Counterintuitive Particle Confinement in a Helical Force-Free Plasma
Abstract
:1. Introduction
2. Materials and Methods
2.1. Orbit Simulation Algorithm
2.2. Field Structure of the Taylor State in a Long Cylinder
3. Results
3.1. Flux Surfaces
3.2. Statistical Properties of Proton Orbits in the Plectoneme
3.3. Observed Trajectories
3.4. Role of Strong Gradients
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Woltjer, L. A theorem on force-free magnetic fields. Proc. Natl. Acad. Sci. USA 1958, 44, 489–491. [Google Scholar] [CrossRef] [PubMed]
- Taylor, J.B. Relaxation of Toroidal Plasma and Generation of Reverse Magnetic Fields. Phys. Rev. Lett. 1974, 33, 1139–1141. [Google Scholar] [CrossRef]
- Taylor, J.B. Relaxation and magnetic reconnection in plasmas. Rev. Mod. Phys. 1986, 58, 741. [Google Scholar] [CrossRef]
- Brown, M.R. Experimental evidence of rapid relaxation to large-scale structures in turbulent fluids: Selective decay and maximal entropy. J. Plasma Phys. 1997, 57, 203–229. [Google Scholar] [CrossRef]
- Tang, X.Z.; Boozer, A.H. Force-Free Magnetic Relaxation in Driven Plasmas. Phys. Rev. Lett. 2005, 94, 225004. [Google Scholar] [CrossRef]
- Török, T.; Kliem, B. Confined and Ejective Eruptions of Kink-unstable Flux Ropes. Astrophys. J. 2005, 630, L97. [Google Scholar] [CrossRef]
- Bellan, P.M. Experiments relevant to astrophysical jets. J. Plasma Phys. 2018, 84, 755840501. [Google Scholar] [CrossRef]
- Wiegelmann, T.; Sakurai, T. Solar force-free magnetic fields. Living Rev. Sol. Phys. 2021, 18, 1. [Google Scholar] [CrossRef]
- van Driel-Gesztelyi, L.; Hofmann, A.; Démoulin, P.; Schmieder, B.; Csepura, G. Relationship between electric currents, photospheric motions, chromospheric activity, and magnetic field topology. Sol. Phys. 1994, 149, 309–330. [Google Scholar] [CrossRef]
- Shiota, D.; Kataoka, R. Magnetohydrodynamic simulation of interplanetary propagation of multiple coronal mass ejections with internal magnetic flux rope (SUSANOO-CME). Space Weather 2016, 14, 56–75. [Google Scholar] [CrossRef]
- Scolini, C.; Rodriguez, L.; Mierla, M.; Pomoell, J.; Poedts, S. Observation-based modelling of magnetised coronal mass ejections with EUHFORIA. Astron. Astrophys. 2019, 626, A122. [Google Scholar] [CrossRef]
- Wheatland, M.S.; Sturrock, P.A.; Roumeliotis, G. An Optimization Approach to Reconstructing Force-free Fields. Astrophys. J. 2000, 540, 1150. [Google Scholar] [CrossRef]
- Kliem, B.; Lee, J.; Liu, R.; White, S.M.; Liu, C.; Masuda, S. Nonequilibrium Flux Rope Formation by Confined Flares Preceding a Solar Coronal Mass Ejection. Astrophys. J. 2021, 909, 91. [Google Scholar] [CrossRef]
- Karna, N.; Savcheva, A.; Gibson, S.; Tassev, S.; Reeves, K.K.; DeLuca, E.E.; Dalmasse, K. Magnetofrictional Modeling of an Erupting Pseudostreamer. Astrophys. J. 2021, 913, 47. [Google Scholar] [CrossRef]
- Kaur, M.; Barbano, L.J.; Suen-Lewis, E.M.; Shrock, J.E.; Light, A.D.; Brown, M.R.; Schaffner, D.A. Measuring the equations of state in a relaxed magnetohydrodynamic plasma. Phys. Rev. E 2018, 97, 011202. [Google Scholar] [CrossRef]
- Kaur, M.; Barbano, L.J.; Suen-Lewis, E.M.; Shrock, J.E.; Light, A.D.; Schaffner, D.A.; Brown, M.B.; Woodruff, S.; Meyer, T. Magnetothermodynamics: Measurements of the thermodynamic properties in a relaxed magnetohydrodynamic plasma. J. Plasma Phys. 2018, 84, 905840114. [Google Scholar] [CrossRef]
- You, S. Helicity Drive: A Novel Scalable Fusion Concept for Deep Space Propulsion. In AIAA Propulsion and Energy 2020 Forum; AIAA Propulsion and Energy Forum, American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2020. [Google Scholar] [CrossRef]
- Wurden, G.A.; Hsu, S.C.; Intrator, T.P.; Grabowski, T.C.; Degnan, J.H.; Domonkos, M.; Turchi, P.J.; Campbell, E.M.; Sinars, D.B.; Herrmann, M.C.; et al. Magneto-Inertial Fusion. J. Fusion Energy 2016, 35, 69–77. [Google Scholar] [CrossRef]
