Concept, Possibilities and Pilot-Testing of a New Smartphone Application for the Social and Life Sciences to Study Human Behavior Including Validation Data from Personality Psychology
Abstract
:1. Background
2. Step 1: Designing a Smartphone-Based Study Using Insights
3. Step 2: (De-)Installation of the Smartphone Application
4. Step 3: Data Handling and Analyses
5. Server Requirements
6. Privacy Issues
7. Conclusions and Future Directions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Appendix A.1. First Validation Data from Personality Psychology
Appendix A.1.1. Participants
Appendix A.1.2. Measures
Appendix A.1.3. Statistical Analyses
Appendix A.1.4. Results
Recorded Variables | Montag et al. [22] (n = 49) | Present Work (n = 106) |
---|---|---|
Total number of calls per day (incoming + outgoing + missed calls) | M = 3.34 | M = 2.25 |
SD = 2.46 | SD = 2.40 | |
Median = 2.71 | Median = 1.46 | |
Number of incoming calls per day | M = 1.07 | M = 0.45 |
SD = 1.03 | SD = 0.49 | |
Median = 0.79 | Median = 0.33 | |
Number of outgoing calls per day | M = 2.29 | M = 1.42 |
SD = 1.67 | SD = 1.77 | |
Median = 1.68 | Median 0.75 | |
Number of missed calls per day | M = 0.71 | M = 0.37 |
SD = 1.02 | SD = 0.35 | |
Median = 0.50 | Median = 0.33 | |
Total call duration (min.) per day (incoming + outgoing calls) | M = 9.02 | M = 7.71 |
SD = 8.09 | SD = 10.08 | |
Median = 6.93 | Median = 4.15 |
Openness | Conscientiousness | Agreeableness | Extraversion | Neuroticism | |
---|---|---|---|---|---|
Total number of calls | 0.043 | −0.028 | −0.002 | 0.360 ** | −0.179 |
Sig. (2-tailed) | 0.659 | 0.779 | 0.988 | <0.001 | 0.066 |
BCa 95% CI Lower | −0.157 | −0.201 | −0.211 | 0.164 | −0.342 |
Upper | 0.240 | 0.152 | 0.199 | 0.540 | 0.002 |
Incoming calls | −0.012 | 0.032 | −0.119 | 0.364 ** | −0.274 ** |
Sig. (2-tailed) | 0.905 | 0.748 | 0.225 | <0.001 | 0.005 |
BCa 95% CI Lower | −0.210 | −0.147 | −0.336 | 0.194 | −0.446 |
Upper | 0.173 | 0.204 | 0.099 | 0.527 | −0.087 |
Outgoing calls | 0.039 | −0.054 | 0.023 | 0.315 ** | −0.115 |
Sig. (2-tailed) | 0.694 | 0.584 | 0.814 | 0.001 | 0.242 |
BCa 95% CI Lower | −0.157 | −0.219 | −0.175 | 0.103 | −0.295 |
Upper | 0.223 | 0.127 | 0.215 | 0.498 | 0.069 |
Missed calls | −0.047 | −0.040 | −0.016 | 0.212 * | −0.105 |
Sig. (2-tailed) | 0.632 | 0.688 | 0.871 | 0.030 | 0.284 |
BCa 95% CI Lower | −0.243 | −0.216 | −0.225 | 0.000 | −0.277 |
Upper | 0.149 | 0.142 | 0.185 | 0.412 | 0.071 |
Total call duration | 0.151 | 0.017 | −0.080 | 0.288 ** | −0.108 |
Sig. (2-tailed) | 0.122 | 0.866 | 0.413 | 0.003 | 0.270 |
BCa 95% CI Lower | −0.047 | −0.149 | −0.286 | 0.094 | −0.283 |
Upper | 0.346 | 0.194 | 0.127 | 0.466 | 0.083 |
References
- Montag, C.; Diefenbach, S. Towards Homo Digitalis: Important research issues for psychology and the neurosciences at the dawn of the internet of things and the digital society. Sustainability 2018, 10, 415. [Google Scholar] [CrossRef]
- Internet World Stats. Available online: https://www.internetworldstats.com/stats.htm (accessed on 14 November 2017).
