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Abstract: A physical process is characterized as complex when it is difficult to analyze and explain in a
simple way, and even more difficult to predict. The complexity within an art painting is expected to be
high, possibly comparable to that of nature. Herein, we apply a 2D stochastic methodology to images
of both portrait photography and artistic portraits, the latter belonging to different genres of art,
with the aim to better understand their variability in quantitative terms. To quantify the dependence
structure and variability, we estimate the Hurst parameter, which is a common dependence metric
for hydrometeorological processes. We also seek connections between the identified stochastic
patterns and the desideratum that each art movement aimed to express. Results show remarkable
stochastic similarities between portrait paintings, linked to philosophical, cultural and theological
characteristics of each period.
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1. Introduction

The aesthetic evaluation of art paintings typically involves the physical procedure
of visual examination of an image [1–9]. This approach is considered highly subjective
and celebrated as such, with its outcomes being the subject of philosophy of art, and in
particular of the philosophical branch known as aesthetics [10]. In an attempt to conceive
an alternative and objective procedure for the aesthetic analysis, artificial intelligence and
mathematical tools are the subject of a plethora of related publications [11–44].

The mathematical field of Stochastics has been introduced as an alternative to deter-
ministic approaches and is used to model the so-called random, i.e., complex, unexplained
or unpredictable, fluctuations observed in (but not limited to) non-linear geophysical
processes [45–47]. Stochastics helps develop a unified perception for natural phenomena
and expel dichotomies like random vs. deterministic. Under the viewpoint of stochastics,
there is no such thing as a virus of randomness that infects some phenomena to make them
random, leaving other phenomena unaffected. Rather, it seems that both randomness and
predictability coexist and are intrinsic to natural systems, which can be deterministic and
random at the same time, depending on the prediction horizon and the time scale [48]. On
this basis, the uncertainty in art, in line with other natural processes, could be considered
both aleatory and epistemic, since, in principle, in this case as well, we do not know
perfectly well the underlying causal mechanisms. By applying the methods of stochastics,
we can quantify this uncertainty treating the unpredictable fluctuations of art works as
realizations of complex stochastic processes.

A physical process is characterized as complex when it is difficult to analyze or explain
in a completely predictive way. Likewise, constructions by artists (e.g., paintings, music,
literature, etc.) are also expected to be of high complexity since they are produced by
numerous human (e.g., logic, intuition, emotions, etc.) and non-human (e.g., quality of
paints, paper, tools, etc.) processes interacting with each other in a complex manner. Art
paintings are thus likely to resemble a stochastic process of increased uncertainty and
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variability. Such a process deviates from a purely White-Noise behavior, i.e., unstructured
randomness, as its aesthetic attributes are likely to appear in clusters by a highly non-
predictive manner.

Even though beauty is difficult or even impossible to quantify [49–51] stochastic
analysis may offer new insights into aesthetical issues and a basis for their objective
evaluation. The stochastic analysis of the examined artworks is performed using the
2D-climacogram (2D-C), a stochastic tool evaluating the degree of variability vs. spatial
scale. As case studies, we use multiple images of art paintings depicting human portraits,
and seek whether there exist stochastic similarities in the ways the human face has been
depicted by various art movements.

2. Quantifying the Variability in Art Painting through the 2D Climacogram

A stochastic computational tool called 2D-C [52–58] is used to analyze images of art
paintings quantifying the variability of the brightness vs. scale in a specific image and in a
group of images as well. Here, we refer to spatial (not time) scale, defined as the ratio of the
area of k × k adjacent cells (i.e., scale k) that are averaged to form the (scaled) spatial field,
over the spatial resolution of the original field (i.e., at scale 1). The term climacogram [59,60]
comes from the Greek word κλιµαξ (pronounced: climax meaning scale). It is defined as
the (plot of) variance of the averaged process (assuming stationary) versus averaging scale
k, and is denoted as γ(k). The climacogram is useful for detecting the long-term change
(or else dependence, persistence, clustering) of a process, which emerges particularly in
complex systems as opposed to white noise (absence of dependence) of even Markov (i.e.,
short-term persistence) behavior [61].

