Comparison of Aluminum Alloys from Aircraft of Four Nations Involved in the WWII Conflict Using Multiscale Analyses and Archival Study
Abstract
:1. Introduction
2. Materials and Methodology
2.1. Materials
2.2. Methodology
2.2.1. Archives Research and Analyses
2.2.2. Experimental Techniques
3. Results—Part A: Aluminum Alloys for WWII Aircraft’s Construction
3.1. Identification of Aluminum Alloys
3.2. Associated Mechanical Properties
3.3. Discussion
4. Results: Part B: Analysis of Archaeological Remains
4.1. Selection of Four Representative Alloys
4.2. Historical Background of Aircraft
4.3. Hardness Measurements of Archaeological Samples
4.4. Structural Characterization
4.4.1. Microstructure: Grain Size
4.4.2. Microstructure: Coarse Intermetallics
4.4.3. Nanostructure: Precipitation
5. Discussion
- -
- A large grain structure was observed along with the enlargement of intermetallic compounds.
- -
- Compared with the Bf 109 sample, supplementary precipitation, in the matrix, and along the grain boundaries, was observed on the D.520 sample.
6. Conclusions
- Taking the chemical composition into consideration and the History, two trends were observed: Germany, France, and the USA versus UK. The first three nations followed Alfred Wilm’s patent, while the United Kingdom developed its own slightly different versions of duralumin.
- For the French and British parts, only one type of alloy per aircraft was yet identified: low magnesium content one, respectively Duralumin and Hiduminium DU Brand. For the American aircraft, only a high magnesium content alloy (24S) was found on the remains. Both high and low magnesium content alloys were found on the German parts, although four out of five parts were made out of the low magnesium one. This paper focused on the plates. The study needs to be extended if possible to other parts (stringers, rivets) as many alloys were used for the construction of aircraft.
- Although it seems that England had the alloys with the best mechanical properties according to the archives, we weren’t able to fully confirm it yet as only extrinsic factors were identified as the cause of the increase in hardness: rolling treatments and heat generated during the crash.
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Bally, J. Les avantages de la construction métallique en alliage légers d’aluminium. Revue de l’aluminium et de ses Application 1925, 1, 79–80. [Google Scholar]
- Loftin, L.K., Jr. Quest of Performance: The Evolution of Modern Aircraft; NASA Scientific and Technical Information Branch-National Aeronautics and Space Administration: Washington, DC, USA, 1985. [Google Scholar]
- Waltenberg, R.; Merica, P.D. Heat Treatments of Duralumin; Scientific Papers of the Bureau of Standards: Washington, DC, USA, 1919. [Google Scholar]
- Duralumin. Société du Duralumin, Duralumin, Catalogue général Notice technique; Société du Duralumin in Paris, rue Balzac: Paris, France, 1938. [Google Scholar]