- Statista. Available online: https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/ (accessed on 14 November 2017).
- Stachl, C.; Bühner, M. Show me how you drive and I’ll tell you who you are. Recognizing gender using automotive driving parameters. Procedia Manuf. 2015, 3, 5587–5594. [Google Scholar] [CrossRef]
- Montag, C.; Duke, É.; Markowetz, A. Toward psychoinformatics: Computer science meets psychology. Comput. Math. Methods Med. 2016, 2016, 2983685. [Google Scholar] [CrossRef] [PubMed]
- Matz, S.C.; Kosinski, M.; Nave, G.; Stillwell, D.J. Psychological targeting as an effective approach to digital mass persuasion. Proc. Natl. Acad. Sci. USA 2017, 114, 12714–12719. [Google Scholar] [CrossRef]
- Miller, G. The smartphone psychology manifesto. Perspect. Psychol. Sci. 2012, 7, 221–237. [Google Scholar] [CrossRef] [PubMed]
- Yarkoni, T. Psychoinformatics: New horizons at the interface of the psychological and computing sciences. Curr. Dir. Psychol. Sci. 2012, 21, 391–397. [Google Scholar] [CrossRef]
- Markowetz, A.; Błaszkiewicz, K.; Montag, C.; Switala, C.; Schlaepfer, T.E. Psycho-informatics: Big data shaping modern psychometrics. Med. Hypotheses 2014, 82, 405–411. [Google Scholar] [CrossRef]
- Augustine, A.A.; Larsen, R.J. Is a trait really the mean of states? J. Individ. Differ. 2012, 33, 131–137. [Google Scholar] [CrossRef]
- Onnela, J.P.; Rauch, S.L. Harnessing smartphone-based digital phenotyping to enhance behavioral and mental health. Neuropsychopharmacology 2016, 41, 1691–1696. [Google Scholar] [CrossRef]
- Insel, T.R. Digital phenotyping: Technology for a new science of behavior. JAMA 2017, 318, 1215–1216. [Google Scholar] [CrossRef]
- Raballo, A. Digital phenotyping: An overarching framework to capture our extended mental states. Lancet Psychiatry 2018, 5, 194–195. [Google Scholar] [CrossRef]
- Torous, J.; Onnela, J.P.; Keshavan, M. New dimensions and new tools to realize the potential of RDoC: Digital phenotyping via smartphones and connected devices. Transl. Psychiatry 2017, 7, e1053. [Google Scholar] [CrossRef] [PubMed]
- Torous, J.; Staples, P.; Barnett, I.; Sandoval, L.R.; Keshavan, M.; Onnela, J.P. Characterizing the clinical relevance of digital phenotyping data quality with applications to a cohort with schizophrenia. NPJ Digit. Med. 2018, 1, 15. [Google Scholar] [CrossRef]
- Torous, J.; Keshavan, M. A new window into psychosis: The rise digital phenotyping, smartphone assessment, and mobile monitoring. Schizophr. Res. 2018, 197, 67–68. [Google Scholar] [CrossRef] [PubMed]
- Mohr, D.C.; Zhang, M.; Schueller, S.M. Personal sensing: Understanding mental health using ubiquitous sensors and machine learning. Annu. Rev. Clin. Psychol. 2017, 13, 23–47. [Google Scholar] [CrossRef]
- Kosinski, M.; Stillwell, D.; Graepel, T. Private traits and attributes are predictable from digital records of human behavior. Proc. Natl. Acad. Sci. USA 2013, 110, 5802–5805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- YouYou, W.; Kosinski, M.; Stillwell, D. Computer-based personality judgments are more accurate than those made by humans. Proc. Natl. Acad. Sci. USA 2015, 112, 1036–1040. [Google Scholar] [CrossRef] [Green Version]
- Quercia, D.; Kosinski, M.; Stillwell, D.; Crowcroft, J. Our twitter profiles, our selves: Predicting personality with twitter. In Proceedings of the 2011 IEEE Third International Conference on Privacy, Security, Risk and Trust and 2011 IEEE Third International Conference on Social Computing, Boston, MA, USA, 9–11 October 2011. [Google Scholar]