In order to obtain a quantitative characterization of the artwork, its image is digitized
in 2D and each pixel is assigned a grayscale color intensity (white = 1, black = 0). Assuming
that our sample is an area n∆ × n∆, where n is the number of intervals (e.g., pixels) along
each spatial direction and ∆ is the discretization unit determined by the image resolution,
(e.g., pixel length), the empirical classical estimator of the climacogram for a 2D process
can be expressed as:

γ̂(κ) =
1

n2/κ2 − 1

n/κ

∑
i=1

n/κ

∑
j=1

(
x(κ)i,j − x

)2
(1)

where the ‘ˆ’ over γ denotes estimation, κ is the the dimensionless spatial scale, x(κ)i,j =

1
κ2 ∑

κ j
ψ=κ(j−1)+1 ∑κi

ξ=κ(i−1)+1 xξ,ψ represents a local average of the space-averaged process at

scale κ, at grid cell (i, j), and, x ≡ x(n)1,1 is the global average of the process of interest. Note
that the maximum available scale for this estimator is n/2. The difference between the
value in each element and the field mean is raised to the power of 2, since we are mostly
interested in the magnitude of the difference rather than its sign. Thus, the climacogram
expresses in each scale the diversity in the greyscale intensity among the different elements.
In this manner, we may quantify the uncertainty of the brightness intensities at each scale
by measuring their spatial variability.

An important property of stochastic processes is the Hurst–Kolmogorov (HK) dy-
namics (usually known in hydrometeorological processes as Long-Term Persistence, or
LTP), which can be summarized by the Hurst parameter as estimated in large scales. This
parameter is estimated by minimizing the fitting error of the logarithmic slope of the tail
(i.e., the last 50 scales in the presented applications) of the observed (from data through
Equation (1)) and the modelled (Equation (2)) climacogram. The isotropic HK process
with an arbitrary marginal distribution (e.g., for the Gaussian one, this results in the well-
known fractional-Gaussian-noise, as described by Mandelbrot and van Ness [62]), i.e., the
power-law decay of variance as a function of scale, is defined for a 1D or 2D process as:

γ(k) =
λ

(k/∆)2d(1−H)
(2)
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where λ is the variance at scale k = κ∆, d is the dimension of the process/field (i.e., for a
1D process d = 1, for a 2D field d = 2, etc.), and H is the Hurst parameter (0 < H < 1). For
0 < H < 0.5 the HK process exhibits an anti-persistent behavior, H = 0.5 corresponds to the
white noise process, and for 0.5 < H < 1 the process exhibits LTP (clustering). In the case of
clustering behavior, due to the non-uniform heterogeneity of the brightness of the painting,
the high variability in brightness persists even in large scales. This clustering effect may
substantially increase the diversity between the brightness in each pixel of the image,
a phenomenon also observed in hydrometeorological processes (such as temperature,
precipitation, wind etc.), natural landscapes and music [63].

The algorithm that generates the climacogram in 2D was developed in MATLAB for
rectangular images [64]. In particular, for the current analysis, the images are cropped to
400 × 400 pixels, 14.11 cm × 14.11 cm, in 72 dpi (dots per inch). In particular, for the current
analysis, the images are cropped to 400 × 400 pixels, 14.11 cm × 14.11 cm, in 72 dpi (dots
per inch). The values assigned to each pixel are the grayscale color intensity (white = 1,
black = 0) of the image. In Figure 1, we present three images for benchmark image analysis:
(a) white noise; (b) image with clustering; and (c) an art painting. In Figure 2, we describe
the steps in our analysis, and show how grouped pixels at scales k = 2, 4, 8, 16, 20, 25, 40,
50, 80, 100 and 200, are used to calculate the climacogram in Figure 3. In Figure 3, we also
depict the standardized climacogram, which is defined as the ratio γ(k)/γ(1), and is also a
function of scale k but without having any effect from the marginal variance of the process.
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Figure 1. Benchmark of image analysis; (a) White noise, average brightness 0.5; (b) Image with
clustering, average brightness 0.54; (c) Photo of Audrey Hepburn, average brightness 0.57.

The presence of clustering is reflected in the climacogram, which shows a marked
difference compared to independent pixels as in white noise processes (Figure 3). Specifi-
cally, the variance of the clustered images is notably higher than that of white noise at all
scales, indicating a greater degree of variability and uncertainty of the process. Likewise,
comparing the clustered image and the art painting, the latter has the most pronounced
clustering behavior and a higher degree of variability.
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3. Stochastic Evaluation in Arts

Art’s functions are vital for our society on multiple levels. A work of art is not only
(and perhaps not necessarily) something pleasing to the eye, but also a medium that
portrays our emotions. Although each artist’s work contains a unique message, the field of
art creates a cultural process; aesthetics: a communication channel between the artist and
the observer.