- Slough; High Duty Alloys. HIDUMINIUM High Duty Alloys; Slough; High Duty Alloys: Slough, UK, 1948. [Google Scholar]
- ALCOA. Aluminum Company of America, Aluminum and Its Alloys; ALCOA: Pittsburgh, PA, USA, 1935. [Google Scholar]
- Von Dr-Ing Brenner, P. Aluminium-Knet-Legierungen; Ver Leichtmetallwerke Gmbh: Hannove, Germany, 1939. [Google Scholar]
- Mondolfo, L.F. Metallography of Aluminum Alloys; John Wiley & Sons Inc.: New York, NY, USA, 1943. [Google Scholar]
- Guillet, L. l’Aluminium: Sa fabrication, ses propriétés, ses alliages. Revue de la Métallurgie 1921, 18, 461–526. [Google Scholar] [CrossRef]
- Deutch. Institüt. für. Normung. DIN-1748, Aluminium-Knetlegierungen für Profile; Deutsches Institut für Normung: Berlin, Germany, 1952. [Google Scholar]
- Lebouteux, H. La symbolisation de l’aluminium et de ses alliages en france et dans quelques pays étrangers. Encyclopédie du Travail de l’aluminium Extrait de la Revue de l’aluminium 1956, n°227. [Google Scholar]
- Starke, E.A., Jr.; Staley, J.T. Application of modern aluminum alloys to aircraft. Prog. Aerosp. Sci. 1996, 32, 131–172. [Google Scholar] [CrossRef]
- Unger, E.; SCHMIDT, E. DURALUMIN; National Advisory Committee for Aeronautics (Technical Notes): Washington, DC, USA, 1920. [Google Scholar]
- Wilm, A. DE 244554 Verfahren zum Veredeln von magnesiumhaltigen Aluminiumlegierungen. German Patent Patentschrift N° 244554, 20 March 1909. Klasse 48d, Gruppe 5. [Google Scholar]
- Duparc, O.H. Alfred Wilm et les débuts du Duralumin. Cahier pour l’Histoire de l’Aluminium 2005, 34, 63–77. [Google Scholar]
- Jeffries, Z. National Academy of Sciences-Paul Dyer Merica 1889–1957 A biographical Memoir; National Academy of Sciences: Washington, DC, USA, 1959. [Google Scholar]
- Smith, G.D. From Monopoly to Competition: The transformation of ALCOA from 1888 to 1986; Cambridge university Press: Cambridge, UK, 2003. [Google Scholar]
- Ouissi, T. Evolution of light alloys in aeronautics: The case of duralumin- from its discovery to the end of WWII. Nacelles 2020, n°6. [Google Scholar]
- Orowan, E. Zur kristallplastizität. III. Z. Phys. 1934, 89, 634–659. [Google Scholar] [CrossRef]
- Waltenberg, R.; Merica, P.D. Mechanical Properties and Resistance to Corrosion of Rolled Light Alloys of Aluminum and Magnesium with Copper, with Nickel, and with Manganese; Technologic papers of the Bureau of Standards: Washington, DC, USA, 1919. [Google Scholar]
- Herrmann, E. Notes sur les alliages légers d’aluminium. Bulletin Technique de la Suisse Romande 1933. [Google Scholar] [CrossRef]
- Mondolfo, L. Aluminum Alloys: Structure and Properties; Butterworths: Boston, MA, USA, 1976. [Google Scholar]
- Eskin, D.G. Decomposition of supersaturated solid solutions in Al-Cu-Mg-Si alloys. J. Mater. Sci. 2003, 38, 279–290. [Google Scholar] [CrossRef]
