scholar] [CrossRef]
- Yiyu, H.; Jongweon, K. Art Painting Identification using Convolutional Neural Network. Int. J. Appl. Eng. Res. 2017, 12, 532–539. [Google Scholar]
- Li, C.; Chen, T. Aesthetic Visual Quality Assessment of Paintings. IEEE J. Sel. Top. Signal Process. 2009, 3, 236–252. [Google Scholar] [CrossRef]
- Puthenputhussery, A.; Liu, Q.; Liu, C. Color multi-fusion fisher vector feature for fine art painting categorization and influence analysis. In Proceedings of the 2016 IEEE Winter Conference on Applications of Computer Vision (WACV), Lake Placid, NY, USA, 7–10 March 2016; pp. 1–9. [Google Scholar]
- Galanter, P. Computational Aesthetic Evaluation: Past and Future. In Computers and Creativity; McCormack, J., d’Inverno, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Koutsoyiannis, D. HESS Opinions “A random walk on water”. Hydrol. Earth Syst. Sci. 2010, 14, 585–601. [Google Scholar] [CrossRef] [Green Version]
- Koutsoyiannis, D. Stochastics of Hydroclimatic Extremes—A Cool Look at Risk; National Technical University of Athens: Athens, Greece, 2020; 330p. [Google Scholar]
- Dimitriadis, P. Hurst-Kolmogorov dynamics in hydrometeorological processes and in the microscale of turbulence. Ph.D. Thesis, National Technical University of Athens, Athens, Greece, 2017. [Google Scholar]
- Dimitriadis, P.; Koutsoyiannis, D.; Tzouka, K. Predictability in dice motion: How does it differ from hydrometeorological processes? Hydrol. Sci. J. 2016, 61, 1611–1622. [Google Scholar] [CrossRef] [Green Version]
- Christofides, A.; Efstratiadis, A.; Koutsoyiannis, D.; Sargentis, G.-F.; Hadjibiros, K. Resolving conflicting objectives in the management of the Plastiras Lake: Can we quantify beauty? Hydrol. Earth Syst. Sci. 2005, 9, 507–515. [Google Scholar] [CrossRef] [Green Version]
- Sargentis, G.-F.; Hadjibiros, K.; Christofides, A. Plastiras Lake: The impact of water level on the aesthetic value of the landscape. In Proceedings of the 9th International Conference on Environmental Science and Technology, Rhodes, Greece, 1–3 September 2005. [Google Scholar]
- Sargentis, G.-F.; Hadjibiros, K.; Papagiannakis, I.; Papagiannakis, E. Plastiras Lake: Influence of the relief on the revelation of the water presence. In Proceedings of the 9th International Conference on Environmental Science and Technology, Rhodes, Greece, 1–3 September 2005. [Google Scholar]
- Sargentis, G.-F.; Dimitriadis, P.; Ioannidis, R.; Iliopoulou, T.; Koutsoyiannis, D. Stochastic Evaluation of Landscapes Transformed by Renewable Energy Installa-tions and Civil Works. Energies 2019, 12, 2817. [Google Scholar] [CrossRef] [Green Version]
- Sargentis, G.-F.; Dimitriadis, P.; Koutsoyiannis, D. Aesthetical Issues of Leonardo Da Vinci’s and Pablo Picasso’s Paintings with Stochastic Evaluation. Heritage 2020, 3, 283–305. [Google Scholar] [CrossRef]
- Sargentis, G.-F.; Iliopoulou, T.; Sigourou, S.; Dimitriadis, P.; Koutsoyiannis, D. Evolution of Clustering Quantified by a Stochastic Method—Case Studies on Natural and Human Social Structures. Sustainability 2020, 12, 7972. [Google Scholar] [CrossRef]
- Sargentis, G.-F.; Ioannidis, R.; Iliopoulou, T.; Dimitriadis, P.; Koutsoyiannis, D. Landscape Planning of Infrastructure through Focus Points’ Clustering Analysis. Case Study: Plastiras Artificial Lake (Greece). Infrastructures 2021, 6, 12. [Google Scholar] [CrossRef]
- Ioannidis, R.; Dimitriadis, P.; Meletopoulos, I.T.; Sargentis, G.-F.; Koutsoyiannis, D. Investigating the spatial characteristics of GIS visibility analyses and their correlation to visual impact perception with stochastic tools. In EGU General Assembly Conference Abstracts; European Geosciences Union: Vienna, Austria, 2020; p. 18212. [Google Scholar]