- Montag, C.; Błaszkiewicz, K.; Sariyska, R.; Lachmann, B.; Andone, I.; Trendafilov, B.; Eibes, M.; Markowetz, A. Smartphone usage in the 21st century: Who is active on WhatsApp? BMC Res. Notes 2015, 8, 331. [Google Scholar] [CrossRef]
- Montag, C.; Błaszkiewicz, K.; Lachmann, B.; Andone, I.; Sariyska, R.; Trendafilov, B.; Reuter, M.; Markowetz, A. Correlating personality and actual phone usage: Evidence from psychoinformatics. J. Individ. Differ. 2014, 3, 158–165. [Google Scholar] [CrossRef]
- Stachl, C.; Hilbert, S.; Au, J.Q.; Buschek, D.; De Luca, A.; Bischl, B.; Hussmann, H.; Bühner, M. Personality traits predict smartphone usage. Eur. J. Pers. 2017, 31, 701–722. [Google Scholar] [CrossRef]
- Dagum, P. Digital biomarkers of cognitive function. NPJ Digit. Med. 2018, 1, 10. [Google Scholar] [CrossRef]
- Stange, J.P.; Zulueta, J.; Langenecker, S.A.; Ryan, K.A.; Piscitello, A.; Duffecy, J.; McInnis, M.G.; Nelson, P.; Ajilore, O.; Leow, A. Let your fingers do the talking: Passive typing instability predicts future mood outcomes. Bipolar Disord. 2018, 20, 285–288. [Google Scholar] [CrossRef] [PubMed]
- Montag, C.; Markowetz, A.; Blaszkiewicz, K.; Andone, I.; Lachmann, B.; Sariyska, R.; Trendafilov, B.; Eibes, M.; Kolb, J.; Reuter, M.; et al. Facebook usage on smartphones and gray matter volume of the nucleus accumbens. Behav. Brain Res. 2017, 329, 221–228. [Google Scholar] [CrossRef]
- Baumert, A.; Schmitt, M.; Perugini, M.; Johnson, W.; Blum, G.; Borkenau, P.; Costantini, G.; Denissen, J.J.; Feleeson, W.; Grafton, B.; et al. Integrating personality structure, personality process, and personality development. Eur. J. Pers. 2017, 31, 503–528. [Google Scholar] [CrossRef]
- Canzian, L.; Musolesi, M. Trajectories of depression: Unobtrusive monitoring of depressive states by means of smartphone mobility traces analysis. In Proceedings of the 2015 ACM international joint conference on pervasive and ubiquitous computing, Osaka, Japan, 7–11 September 2015; ACM: New York, NY, USA, 2015. [Google Scholar]
- Chow, P.I.; Fua, K.; Huang, Y.; Bonelli, W.; Xiong, H.; Barnes, L.E.; Teachman, B.A. Using mobile sensing to test clinical models of depression, social anxiety, state affect, and social isolation among college students. J. Med. Internet Res. 2017, 19, e62. [Google Scholar] [CrossRef] [PubMed]
- Elhai, J.D.; Tiamiyu, M.F.; Weeks, J.W.; Levine, J.C.; Picard, K.J.; Hall, B.J. Depression and emotion regulation predict objective smartphone use measured over one week. Pers. Individ. Differ. 2018, 133, 21–28. [Google Scholar] [CrossRef]
- DeMasi, O.; Feygin, S.; Dembo, A.; Aguilera, A.; Recht, B. Well-Being tracking via smartphone-measured activity and sleep: Cohort study. JMIR mHealth uHealth 2017, 5, e137. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, H.A.; Eichstaedt, J.; Kern, M.L.; Park, G.; Sap, M.; Stillwell, D.; Ksinski, M.; Ungar, L. Towards assessing changes in degree of depression through facebook. In Proceedings of the Workshop on Computational Linguistics and Clinical Psychology: From Linguistic Signal to Clinical Reality, Baltimore, MD, USA, 27 June 2014; Association for Computational Linguistics: Stroudsburg, PA, USA, 2014. [Google Scholar]
- Guntuku, S.C.; Yaden, D.B.; Kern, M.L.; Ungar, L.H.; Eichstaedt, J.C. Detecting depression and mental illness on social media: An integrative review. Curr. Opin. Behav. Sci. 2017, 18, 43–49. [Google Scholar] [CrossRef]
- Mindstrong. Available online: https://mindstronghealth.com/ (accessed on 25 May 2018).