- Wang, S.C.; Starink, M.J. Precipitates and intermetallic phases in precipitation hardening Al-Cu-Mg-(Li) based alloys. Int. Mater. Rev. 2005, 50, 193–215. [Google Scholar] [CrossRef] [Green Version]
1 | British Standard Institution Specifications-Aluminum coated sheet and strip (for high corrosion resistance). |
2 | Messerschmitt Technical document: Manual for semi-finished products (1st January 1939). |
3 | Probably early 1941. |
4 | Bf 109 Emil version picture from National Air and Space Museum Archives box n° 43 reference AM-350536-01. |
5 | D.520 picture from Departmental Archives of the Haute Garonne box n°56J22. |
6 | Lancaster picture from avionslegnedaires.net website. |
7 | Picture of the Mustang P-51 a.k.a Fool’s paradise. |
Constructor/Aircraft (production date) | Nature of the Part | Thickness (mm) | Chemical Composition (in wt.%) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Nations | Alloy Identification | |||||||||
Al | Cu | Mg | Mn | Fe | Si | |||||
Germany | Dornier/Do 217 (1943) | plate | 1.8 | 94.00 | 4.05 | 0.93 | 0.41 | 0.27 | 0.34 | AlCuMg1 |
Focke–Wulf/FW 190 (1940) | plate | 1.4 | 91.95 | 4.23 | 1.10 | 1.17 | 0.43 | 0.60 | AlCuMg2 | |
Heinkel/He 111 (1937) | Plate | 2.0 | 93.21 | 4.29 | 0.61 | 0.75 | 0.34 | 0.46 | AlCuMg1 | |
Heinkel/He 111 (1943) | plate | 1.0 | 93.41 | 4.24 | 0.69 | 0.66 | 0.40 | 0.60 | AlCuMg1 | |
Messerschmitt/Bf 109 (1940) | plate | 0.5–3.0 | 93.54 | 4.16 | 0.58 | 0.50 | 0.33 | 0.51 | AlCuMg1 | |
France | Dewoitine/D.520 (1940) | plate | 0.7–2.0 | 93.20 | 4.35 | 0.50 | 0.56 | 0.31 | 0.46 | Duralumin |
Lioré & Olivier/LéO 45 (1939) | plate | 1.4 | 93.20 | 4.57 | 0.43 | 0.57 | 0.50 | 0.71 | Duralumin | |
Dewoitine/D.338 (1937) | plate | 1.0 | 94.55 | 3.53 | 0.60 | 0.55 | 0.23 | 0.53 | Duralumin | |
Latécoère/Latécoère 298 (1940) | plate | 2.0 | contains Al, Cu, Mg, Fe, Si, Ni, Cr, Zn | unidentified | ||||||
Latécoère /Latécoère 17 (1927) | plate | 0.8 | 94.43 | 3.46 | 0.61 | 0.54 | 0.50 | 0.38 | Duralumin | |
UK | Avro Lancaster (1943) | plate | 1.5 | 92.77 | 4.73 | 0.79 | 0.74 | 0.36 | 0.61 | Hiduminium DU Brand |
De Havilland/Mosquito (1943) | cast alloy | 1.5 | 92.63 | 4.90 | 0.83 | 0.71 | 0.41 | 0.52 | Hiduminium DU Brand | |
US | North American Aviation/Mustang P-51 A (1943) | plate | 2.2 | 92.24 | 5.47 | 1.29 | 0.71 | 0.28 | 0.23 | 24S |
North American Aviation/Mustang P-51 D (1943) | plate | 1.0 | 92.67 | 4.39 | 1.64 | 0.60 | 0.48 | 0.23 | 24S | |
Lockheed/P-38 Lightning (1943) | plate | 1.0 | 91.63 | 5.44 | 1.55 | 0.57 | 0.39 | 0.42 | 24S |
Aluminum Alloys | Designation | Percentage of Alloying Elements (wt.%) | |||||
---|---|---|---|---|---|---|---|
Cu | Mg | Si | Mn | Fe | Al | ||
LOW Mg CONTENT | AlCuMg1(DE) [10] | 4.0 | 0.6 | 0.6 | 0.8 | – | Base |
Duralumin (FR) [4] | 3.0–5.0 | 0.5 | – | 0.5 | – | Base | |
Hiduminium DU Brand (UK) [5] | 3.5–4.5 | 0.4–0.8 | <0.7 | 0.4–0.7 | <0.7 | Base | |
17S (USA) [6] | 4.0 | 0.5 | 0.5 | – | – | Base | |
HIGH Mg CONTENT | AlCuMg2 (DE) [10] | 4.2 | 1.6 | – | 0.8 | – | Base |
