CBM Performance for Λ Hyperon Directed Flow Measurements in Au + Au Collisions at 12A GeV/c
Abstract
:1. Introduction
2. CBM Experiment and Simulation Setup
3. Hyperon Reconstruction
- —a distance of the closest approach between two daughter tracks (in cm);
- —a cosine of the angle between the candidate and proton momenta;
- —a distance (L) between the primary and secondary vertices divided by its error ();
- —a square of the distance between the proton (negatively charge pion) track and the primary vertex position divided by its error;
- —a square of the distance between the daughter proton and negatively charged pion divided by its error;
- —a square of the distance between the candidate trajectory and primary vertex divided by its error.
4. Anisotropic Flow Measurement Technique
- Recenter the distribution by subtracting the corresponding average values;
- Twist the vector distribution;
- Rescale the vector distribution along x and y directions.
5. Results
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Adamczewski-Musch, J.; Arnold, O.; Behnke, C.; Belounnas, A.; Belyaev, A.; Berger-Chen, J.C.; Biernat, J.; Blanco, A.; Blume, C.; Böhmer, M.; et al. Probing dense baryon-rich matter with virtual photons. Nat. Phys. 2019, 15, 1040–1045. [Google Scholar] [CrossRef]
- Orsaria, M.; Rodrigues, H.; Weber, F.; Contrera, G.A. Quark deconfinement in high-mass neutron stars. Phys. Rev. C 2014, 89, 015806. [Google Scholar] [CrossRef] [Green Version]
- Burgio, G.F.; Schulze, H.J.; Vidaña, I.; Wei, J.B. A Modern View of the Equation of State in Nuclear and Neutron Star Matter. Symmetry 2021, 13, 400. [Google Scholar] [CrossRef]
- Friman, B.; Höhne, C.; Knoll, J.; Leupold, S.; Randrup, J.; Rapp, R.; Senger, P. (Eds.) The CBM Physics Book: Compressed Baryonic Matter in Laboratory Experiments; Springer: Berlin/Heidelberg, Germany, 2011; Volume 814, pp. 1–980. [Google Scholar] [CrossRef]
- Ablyazimov, T.; Abuhoza, A.; Adak, R.P.; Adamczyk, M.; Agarwal, K.; Aggarwal, M.M.; Ahammed, Z.; Ahmad, F.; Ahmad, N.; Ahmad, S.; et al. Challenges in QCD matter physics—The scientific programme of the Compressed Baryonic Matter experiment at FAIR. Eur. Phys. J. A 2017, 53, 60. [Google Scholar] [CrossRef]
- Wu, Y.; STAR Collaboration. Recent results for STAR sNN=4.9 GeV Al+Au and sNN=4.5 GeV Au + Au Fixed-Target Collisions. Nucl. Phys. A 2019, 982, 899–902. [Google Scholar] [CrossRef]
- Adam, J.; Adamczyk, L.; Adams, J.R.; Adkins, J.K.; Agakishiev, G.; Aggarwal, M.M.; Aggarwal, Z.; Ahammed, I.; Alekseev, D.M.; Anderson, A.; et al. Flow and interferometry results from Au + Au collisions at sNN=4.5 GeV. Phys. Rev. C 2021, 103, 034908. [Google Scholar] [CrossRef]
- Zhang, B.; Ko, C.M.; Li, B.A.; Sustich, A.T. Directed flow of neutral strange particles at AGS. J. Phys. G 2000, 26, 1665–1670. [Google Scholar] [CrossRef]
- Ko, C.M. Medium effects on the flow of strange particles in heavy ion collisions. J. Phys. G 2001, 27, 327–336. [Google Scholar] [CrossRef] [Green Version]
- Chlad, L. Strangeness Flow in Au + Au Collisions at 1.23AGeV Measured with HADES. Springer Proc. Phys. 2020, 250, 221–224. [Google Scholar] [CrossRef]
- Heuser, J.; Müller, W.; Pugatch, V.; Senger, P.; Schmidt, C.J.; Sturm, C.; Frankenfeld, U.; CBM Collaboration. [GSI Report 2013–4], Technical Design Report for the CBM Silicon Tracking System (STS). Available online: https://repository.gsi.de/record/54798 (accessed on 30 April 2021).
