Recovering Past Reflections: X-ray Fluorescence Imaging of Electrocleaned 19th Century Daguerreotypes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Materials
2.2. Electrocleaning
2.3. Synchrotron Radiation Analysis
2.3.1. Plan of Analysis
2.3.2. Canadian Light Source
2.3.3. Cornell High Energy Synchrotron Source
3. Results and Discussion
3.1. The Barger Process
3.2. The Wei Process
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- American Institute for Conservation of Historic and Artistic Works, Code of Ethics and Guidelines for Practices. 2018. Available online: http://www.conservation-us.org/our-organizations/association-(aic)/governance/code-of-ethics-and-guidelines-for-practice/code-of-ethics-and-guidelines-for-practice-(html)#.XBAfsxQqZUR (accessed on 11 December 2018).
- Argago, F. Le daguerreotype. Comptes Rendus des Séances de l’Académie des Sciences 1839, 9, 250–267. [Google Scholar]
- Holland, P. Personal photographs and popular photography. In Photography: A Critical Introduction, 5th ed.; Wells, L., Ed.; Routledge: London, UK, 2015; p. 147. ISBN 978-0-415-85428-3. [Google Scholar]
- Ravines, P.; Li, L.; McElroy, R. An electron microscopy study of the image making process of the daguerreotype, the 19th century’s first commercially viable photographic process. J. Imag. Sci. Technol. 2016, 10, 30504-1–30504-10. [Google Scholar] [CrossRef]
- Ravines, P.; Li, L.; Chan, L.; McElroy, R. Some science behind the daguerreotype: Nanometer and sub-micrometer realities on and beneath the surface. In Nanoscience and Cultural Heritage; Dillman, P., Bellot-Gurlet, L., Nenner, I., Eds.; Atlantis Press: Paris, France, 2016; pp. 123–158. ISBN 978-94-6239-197-0. [Google Scholar]
- Barger, S.M.; Krishnaswamy, S.V.; Messier, R. The cleaning of daguerreotypes: Comparison of cleaning methods. J. Am. Conserv. 1982, 22, 13–24. [Google Scholar] [CrossRef]
- Centeno, S.; Schulte, F.; Kennedy, N.; Schrott, A. The formation of chlorine-induced alterations in daguerreotype image particles: A high resolution SEM-EDS study. Appl. Phys. A 2011, 105, 55–63. [Google Scholar] [CrossRef]
- Franey, J.P.; Kammlott, G.W.; Graedel, T.E. The corrosion of silver by atmospheric sulfurous gases. Corr. Sci. 1985, 25, 133–143. [Google Scholar] [CrossRef]
- Graedel, T.E.; Franey, J.P.; Gualtieri, G.J.; Kammlott, G.W.; Malm, D.L. On the mechanism of silver and copper sulfidation by atmospheric H2S and COS. Corr. Sci. 1985, 25, 1163–1180. [Google Scholar] [CrossRef]
- Graedel, T.E. Corrosion mechanism for silver exposed to the atmosphere. J. Electrochem. Soc. 1992, 139, 1963–1970. [Google Scholar] [CrossRef]
- Barger, S.M.; Giri, A.P.; White, W.B.; Edmondson, T.M. Cleaning Daguerreotypes. Stud. Conserv. 1986, 31, 15–28. [Google Scholar] [CrossRef]
- Turovets, I.; Maggen, M.; Lewis, A. Cleaning of daguerreotypes with an excimer laser. Stud. Conser. 1998, 43, 89–90. [Google Scholar] [CrossRef]
- Boselli, M.; Chiavari, C.; Colombo, V.; Gherardi, M.; Martini, C.; Rotundo, F. Atmospheric pressure non-equilibrium plasma cleaning of 19th century daguerreotypes. Plasma Process. Polym. 2017, 14, 1–8. [Google Scholar] [CrossRef]
- Robinson, M.; Vicenzi, E.P. A twin paradox: A study of preservation and disfigurement of Southworth and Hawes daguerreotypes. Topics Photogr. Preserv. 2015, 16, 1–19. [Google Scholar]
- Barger, S.M.; White, W.B. The Daguerreotype: Nineteenth Century Technology and Modern Science; Smithsonian Institution Press: Washington, DC, USA, 1991; pp. 46–122. ISBN 978-0801864582. [Google Scholar]