- Manta, E.; Ioannidis, R.; Sargentis, G.-F.; Efstratiadis, A. Aesthetic Evaluation of Wind Turbines in Stochastic Setting: Case Study of Tinos Island, Greece. In European Geosciences Union General Assembly 2020, Geophysical Research Abstracts; EGU2020-5484; European Geosciences Union: Vienna, Austria, 2020; Volume 22. [Google Scholar] [CrossRef]
- Sargentis, G.-F.; Ioannidis, R.; Meletopoulos, I.T.; Dimitriadis, P.; Koutsoyiannis, D. Aesthetical issues with stochastic evaluation. In European Geosciences Union General Assembly 2020, Geophysical Research Abstracts; EGU2020-19832; European Geosciences Union: Vienna, Austria, 2020; Volume 22. [Google Scholar] [CrossRef]
- Koutsoyiannis, D. Encolpion of stochastics: Fundamentals of Stochastic Processes; National Technical University of Athens: Athens, Greece, 2013; 12p. [Google Scholar]
- Koutsoyiannis, D. Climacogram-Based Pseudospectrum: A Simple Tool to Assess Scaling Properties. In European Geosciences Union General Assembly 2013, Geophysical Research Abstracts; EGU2013-4209; European Geosciences Union: Vienna, Austria, 2013; Volume 15. [Google Scholar]
- Dimitriadis, P.; Koutsoyiannis, D. Climacogram versus autocovariance and power spectrum in stochastic modelling for Markovian and Hurst–Kolmogorov processes. Stoch. Environ. Res. Risk Assess. 2015, 29, 1649–1669. [Google Scholar] [CrossRef]
- Mandelbrot, B.B.; Van Ness, J.W. Fractional Brownian Motions, Fractional Noises and Applications. SIAM Rev. 1968, 10, 422–437. [Google Scholar] [CrossRef]
- Sargentis, G.-F.; Dimitriadis, P.; Iliopoulou, T.; Ioannidis, R.; Koutsoyiannis, D. Stochastic investigation of the Hurst-Kolmogorov behaviour in arts. In European Geosciences Union General Assembly 2018, Geophysical Research Abstracts; EGU2018-17082; European Geosciences Union: Vienna, Austria, 2018; Volume 20. [Google Scholar]
- Dimitriadis, P.; Tzouka, K.; Koutsoyiannis, D.; Tyralis, H.; Kalamioti, A.; Lerias, E.; Voudouris, P. Stochastic investigation of long-term persistence in two-dimensional images of rocks. Spat. Stat. 2019, 29, 177–191. [Google Scholar] [CrossRef]
- Beardsley, M.C. Aesthetics from Classical Greece to the Present: A Short History; University of Alabama Press: Tuscaloosa, AL, USA, 1975. [Google Scholar]
- Portrait Photographers. Available online: https://fixthephoto.com/best-portrait-photographers.html (accessed on 2 January 2021).
- Top 10 Photographers. Available online: https://www.bwvision.com/top-10-photographers/ (accessed on 2 January 2021).
- The 10 Most Famous Portrait Photographers in the World. Available online: https://blazepress.com/2014/12/10-famous-portrait-photographers-world/ (accessed on 2 January 2021).
- Painting. Available online: https://en.wikipedia.org/wiki/Painting (accessed on 2 January 2021).
- Portrait Painting. Available online: https://en.wikipedia.org/wiki/Portrait_painting (accessed on 2 January 2021).
- Speranzas Spyridon (Byzantine Artist). Available online: https://paletaart.wordpress.com/ (accessed on 2 January 2021).
- Cretan School. Available online: https://en.wikipedia.org/wiki/Cretan_School (accessed on 2 January 2021).
- Italian Renaissance Painting. Available online: https://en.wikipedia.org/wiki/Italian_Renaissance_painting (accessed on 2 January 2021).
- Albrecht Dürer. Available online: https://en.wikipedia.org/wiki/Albrecht_D%C3%BCrer (accessed on 2 January 2021).
- Titian. Available online: https://en.wikipedia.org/wiki/Titian (accessed on 2 January 2021).
- Impressionism. Available online: https://en.wikipedia.org/wiki/Impressionism (accessed on 2 January 2021).
- 20th-Century Art. Available online: https://en.wikipedia.org/wiki/20th-century_art (accessed on 2 January 2021).
- Rembrandt. Available online: https://en.wikipedia.org/wiki/Rembrandt (accessed on 2 January 2021).
- Pablo Picasso Self-Portraits. Available online: https://mymodernmet.com/pablo-picasso-self-portraits/ (accessed on 2 January 2021).