- BiAffect. Available online: www.biaffect.com (accessed on 25 May 2018).
- Schueller, S.M.; Begale, M.; Penedo, F.J.; Mohr, D.C. Purple: A modular system for developing and deploying behavioral intervention technologies. J. Med. Internet Res. 2014, 16, e181. [Google Scholar] [CrossRef]
- Hofmann, W.; Patel, P.V. SurveySignal: A convenient solution for experience sampling research using participants’ own smartphones. Soc. Sci. Comput. Rev. 2015, 33, 235–253. [Google Scholar] [CrossRef]
- Shaw, H.; Ellis, D.A.; Kendrick, L.R.; Ziegler, F.; Wiseman, R. Predicting smartphone operating system from personality and individual differences. Cyberpsychol. Behav. Soc. Netw. 2016, 19, 727–732. [Google Scholar] [CrossRef]
- Götz, F.M.; Stieger, S.; Reips, U.D. Users of the main smartphone operating systems (iOS, Android) differ only little in personality. PLoS ONE 2017, 12, e0176921. [Google Scholar] [CrossRef]
- Fineberg, N.A.; Demetrovics, Z.; Stein, D.J.; Ioannidis, K.; Potenza, M.N.; Grünblatt, E.; Brand, M.; Billieux, J.; Carmi, L.; King, D.L.; et al. Manifesto for a European research network into Problematic Usage of the Internet. Eur. Neuropsychopharmacol. 2018, 28, 1232–1246. [Google Scholar] [CrossRef] [PubMed]
- Montag, C.; Reuter, M.; Markowetz, A. The impact of psychoinformatics on Internet addiction including new evidence. In Internet Addiction; Springer: Cham, Switzerland, 2017; pp. 221–229. [Google Scholar]
- Drosatos, G.; Nalbadis, F.; Arden-Close, E.; Baines, V.; Bolat, E.; Vuillier, L.; Kostoulas, T.; Budka, M.; Wasowska, S.; Bonello, M.; et al. Enabling Responsible Online Gambling by Real-time Persuasive Technologies. Complex Syst. Inform. Model. Q. 2018, 17, 44–68. [Google Scholar] [CrossRef]
- Harari, G.M.; Lane, N.D.; Wang, R.; Crosier, B.S.; Campbell, A.T.; Gosling, S.D. Using smartphones to collect behavioral data in psychological science: Opportunities, practical considerations, and challenges. Perspect. Psychol. Sci. 2016, 11, 838–854. [Google Scholar] [CrossRef]
- Harari, G.M.; Gosling, S.D.; Wang, R.; Campbell, A.T. Capturing Situational Information with Smartphones and Mobile Sensing Methods. Eur. J. Pers. 2015, 29, 509–511. [Google Scholar] [CrossRef]
- McCrae, R.R.; John, O.P. An introduction to the five-factor model and its applications. J. Pers. 1992, 60, 175–215. [Google Scholar] [CrossRef]
- Google Commerce Ltd. Mental. Available online: https://play.google.com/store/apps/details?id=open.menthal (accessed on 28 February 2018).