- Canosa, E. Investigation and Optimization of Electrochemical Treatments for Daguerreotypes. Ph.D. Thesis, University of Arizona, Tucson, AZ, USA, 2016. [Google Scholar]
- Da Silva, E.; Robinson, M.; Evans, C.; Pejovic-Milic, A.; Heyd, D.F. Monitoring the photographic process, degradation and restoration of 21st century Daguerreotypes by wavelength-dispersive X-ray fluorescence spectrometry. J. Anal. Atom. Spectrosc. 2010, 25, 654–661. [Google Scholar] [CrossRef]
- Wei, W.; Gerritsen, I.; Von Waldthausen, C. Re-examining the (electro-)chemical cleaning of daguerreotypes: Microscopic change vs. macroscopic perception. In Topics in Photographic Preservation, Proceedings of the American Institute for Conservation Photographic Materials Group, Milwaukee, WI, USA, 11–14 May 2010; American Institute for Conservation: Washington, DC, USA, 2011; pp. 24–40. [Google Scholar]
- Kozachuk, M.S.; McElhone, J.P. Applying nanoscience to daguerreotypes: Understanding and preserving the first form of the photograph. Natl. Gallery Can. Rev. 2018, 9, 36–42. [Google Scholar] [CrossRef]
- Xiao, Q.; Maclennan, A.; Hu, Y.; Hackett, M.; Leinweber, P.; Sham, T.K. Medium-energy microprobe station at the SXRMB of the CLS. J. Synchrotron Rad. 2017, 24, 333–337. [Google Scholar] [CrossRef] [PubMed]
- Webb, S.M. The microanalysis toolkit: X-ray fluorescence image processing software. In Proceedings of the 10th International Conference on X-ray Microscopy, Chicago, IL, USA, 15–20 August 2010; Volume 1365, pp. 196–199. [Google Scholar] [CrossRef]
- Bzowski, A.; Sham, T.K.; Yiu, Y.M. Charge redistribution in Au-metalloid intermetallics: A Au L2,3 X-ray absorption study. Anal. Rev. B 1994, 49, 9515–9520. [Google Scholar] [CrossRef]
- Ravel, B.; Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: Data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 2005, 12, 537–541. [Google Scholar] [CrossRef] [PubMed]
- Ravel, B. Athena User’s Guide. The University of Chicago, 2009. Available online: http://cars9.uchicago.edu/~ravel/software/exafs/ (accessed on 10 September 2014).
- Kirkham, R.; Dunn, P.A.; Kuczewski, A.J.; Siddons, D.P.; Dodanwela, R.; Moorhead, G.F.; Ryan, C.G.; De Geronimo, G.; Beuttenmuller, R.; Pinelli, D.; et al. The Maia spectroscopy detector system: Engineering for integrated pulse capture, low-latency scanning and real-time processing. AIP. Conf. Proc. 2010, 1234, 240–243. [Google Scholar] [CrossRef]
- Kozachuk, M.S.; Sham, T.K.; Martin, R.; Nelson, A.J.; Coulthard, I.; McElhone, J.P. Recovery of degraded-beyond-recognition 19th century daguerreotypes with rapid high dynamic range elemental X-ray fluorescence imaging of mercury L emission. Nat. Sci. Rep. 2018, 8, 1–10. [Google Scholar] [CrossRef]
- Ryan, C.; Jamieson, D. Dynamic analysis: On-line quantitative PIXE microanalysis and its use in overlap-resolved elemental mapping. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms. 1993, 77, 203–214. [Google Scholar] [CrossRef]
- Solé, V.A.; Papillon, E.; Cotte, M.; Walter, P.; Susini, J. A multiplatform code for the analysis of energy-dispersive X-ray fluorescence spectra. Spectrochim Acta B. 2007, 62, 63–68. [Google Scholar] [CrossRef]
- Schoonjans, T.; Brunetti, A.; Golosio, B.; Sanchez del Rio, M.; Solé, V.A.; Ferrero, C.; Vincze, L. The xraylib library for X-ray–matter interactions: Recent developments. Spectrochim. Acta Part B 2011, 66, 776–784. [Google Scholar] [CrossRef]
- Jacob, M.G. Colour and the daguerreotype. Daguerreotype J. 2014, 0, 13–19. Available online: https://www.fotomuseum.be/content/dam/fomu/pdf%27s/Daguerreotype%20Journal_Issue_0_%202014_07.pdf (accessed on 11 December 2018).
