Relating Charged Particle Multiplicity to Impact Parameter in Heavy-Ion Collisions at NICA Energies
Abstract
:1. Introduction
2. Impact Parameter Estimation from the Multiplicity of Charged Particles
2.1. Centrality Determination Using MC-Glauber Approach
2.2. Centrality Determination Using the -Fit Method
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kekelidze, V.D. Heavy Ion Collisions: Baryon Density Frontier. Phys. Part. Nucl. 2018, 49, 457. [Google Scholar] [CrossRef]
- Broniowski, W.; Florkowski, W. Geometric relation between centrality and the impact parameter in relativistic heavy ion collisions. Phys. Rev. C 2002, 65, 024905. [Google Scholar] [CrossRef] [Green Version]
- Tarafdar, S.; Citron, Z.; Milov, A. A Centrality Detector Concept. Nucl. Instrum. Meth. A 2014, 768, 170–178. [Google Scholar] [CrossRef] [Green Version]
- Loizides, C.; Nagle, J.; Steinberg, P. Improved version of the PHOBOS Glauber Monte Carlo. SoftwareX 2015, 1–2, 13. [Google Scholar] [CrossRef] [Green Version]
- Abelev, B.; Adam, J.; Adamová, D.; Adare, A.M.; Aggarwal, M.M.; Rinella, G.A.; Agnello, M.; Agocs, A.G.; Agostinelli, A.; Ahammed, Z.; et al. Centrality determination of Pb-Pb collisions at = 2.76 TeV with ALICE. Phys. Rev. C 2013, 88, 044909. [Google Scholar] [CrossRef] [Green Version]
- Klochkov, V.; Selyuzhenkov, I. Centrality Determination in Heavy-ion Collisions with CBM. Acta Phys. Polon. Supp. 2017, 10, 919. [Google Scholar] [CrossRef] [Green Version]
- Kagamaster, S.; Reed, R.; Lisa, M. Centrality determination with a forward detector in the RHIC Beam Energy Scan. Phys. Rev. C 2021, 103, 044902. [Google Scholar] [CrossRef]
- Chatterjee, A.; Zhang, Y.; Zeng, J.; Sahoo, N.R.; Luo, X. Effect of centrality selection on higher-order cumulants of net-proton multiplicity distributions in relativistic heavy-ion collisions. Phys. Rev. C 2020, 101, 034902. [Google Scholar] [CrossRef] [Green Version]
- Chatterjee, A.; Zhang, Y.; Liu, H.; Wang, R.; He, S.; Luo, X. Effects of centrality fluctuation and deuteron formation on proton number cumulant in Au + Au collisions at = 3 GeV from JAM model. Chin. Phys. C 2021, 45, 064003. [Google Scholar] [CrossRef]
- Rogly, R.; Giacalone, G.; Ollitrault, J.Y. Reconstructing the impact parameter of proton-nucleus and nucleus-nucleus collisions. Phys. Rev. C 2018, 98, 024902. [Google Scholar] [CrossRef] [Green Version]
- Das, S.J.; Giacalone, G.; Monard, P.A.; Ollitrault, J.Y. Relating centrality to impact parameter in nucleus-nucleus collisions. Phys. Rev. C 2018, 97, 014905. [Google Scholar] [CrossRef] [Green Version]
- Bass, S.A.; Belkacem, M.; Bleicher, M.; Brandstetter, M.; Bravina, L.; Ernst, C.; Gerland, L.; Hofmann, M.; Hofmann, S.; Konopka, J.; et al. Microscopic models for ultrarelativistic heavy ion collisions. Prog. Part. Nucl. Phys. 1998, 41, 255–369. [Google Scholar] [CrossRef] [Green Version]
- Lin, Z.W.; Ko, C.M.; Li, B.A.; Zhang, B.; Pal, S. A Multi-phase transport model for relativistic heavy ion collisions. Phys. Rev. C 2005, 72, 064901. [Google Scholar] [CrossRef] [Green Version]
- Toneev, V.D.; Gudima, K.K. Particle emission in light and heavy ion reactions. Nucl. Phys. A 1983, 400, 173–189. [Google Scholar] [CrossRef]
- Botvina, A.S.; Gudima, K.K.; Steinheimer, J.; Bleicher, M.; Mishustin, I.N. Production of spectator hypermatter in relativistic heavy-ion collisions. Phys. Rev. C 2011, 84, 064904. [Google Scholar] [CrossRef] [Green Version]
- Adamczyk, L.; Agakishiev, G.; Aggarwal, M.M.; Ahammed, Z.; Alakhverdyants, A.V.; Alekseev, I.; Alford, J.; Anderson, B.D.; Anson, C.D.; Arkhipkin, D.; et al. Inclusive charged hadron elliptic flow in Au + Au collisions at = 7.7–39 GeV. Phys. Rev. C 2012, 86, 054908. [Google Scholar] [CrossRef]
- Miller, M.L.; Reygers, K.; Sanders, S.J.; Steinberg, P. Glauber modeling in high energy nuclear collisions. Ann. Rev. Nucl. Part. Sci. 2007, 57, 205–243. [Google Scholar] [CrossRef] [Green Version]
- Fricke, G.; Heilig, K. Nuclear Charge Radii 79-Au Gold: Datasheet from Landolt-Börnstein. Group I Elem. Part. Nucl. Atoms 2004, 20. [Google Scholar] [CrossRef]
- Particle Data Group; Zyla, P.A.; Barnett, R.M.; Beringer, J.; Dahl, O.; Dwyer, D.A.; Groom, D.E.; Lin, C.J.; Lugovsky, K.S.; Pianori, E.; et al. Review of Particle Physics. Prog. Theor. Exp. Phys. 2020, 2020, 083C01. [Google Scholar] [CrossRef]
- Kolesnikov, V.; Mudrokh, A.; Vasendina, V.; Zinchenko, A. Towards a Realistic Monte Carlo Simulation of the MPD Detector at NICA. Phys. Part. Nucl. Lett. 2019, 16, 6–15. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parfenov, P.; Idrisov, D.; Luong, V.B.; Taranenko, A. Relating Charged Particle Multiplicity to Impact Parameter in Heavy-Ion Collisions at NICA Energies. Particles 2021, 4, 275-287. https://doi.org/10.3390/particles4020024
Parfenov P, Idrisov D, Luong VB, Taranenko A. Relating Charged Particle Multiplicity to Impact Parameter in Heavy-Ion Collisions at NICA Energies. Particles. 2021; 4(2):275-287. https://doi.org/10.3390/particles4020024
Chicago/Turabian StyleParfenov, Petr, Dim Idrisov, Vinh Ba Luong, and Arkadiy Taranenko. 2021. "Relating Charged Particle Multiplicity to Impact Parameter in Heavy-Ion Collisions at NICA Energies" Particles 4, no. 2: 275-287. https://doi.org/10.3390/particles4020024
APA StyleParfenov, P., Idrisov, D., Luong, V. B., & Taranenko, A. (2021). Relating Charged Particle Multiplicity to Impact Parameter in Heavy-Ion Collisions at NICA Energies. Particles, 4(2), 275-287. https://doi.org/10.3390/particles4020024