- Olaru, G.; Witthöft, M.; Wilhelm, O. Methods matter: Testing competing models for designing short-scale big-five assessments. J. Res. Pers. 2015, 59, 56–68. [Google Scholar] [CrossRef]
- Kwon, M.; Lee, J.Y.; Won, W.Y.; Park, J.W.; Min, J.A.; Hahn, C.; Gu, X.; Choi, J.; Kim, D.J. Development and validation of a smartphone addiction scale (SAS). PLoS ONE 2013, 8, e56936. [Google Scholar] [CrossRef] [PubMed]
- Sariyska, R.; Rathner, E.M.; Baumeister, H.; Montag, C. Feasibility of linking molecular genetic markers to real-world social network size tracked on smartphones. Front. Neurosci. 2018, 12, 945. [Google Scholar] [CrossRef] [PubMed]
- Schoedel, R.; Au, Q.; Völkel, S.T.; Lehmann, F.; Becker, D.; Bühner, M.; Bisschl, B.; Hussmanna, H.; Stachl, C. Digital Footprints of Sensation Seeking. Z. Psychol. 2018, 226, 232–245. [Google Scholar] [CrossRef]
- Mønsted, B.; Mollgaard, A.; Mathiesen, J. Phone-based metric as a predictor for basic personality traits. J. Res. Pers. 2018, 74, 16–22. [Google Scholar] [CrossRef]
Recordable Data Types | Details |
---|---|
Contact List | Names, phone numbers, changes in list over time |
Calls | Phone number, contact name, call type (incoming, outgoing or missed call), call duration, timestamp |
SMS | Phone number, contact name, SMS type (incoming or outgoing SMS), message length, timestamp, text mining |
User Sessions | Time of screen-on-event, time of phone-unlock-event, time of screen-off-event, session duration, elapsed time since last session |
Battery Status | Battery level, timestamp, battery health information |
Ringtone Settings | Ringtone type (loud, vibration or mute), ringtone volume |
Installed Apps | App title, app package name, changes in app installations over time |
App Sessions | App title, app package name, beginning of app session, end of app session, session duration |
Aggregated App Sessions | Aggregated information from app sessions with total usage time and app entry count |
Locations | GPS-, mobile- or WiFi-locations (latitude, longitude and altitude), precision, speed, record timestamp |
Network Traffic | Number of bytes and network-packets received and transmitted, record timestamp |
Phone Events | Events such as start, restart and shutdown of the device, plug-in for charging events, enabling/disabling the airplane-mode event |
Questionnaires | Custom questionnaires programmed with SurveyCoder can be shown by a time schedule or can be manually accessed from a list. |
Experiments | Custom HTML pages to bind experiments or web applications to the Insights data. This includes common HTML, Javascript and CSS and an optional connection to backend servers. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montag, C.; Baumeister, H.; Kannen, C.; Sariyska, R.; Meßner, E.-M.; Brand, M. Concept, Possibilities and Pilot-Testing of a New Smartphone Application for the Social and Life Sciences to Study Human Behavior Including Validation Data from Personality Psychology. J 2019, 2, 102-115. https://doi.org/10.3390/j2020008
Montag C, Baumeister H, Kannen C, Sariyska R, Meßner E-M, Brand M. Concept, Possibilities and Pilot-Testing of a New Smartphone Application for the Social and Life Sciences to Study Human Behavior Including Validation Data from Personality Psychology. J. 2019; 2(2):102-115. https://doi.org/10.3390/j2020008
Chicago/Turabian StyleMontag, Christian, Harald Baumeister, Christopher Kannen, Rayna Sariyska, Eva-Maria Meßner, and Matthias Brand. 2019. "Concept, Possibilities and Pilot-Testing of a New Smartphone Application for the Social and Life Sciences to Study Human Behavior Including Validation Data from Personality Psychology" J 2, no. 2: 102-115. https://doi.org/10.3390/j2020008
APA StyleMontag, C., Baumeister, H., Kannen, C., Sariyska, R., Meßner, E.-M., & Brand, M. (2019). Concept, Possibilities and Pilot-Testing of a New Smartphone Application for the Social and Life Sciences to Study Human Behavior Including Validation Data from Personality Psychology. J, 2(2), 102-115. https://doi.org/10.3390/j2020008