- Solomon, D.; Lehmann, J.; Martinez, C.E. Sulfur K-edge XANES spectroscopy as a tool for understanding sulfur dynamics in soil organic matter. Soil Sci. Soc. Am. J. 2003, 67, 1721–1731. [Google Scholar] [CrossRef]
- Manceau, A.; Nagy, K.L. Quantitative analysis of sulfur functional groups in natural organic matter by XANES spectroscopy. Geochimica et Cosmochimica Acta 2012, 99, 206–223. [Google Scholar] [CrossRef]
- Kozachuk, M.S.; Sham, T.K.; Martin, R.R.; Nelson, A.J.; Coulthard, I. Exploring tarnished daguerreotypes with synchrotron light: XRF and μ-XANES analysis. Hert. Sci. 2018, 6. [Google Scholar] [CrossRef]
- Cotte, M.; Susini, J.; Metrich, N.; Moscato, A.; Gratziu, C.; Bertagnini, A.; Pagano, M. Blackening of Pompeian cinnabar paintings: X-ray microspectroscopy analsyis. Anal. Chem. 2006, 78, 7484–7492. [Google Scholar] [CrossRef] [PubMed]
- Leri, A.C.; Hay, M.B.; Lanzirotti, A.; Rao, W.; Myneni, S.C.B. Quantitative determination of absolute organohalogen concentrations in environmental samples by X-ray absorption spectroscopy. Anal. Chem. 2006, 78, 5711–5718. [Google Scholar] [CrossRef] [PubMed]
- Konishi, H.; Yamashita, M.; Uchida, H.; Mizuki, J. Cl k-edge XANES spectra of atmospheric rust on Fe, Fe-Cr and Fe-Ni alloys exposed to saline environment. Mater. Trans. 2004, 45, 3356–3359. [Google Scholar] [CrossRef]
- Afonso de Magalhães, M.E.; Tubino, M. A possible path for mercury in biological systems: The oxidation of metallic mercury by molecular oxygen in aqueous solutions. Sci. Total Environ. 1995, 170, 229–239. [Google Scholar] [CrossRef]
- Dahmen, E.A.M.F. Faradaic methods of electrochemical analysis. In Electroanalysis: Theory and Applications in Aqueous and Non-Aqueous Media and in Automated Chemical Control; Elsevier: Amsterdam, The Netherlands, 1986; p. 132. ISBN 0-444-42534-9. [Google Scholar]
- Milazzo, G.; Caroli, S.; Sharma, V.K. Tables of Standard Electrode Potentials; John Wiley & Sons: Chichester, UK, 1978. [Google Scholar]
Element of Interest | Energy Range (eV) | Energetic Step Size (Pre-Edge) | Energetic Step Size (at the Edge) | Energetic Step Size (Post-Edge) | Edge Jump Analyzed |
---|---|---|---|---|---|
Ag | 3344–3450 | 2.00 eV | 0.15 eV | 0.75 eV | L3-edge (2984 eV) |
S | 2448–2554 | 2.00 eV | 0.20 eV | 0.75 eV | K-edge (2307 eV) |
Cl | 2800–2950 | 2.00 eV | 0.15 eV | 0.75 eV | K-edge (2622 eV) |
Element of Interest | Standards | Edge Jump Analyzed |
---|---|---|
Ag | Ag, Ag95Au5, Ag75Au25, AgI, AgCl, AgBr, Ag2O, Ag2S, AgNO3 | L3-edge (2984 eV) |
Cl | AgCl, NaCl, KCl, HgCl2, Au(SMe2)Cl, Au2Cl6 | K-edge (2307 eV) |
S | Ag2S, Na2SO4, Na2SO3, CuS, Cu2S, HgSO4, Na2S2O3·5H2O | K-edge (2622 eV) |
Daguerreotype | Cleaning Process | Region | Before Au/Cu | After Au/Cu | % Difference before/after |
---|---|---|---|---|---|