- John, B.; Patrick, A. (Eds.) Aristoteles, Poetics, Aριστοτέλης, Ποιητική 1447a. In Translated and with a Commentary by George Whalley; McGill-Queen’s University Press: London, UK, 1997; pp. 19–23. [Google Scholar]
- Beardsley, M.C.; Tatarkiewicz, W.; Czerniawski, A.; Czerniawski, A.; Harrell, J.; Montgomery, R.M.; Kisiel, C.A.; Besemeres, J.F.; Petsch, D. Tatarkiewicz’ History of Aesthetics. J. Hist. Ideas 1976, 37, 549. [Google Scholar] [CrossRef]
- Sargentis, G.-F. Use and Technical Aspects of Materials in Sculpture. Ph.D. Thesis, National Technical University of Athens, Athens, Greece, 2005. [Google Scholar] [CrossRef]
- Klee, P. Diary entry (Munich, 1909), # 857. In The Diaries of Paul Klee, 1898–1918; University of California Press: Berkeley, CA, USA, 1968; p. 236. [Google Scholar]
- Hurst, H.E. The Problem Of Long-Term Storage in Reservoirs. Int. Assoc. Sci. Hydrol. Bull. 1956, 1, 13–27. [Google Scholar] [CrossRef] [Green Version]
- Cohn, T.A.; Lins, H.F. Nature’s style: Naturally trendy. Geophys. Res. Lett. 2005, 32, L23402. [Google Scholar] [CrossRef] [Green Version]
- Koutsoyiannis, D.; Yao, H.; Georgakakos, A. Medium-range flow prediction for the Nile: A comparison of stochastic and deterministic methods/Prévision du débit du Nil à moyen terme: Une comparaison de méthodes stochastiques et déterministes. Hydrol. Sci. J. 2008, 53, 142–164. [Google Scholar] [CrossRef]
- Dimitriadis, P.; Koutsoyiannis, D. The mode of the climacogram estimator for a Gaussian Hurst-Kolmogorov process. J. Hydroinform. 2019, 22, 160–169. [Google Scholar] [CrossRef]
- Koutsoyiannis, D. Generic and parsimonious stochastic modelling for hydrology and beyond. Hydrol. Sci. J. 2016, 61, 225–244. [Google Scholar] [CrossRef]
- Ioannidis, R.; Dimitriadis, P.; Sargentis, G.-F.; Frangedaki, E.; Iliopoulou, T.; Koutsoyiannis, D. Stochastic similarities between natural processes and art: Application in the analysis and optimization of landscape aesthetics of renewable energy and civil works. In Geophysical Research Abstracts; European Geosciences Union: Vienna, Austria, 2019; Volume 21. [Google Scholar]
- Apollinaire, G. Les Peintres Cubistes: Méditations Esthétiques; Tous Les Arts: Paris, France, 1913. [Google Scholar]
- Sargentis, G.-F. Aesthetic Element in Water, Hydraulic Works and Dams. Master’s Thesis, National Technical University of Athens, Athens, Greece, 1998. [Google Scholar] [CrossRef]
- Sant Gregory of Nyssa (Άγιος Γρηγόριος Νύσσης), About Christian Perfection (Περί Χριστιανικής Τελειότητος), Tertios, Katerini. 1980. Available online: https://en.wikipedia.org/wiki/Gregory_of_Nyssa (accessed on 4 February 2021).
- Gerontos Paisiou Agioritou (Γέροντος Παϊσίου Aγιορείτου), For prayer (Περί Προσευχής), Ieron Isichastirio Evangelistis Iwannis o Theologos (Ιερόν Hσυχαστήριο «Ευαγγελιστής Ιωάννης ο Θεολόγος»), Sourot. 2012. Available online: https://www.politeianet.gr/ekdotis/ieron-isuchastirion-euaggelistis-ioannis-theologos-2852 (accessed on 4 February 2021).
- Holy Bible, New Testament, Mathew (Κατά Ματθαίον) 22,37; Mark (Κατά Μάρκον) 12,30; Luke (Κατά Λουκά) 10,27. Available online: http://www.apostoliki-diakonia.gr/bible/bible.asp?contents=new_testament/contents.asp&main= (accessed on 4 February 2021).
- Philocalia (Φιλοκαλία), edt. Ioannou Mavrogordatou (Ιωάννου Μαυρογορδάτου), Venice 1782, Greek Translation. Available online: https://greekdownloads.wordpress.com/φιλοκαλία/ (accessed on 2 January 2021).
Portrait Photography | Renaissance and Baroque Periods | Self-Portraits of Rembrandt | Portrait Paintings of 20th Century Art | Self-Portraits of Pablo Picasso | Byzantine Art, Fresco | |
---|---|---|---|---|---|---|
Hurst parameter | 0.87 | 0.92 | 0.92 | 0.90 | 0.83 | 0.79 |
Coefficient of variation | 0.726 | 0.609 | 0.647 | 0.524 | 0.445 | 0.379 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sargentis, G.-F.; Dimitriadis, P.; Iliopoulou, T.; Koutsoyiannis, D. A Stochastic View of Varying Styles in Art Paintings. Heritage 2021, 4, 333-348. https://doi.org/10.3390/heritage4010021
Sargentis G-F, Dimitriadis P, Iliopoulou T, Koutsoyiannis D. A Stochastic View of Varying Styles in Art Paintings. Heritage. 2021; 4(1):333-348. https://doi.org/10.3390/heritage4010021
Chicago/Turabian StyleSargentis, G.-Fivos, Panayiotis Dimitriadis, Theano Iliopoulou, and Demetris Koutsoyiannis. 2021. "A Stochastic View of Varying Styles in Art Paintings" Heritage 4, no. 1: 333-348. https://doi.org/10.3390/heritage4010021
APA StyleSargentis, G. -F., Dimitriadis, P., Iliopoulou, T., & Koutsoyiannis, D. (2021). A Stochastic View of Varying Styles in Art Paintings. Heritage, 4(1), 333-348. https://doi.org/10.3390/heritage4010021