Cartesian rationalism, which was derived from the French philosopher Rene Descartes,
does not regard aesthetic quality as an inherent quality of a physical object, but instead as
the distinction of mind and nature, paving the way for humans to appreciate the role of
their own subjective feelings in determining their aesthetic preferences. Other philosophers,
such as Leibniz, believed that there is a norm behind every aesthetic feeling, which we
simply do not know yet how to measure [65].

The most common stochastic attribute in natural processes is the long-term persistence
behavior or HK-behavior, which is identified in global-scale analyses including billions
of records, and in over-centennial timeseries of the most important hydrometeorological
processes (i.e., temperature, humidity, wind, solar radiation, river discharge, atmospheric
pressure, and precipitation), [58,59], and expressed through the climacogram for large
scales as shown in Equation (2). Remarkably, the shape of the dependence structure, as
visualized through the climacogram, exhibits similarities among natural processes, having
a Markov-type behavior at small scales and a long-term persistence behavior (i.e., a power-
law function of scale) at large scales, described by the expression γ(k) = λ(1 + k/q)2d(1−H),
where q is now a scale-parameter indicative of the transition point between the short-term
(roughness) and long-term (persistence) behaviours in the climacogram (Figure 4). The
latter behavior can be quantified by the Hurst parameter, which is defined as the semi
log-log slope plus one, i.e., H = s/2+1, where s is the slope in logarithmic axes of the
climacogram at large scales (as shown in Equation (2)).
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Figure 4. Illustration of the Hurst-Kolmogorov dynamics model visualized through the climacogram,
γ, vs. scale, k, and expanding from micro (GHK behavior) to macro (HK behavior) scales.

Although art is a mix of determinism (e.g., certain rules have to be followed) and
stochasticity (e.g., creativity and inspiration), we treat artistic works as a natural process
and test whether art paintings share a similar structure of dependence as do various
natural processes.



Heritage 2021, 4 338

In art paintings portraying human faces, the face is a focus point which condenses
the feeling of the painting. In order to evaluate how nature depicts in 2D we first examine
the climacogram of photographs of human faces [66–68], shown in Figure 5. Then, we
analyze portraits from various artistic genres dating from medieval to recent times (data
from: [69–77]), i.e., of Byzantine art, Renaissance and Baroque, and 20th century modern
art. We also analyze the self-portraits of Rembrandt Harmenszoon van Rijn [78] and
Pablo Picasso [79] made in different periods of their lives. Each 2D photo and painting is
digitized based on a grayscale color intensity and the climacogram is estimated based on
the geometric scale rather than the average one (Figures 5–16). The Hurst parameter is
estimated for each image set and shown in Table 1.
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Figure 16. (a) Climacograms and (b) standardized climacograms of the paintings in Figure 15 (Hurst parameters ranging
from 0.72 for the lower left image to 0.86 for the upper right, averaging to 0.79).

For each painting, we calculated the coefficient of variation of the original image at
scale 1, which, by definition, is the standard deviation of brightness divided by the average.
We then calculated the average of all the images of each set. A high value of the coefficient
of variation shows that, in each set there is a broad range of brightness in paintings for the
same average brightness. The average coefficient of variation of each set is presented in
Table 1.

Table 1. Average Hurst parameter H and coefficient of variation of the climacograms g(k) of the exanimated sets.