Duralumin F.R. (FR) [4] | 3.5–4.5 | 0.9–1.7 | 0.20.9 | 0.9–1.5 | – | Base | |
Hiduminium 72 (UK) [5] | 3.5–4.8 | 0.8–1.8 | <0.5 | 0.3–1.5 | <0.4 | Base | |
24S (USA) [6] | 4.2 | 1.5 | – | 0.5 | – | Base |
Alloys | Mechanical Properties | ||||
---|---|---|---|---|---|
Yield Strength R/Proof Stress in Tension (kg/mm2) | Ultimate Strength (kg/mm2) | Elongation A (%) | Hardness in Brinell (HB) | ||
Low Mg content | AlCuMg1 [10] | 26 | 40 | 12–14 | 100 |
Duralumin [4] | 26–30 | 40–44 | 16–24 | 100–110 | |
Hiduminium DU Brand [5] | 21–23 | 35–40 | 15–20 | 100–120 | |
17S–T [6] | 24 | 41 | 20–22 | 100 | |
High Mg content | AlCuMg2 [10] | 32 | 44 | 10–12 | 110 |
Duralumin F.R. [4] | 30–35 | 44–48 | 12–18 | 110 | |
Hiduminium 72 [5] | 20–25 | 39–42 | 15–20 | 129–148 | |
24S–T [6] | 30 | 46 | 20–22 | 105 |
Sample (Alloy) | Direction | Measured Hardness in Vickers (HV) | Measured Hardness in Brinell (HB) | Hardness in Brinell from Archive Data (HB) |
---|---|---|---|---|
Bf 109 (AlCuMg1) | L-S | 120 ± 3 | 114 ± 3 | 100 |
L-T | 149 ± 7 | 142 ± 7 | ||
S-T | 135 ± 8 | 129 ± 7 | ||
D.520 (Duralumin) | L-S | 87 ± 1 | 82 ± 1 | 100–110 |
L-T | 92 ± 5 | 87 ± 5 | ||
S-T | 93 ± 4 | 88 ± 4 | ||
Lancaster (Hiduminium DU Brand) | L-S | 156 ± 2 | 148 ± 2 | 100–120 |
L-T | 148 ± 6 | 141 ± 5 | ||
S-T | 146 ± 2 | 139 ± 2 | ||
P-51 (24ST) | L-S | 146 ± 3 | 139 ± 3 | 110 |
L-T | 152 ± 2 | 145 ± 2 | ||
S-T | 151 ± 2 | 144 ± 2 |
Sample | Grain Size (µm) | Elongation Ratio | ||
---|---|---|---|---|
L | T | S | L/S | |
Bf 109 (AlCuMg1) | 57 ± 6 | 47 ± 9 | 31 ± 5 | 1.8 |
D.520 (Duralumin) | 141 ± 65 | 72 ± 17 | 53 ± 11 | 2.7 |
Lancaster (Hiduminium DU Brand) | 84 ± 24 | 38 ± 9 | 24 ± 3 | 3.5 |
P-51 (24S) | 94 ± 10 | 44 ± 4 | 65 ± 6 | 1.45 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ouissi, T.; Collaveri, G.; Sciau, P.; Olivier, J.-M.; Brunet, M. Comparison of Aluminum Alloys from Aircraft of Four Nations Involved in the WWII Conflict Using Multiscale Analyses and Archival Study. Heritage 2019, 2, 2784-2801. https://doi.org/10.3390/heritage2040172
Ouissi T, Collaveri G, Sciau P, Olivier J-M, Brunet M. Comparison of Aluminum Alloys from Aircraft of Four Nations Involved in the WWII Conflict Using Multiscale Analyses and Archival Study. Heritage. 2019; 2(4):2784-2801. https://doi.org/10.3390/heritage2040172
Chicago/Turabian StyleOuissi, Toufa, Gilles Collaveri, Philippe Sciau, Jean-Marc Olivier, and Magali Brunet. 2019. "Comparison of Aluminum Alloys from Aircraft of Four Nations Involved in the WWII Conflict Using Multiscale Analyses and Archival Study" Heritage 2, no. 4: 2784-2801. https://doi.org/10.3390/heritage2040172
APA StyleOuissi, T., Collaveri, G., Sciau, P., Olivier, J. -M., & Brunet, M. (2019). Comparison of Aluminum Alloys from Aircraft of Four Nations Involved in the WWII Conflict Using Multiscale Analyses and Archival Study. Heritage, 2(4), 2784-2801. https://doi.org/10.3390/heritage2040172