- Baznat, M.; Botvina, A.; Musulmanbekov, G.; Toneev, V.; Zhezher, V. Monte-Carlo Generator of Heavy Ion Collisions DCM-SMM. Phys. Part. Nucl. Lett. 2020, 17, 303–324. [Google Scholar] [CrossRef]
- Botvina, A.S.; Mishustin, I.N.; Begemann-Blaich, M.; Hubele, J.; Imme, G.; Iori, I.; Kreutz, P.; Kunde, G.J.; Kunze, W.D.; Lindenstruth, V.; et al. Multifragmentation of spectators in relativistic heavy ion reactions. Nucl. Phys. A 1995, 584, 737–756. [Google Scholar] [CrossRef] [Green Version]
- Golosov, O.; Klochkov, V.; Kashirin, E.; Selyuzhenkov, I.; CBM Collaboration. Physics Performance Studies for Anisotropic Flow Measurements with the CBM Experiment at FAIR. Phys. Part Nucl. 2020, 51, 297–300. [Google Scholar] [CrossRef]
- Agostinelli, S.; Allison, J.; Amako, K.A.; Apostolakis, J.; Araujo, H.; Arce, P.; Asai, M.; Axen, D.; Banerjee, S.; Barrand, G.; et al. GEANT4—A simulation toolkit. Nucl. Instrum. Methods A 2003, 506, 250–303. [Google Scholar] [CrossRef] [Green Version]
- Allison, J.; Amako, K.; Apostolakis, J.; Araujo, H.; Dubois, P.A.; Asai, M.; Barrand, G.; Capra, R.; Chauvie, S.; Chytracek, R.; et al. Geant4 developments and applications. IEEE Trans. Nucl. Sci. 2006, 53, 270. [Google Scholar] [CrossRef] [Green Version]
- The CBM Collaboration. Available online: https://git.cbm.gsi.de/computing/cbmroot (accessed on 30 April 2021).
- Segal, I.; Lubynets, O.; Selyuzhenkov, I.; Klochkov, V.; CBM Collaboration. Using multiplicity of produced particles for centrality determination in heavy-ion collisions with the CBM experiment. J. Phys. Conf. Ser. 2020, 1690, 012107. [Google Scholar] [CrossRef]
- Klochkov, V.; Segal, I.; Lubynets, O.; Selyuzhenkov, I. CBM-GSI gitlab. Available online: https://git.cbm.gsi.de/pwg-c2f/analysis/centrality (accessed on 30 April 2021).
- Gorbunov, S. On-line reconstruction algorithms for the CBM and ALICE Experiments. GSI-2017-01227. Available online: https://core.ac.uk/download/pdf/14529239.pdf (accessed on 30 April 2021).
- Zyzak, M. Online Selection of Short-Lived Particles on Many-Core Computer Architectures in the CBM Experiment at FAIR. GSI-2017-00683. Available online: http://repository.gsi.de/record/201581?ln=de (accessed on 30 April 2021).
- Zyzak, M.; Kisel, I. github. Available online: https://github.com/cbmsw/KFParticle.git (accessed on 30 April 2021).
- Lubynets, O.; Klochkov, V.; Selyuzhenkov, I.; Glaessel, S.; Blume, C. CBM-GSI gitlab. Available online: https://git.cbm.gsi.de/pwg-c2f/analysis/pf_simple (accessed on 30 April 2021).
- Guber, F.; Selyuzhenkov, I.; CBM Collaboration. [GSI Report 2015-02020], Technical Design Report for the CBM Projectile Spectator Detector (PSD). Available online: https://repository.gsi.de/record/109059 (accessed on 30 April 2021).
- Selyuzhenkov, I.; Voloshin, S. Effects of non-uniform acceptance in anisotropic flow measurement. Phys. Rev. C 2008, 77, 034904. [Google Scholar] [CrossRef] [Green Version]
- Kreis, L.; Selyuzhenkov, I. github. Available online: https://github.com/HeavyIonAnalysis/QnTools (accessed on 30 April 2021).
- Kashirin, E.; Selyuzhenkov, I. github. Available online: https://github.com/HeavyIonAnalysis/QnAnalysis (accessed on 30 April 2021).
Parameter | DCA (cm) | ||||||
---|---|---|---|---|---|---|---|
Selection criteria | >26 | >110 | <0.15 | >4 | <11 | >0.99825 | <29 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lubynets, O.; Selyuzhenkov, I.; Klochkov, V. CBM Performance for Λ Hyperon Directed Flow Measurements in Au + Au Collisions at 12A GeV/c. Particles 2021, 4, 288-295. https://doi.org/10.3390/particles4020025
Lubynets O, Selyuzhenkov I, Klochkov V. CBM Performance for Λ Hyperon Directed Flow Measurements in Au + Au Collisions at 12A GeV/c. Particles. 2021; 4(2):288-295. https://doi.org/10.3390/particles4020025
Chicago/Turabian StyleLubynets, Oleksii, Ilya Selyuzhenkov, and Viktor Klochkov. 2021. "CBM Performance for Λ Hyperon Directed Flow Measurements in Au + Au Collisions at 12A GeV/c" Particles 4, no. 2: 288-295. https://doi.org/10.3390/particles4020025
APA StyleLubynets, O., Selyuzhenkov, I., & Klochkov, V. (2021). CBM Performance for Λ Hyperon Directed Flow Measurements in Au + Au Collisions at 12A GeV/c. Particles, 4(2), 288-295. https://doi.org/10.3390/particles4020025