Portrait
Photography

Renaissance and
Baroque Periods

Self-Portraits of
Rembrandt

Portrait
Paintings of 20th

Century Art

Self-Portraits of
Pablo Picasso

Byzantine Art,
Fresco

Hurst parameter 0.87 0.92 0.92 0.90 0.83 0.79
Coefficient of

variation 0.726 0.609 0.647 0.524 0.445 0.379

In order to evaluate the different sets, averages of climacograms thereof are plotted
(Figure 17a). To quantify the range of fluctuations of the climacograms, for each scale k we
calculated the coefficient of variation of all standardized climacograms, g(k). Figure 17b
shows the graphs of g(k) vs. k for all examined cases, indicating the range of fluctuations
from the average climacogram of each set.
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Results show an interesting insight. Renaissance/Baroque and Rembrandt’s self-
portraits which follow the most naturalistic aesthetic approach, have a strong dependence
structure similar to that of photos and of various hydrometeorological processes (estimated
H ≈ 0.9). A strong dependence structure is also observed in the portraits of 20th century
(estimated H ≈ 0.9) and Picasso’s self-portraits (estimated H ≈ 0.85), yet with a bigger
range of fluctuations, indicative of the artistically freer and nonrepresentational approach
of modern art. The most interesting insight, however, is that the portraits belonging to
the Byzantine art period show a weaker dependence structure (estimated H ≈ 0.8), which
is closer to white noise. This attribute seems consistent with the theology of Christian’s
Orthodox dogma dictating a specific type of representation of saints and religious figures.

4. Discussion

Since prehistoric art creations, art was related to, and inspired by natural forms.
Aristotle said that “art takes nature as its model”, and “ . . . not only imitates nature, but
also completes its deficiencies” [80]. Furthermore, Plato connected arts with ideas, the soul
and the idealistic expression [81,82].

Around the 20th century, artists embraced an alternative way of expression by focusing
more on modern society’s habits and deviating from naturalistic themes and related
representation. Even more, artists then found Nature’s complexity obsolete. Paul Klee
noted that “Nature is garrulous to the point of confusion, let the artist be truly taciturn.” [83].
One may argue however that the uncertainty within ourselves that drives all forms of art
is the same inherent uncertainty of nature that was used subconsciously as inspiration. If
this is true, then we should be able to find stochastic similarities between art projects and
natural processes imprinted in the estimated variability vs. scale.

The results of this study provide grounds to this hypothesis as patterns can be ob-
served in the dependence structure in photographs and portraits of Renaissance/Baroque
which represent the most naturalistic approach, having similar moderate structure (photo,
average H ≈ 0.87; Renaissance/Baroque, average H ≈ 0.92). A similar Hurst parameter
was estimated by Hurst in his pioneering work on the stage of the river Nile [84–86] and,
additionally, in global-scale analyses of the long annual records of key hydrometeorological
processes such as temperature and wind speed as well as of small-scale processes recorded
in the laboratory such as grid-turbulence and turbulent jets [59]. An overall Hurst parame-
ter (H) equal to 0.9 is observed in all hydrometeorological processes (after adjusting for
bias; a task that is often neglected in stochastic analysis [87–89]).

Patterns can also be observed in the art portraits of 20th century yet with a bigger range
of fluctuation as modern artists wanted to express their ‘own’ view of nature away from
what they perceived as “nature’s monotony” [90,91]. Interestingly, though, although the
aesthetic means employed are indeed markedly different from older naturalistic paintings,
the stochastic variability of modern art portraits is still on average close to the one found
both in the most naturalistic paintings and in natural processes itself, revealing an overall
Hurst parameter (H) equal to 0.9.

Another related validation is the evaluation of self-portraits during the lifetime of
Rembrandt’s and Picasso. Rembrandt’s works exhibit stochastic similarities and a strong
dependence structure (average H = 0.92) whereas Picasso’s self-portraits show a wider
range of fluctuation (Figure 17b).

Sant Gregory of Nyssa (
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γιoς Γρηγóριoς Nύσσης) (died c. 395 AD) describes how
the creation of Byzantine art is connected with the spirituality of the artist “man is the
painter of his life, creator of paintings is artists’ motive”«της ιδίας έκαστoς ζωής εστί
ζωγράϕoς, τεχνίτης δε της [ζωγραϕικής] δηµιoυργίας ταύτης εστίν η πρoαίρεσις» [92]
Byzantine art, is a religious art serving the purposes of the Christian’s Orthodox dogma.
An interesting note is that Byzantine art portraits correspond to a weaker dependence
structure (0.7 < H < 0.85) than that of the other genres, with wide range of fluctuation at
small scales and small range of fluctuation at large scales, closer to white noise. This might
be explained considering that these paintings depict religious figures being in divine states
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of mine, often praying [93,94]. The meaning of pray in Orthodox dogma is described in one
of the most important theological books of Orthodox, Philokalia (Φιλoκαλία) [95], which
contains the writings of the Eastern Fathers from the fourth to the fifteenth centuries. In
this work, Saint Nilus of Sinai (
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γιoς Nείλoς o Σινα
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