PSC 70:112 | Barger | Highlight | 0.012 ± 0.0010 | 0.0071 ± 0.0034 | −41% |
Midtone | 0.0080 ± 0.0037 | 0.0050 ± 0.0017 | −37% | ||
Shadow | 0.0076 ± 0.0021 | 0.0049 ± 0.0016 | −36% | ||
RCLSC1 | Wei | Highlight | 0.044 ± 0.0058 | 0.012 ± 0.0029 | −73% |
Midtone | 0.050 ± 0.0030 | 0.014 ± 0.0029 | −73% | ||
Shadow | 0.031 ± 0.0029 | 0.0089 ± 0.0035 | −72% | ||
SC1 | Wei (top half; oxidation) | Highlight | 0.027 ± 0.0058 | 0.010 ± 0.0046 | −62% |
Midtone | 0.024 ± 0.0093 | 0.0090 ± 0.00069 | −62% | ||
Shadow | 0.023 ± 0.0043 | 0.0087 ± 0.0012 | −62% | ||
Wei (bottom half; reduction) | Highlight | 0.028 ± 0.0028 | 0.011 ± 0.0019 | −62% | |
Midtone | 0.024 ± 0.0033 | 0.010 ± 0.0015 | −58% | ||
Shadow | 0.021 ± 0.0018 | 0.0086 ± 0.0010 | −60% |
Daguerreotype | Cleaning Process | Region | Before Hg/Cu | After Hg/Cu | % Difference before/after |
---|---|---|---|---|---|
PSC 70:112 | Barger | Highlight | 0.0059 ± 0.0010 | 0.0034 ± 0.0010 | −43% |
Midtone | 0.0014 ± 0.00079 | 0.0017 ± 0.00062 | +24% | ||
Shadow | n/a | 0.0009 ± 0.0003 | n/a | ||
RCLSC1 | Wei | Highlight | 0.018 ± 0.0039 | 0.0033 ± 0.0010 | −82% |
Midtone | 0.015 ± 0.0018 | 0.0027 ± 0.00090 | −82% | ||
Shadow | 0.0076 ± 0.0013 | 0.0017 ± 0.00054 | −78% | ||
SC1 | Wei (top half; oxidation) | Highlight | 0.0052 ± 0.00094 | 0.0031 ± 0.00083 | −41% |
Midtone | 0.0030 ± 0.00021 | 0.0024 ± 0.00036 | −21% | ||
Shadow | 0.0019 ± 0.000071 | 0.0020 ± 0.00013 | +9% | ||
Wei (bottom half; reduction) | Highlight | 0.0060 ± 0.0010 | 0.0035 ± 0.00074 | −41% | |
Midtone | 0.0027 ± 0.00051 | 0.0022 ± 0.00035 | −20% | ||
Shadow | 0.0012 ± 0.00036 | 0.0017 ± 0.00029 | +50% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kozachuk, M.S.; Sham, T.-K.; Martin, R.R.; Nelson, A.J.; Coulthard, I.; Smieska, L.; Woll, A.R. Recovering Past Reflections: X-ray Fluorescence Imaging of Electrocleaned 19th Century Daguerreotypes. Heritage 2019, 2, 568-586. https://doi.org/10.3390/heritage2010037
Kozachuk MS, Sham T-K, Martin RR, Nelson AJ, Coulthard I, Smieska L, Woll AR. Recovering Past Reflections: X-ray Fluorescence Imaging of Electrocleaned 19th Century Daguerreotypes. Heritage. 2019; 2(1):568-586. https://doi.org/10.3390/heritage2010037
Chicago/Turabian StyleKozachuk, Madalena S., Tsun-Kong Sham, Ronald R. Martin, Andrew J. Nelson, Ian Coulthard, Louisa Smieska, and Arthur R. Woll. 2019. "Recovering Past Reflections: X-ray Fluorescence Imaging of Electrocleaned 19th Century Daguerreotypes" Heritage 2, no. 1: 568-586. https://doi.org/10.3390/heritage2010037
APA StyleKozachuk, M. S., Sham, T. -K., Martin, R. R., Nelson, A. J., Coulthard, I., Smieska, L., & Woll, A. R. (2019). Recovering Past Reflections: X-ray Fluorescence Imaging of Electrocleaned 19th Century Daguerreotypes. Heritage, 2(1), 568-586. https://doi.org/10.3390/heritage2010037