- Degnan, J.H.; Amdahl, D.J.; Domonkos, M.; Lehr, F.M.; Grabowski, C.; Robinson, P.R.; Ruden, E.L.; White, W.M.; Wurden, G.A.; Intrator, T.P.; et al. Recent magneto-inertial fusion experiments on the field reversed configuration heating experiment. Nucl. Fusion 2013, 53, 093003. [Google Scholar] [CrossRef]
- Bellan, P.M. Spheromaks: A Practical Application of Magnetohydrodynamic Dynamos and Plasma Self-Organization; Imperial College Press: London, UK, 2000. [Google Scholar] [CrossRef]
- Jarboe, T.R. Review of spheromak research. Plasma Phys. Control Fusion 1994, 36, 945. [Google Scholar] [CrossRef]
- Bellan, P.M. Magnetic Helicity, Spheromaks, Solar Corona Loops, And Astrophysical Jets; World Scientific: Singapore, 2018. [Google Scholar] [CrossRef]
- Finn, J.M.; Manheimer, W.M.; Ott, E. Spheromak tilting instability in cylindrical geometry. Phys. Fluids 1981, 24, 1336–1341. [Google Scholar] [CrossRef]
- Bondeson, A.; Marklin, G.; An, Z.G.; Chen, H.H.; Lee, Y.C.; Liu, C.S. Tilting instability of a cylindrical spheromak. Phys. Fluids 1981, 24, 1682–1688. [Google Scholar] [CrossRef]
- Lavine, E.S.; You, S. Observations of a plectonemic configuration in a stable magnetized plasma jet. Phys. Plasmas 2021, 28, 040703. [Google Scholar] [CrossRef]
- Cothran, C.D.; Brown, M.R.; Gray, T.; Schaffer, M.J.; Marklin, G. Observation of a Helical Self-Organized State in a Compact Toroidal Plasma. Phys. Rev. Lett. 2009, 103, 215002. [Google Scholar] [CrossRef] [PubMed]
- Gray, T.; Brown, M.R.; Dandurand, D. Observation of a Relaxed Plasma State in a Quasi-Infinite Cylinder. Phys. Rev. Lett. 2013, 110, 085002. [Google Scholar] [CrossRef]
- Brown, M.; Gelber, K.; Mebratu, M. Taylor State Merging at SSX: Experiment and Simulation. Plasma 2020, 3, 27–37. [Google Scholar] [CrossRef]
- Rosenbluth, M.N.; Sagdeev, R.Z.; Taylor, J.B.; Zaslavski, G.M. Destruction of magnetic surfaces by magnetic field irregularities. Nucl. Fusion 1966, 6, 297. [Google Scholar] [CrossRef]
- Kaur, M.; Gelber, K.D.; Light, A.D.; Brown, M.R. Temperature and Lifetime Measurements in the SSX Wind Tunnel. Plasma 2018, 1, 229–241. [Google Scholar] [CrossRef]
- You, S.; von der Linden, J.; Lavine, E.S.; Carroll, E.G.; Card, A.; Quinley, M.; Azuara-Rosales, M. The Mochi LabJet Experiment for Measurements of Canonical Helicity Injection in a Laboratory Astrophysical Jet. Astrophys. J. Suppl. Ser. 2018, 236, 29. [Google Scholar] [CrossRef]
- Haber, I.; Wagner, C.; Boris, J.; Dawson, J. A Self-Consistent Electromagnetic Particle Code. In Proceedings of the 4th Conference on the Numerical Simulation of Plasmas, Washington, DC, USA, 3 November 1970. [Google Scholar]
- Qin, H.; Zhang, S.; Xiao, J.; Liu, J.; Sun, Y.; Tang, W.M. Why is Boris algorithm so good? Phys. Plasmas 2013, 20, 084503. [Google Scholar] [CrossRef]
- Jarboe, T.R.; Hamp, W.T.; Marklin, G.J.; Nelson, B.A.; O’Neill, R.G.; Redd, A.J.; Sieck, P.E.; Smith, R.J.; Wrobel, J.S. Spheromak Formation by Steady Inductive Helicity Injection. Phys. Rev. Lett. 2006, 97, 115003. [Google Scholar] [CrossRef]
- Benedett, T.; Hansen, C. Effect of geometric and magnetic boundary conditions on magnetic islands in 3D force-free ideal MHD equilibria. Nucl. Fusion 2021, 61, 036022. [Google Scholar] [CrossRef]
- Hansen, C.; Burgess, D.; Pharr, M.; Guizzo, S. OpenFUSIONToolkit/OpenFUSIONToolkit: v1.0.0-beta5. 2025. Zenodo. Available online: https://doi.org/10.5281/zenodo.14728057 (accessed on 15 February 2025).
- Grad, H.; Rubin, H. Hydromagnetic equilibria and force-free fields. In Proceedings of the Second United Nations International Conference on the Peaceful Uses of Atomic Energy, Geneva, Switzerland, 1–13 September 1958; pp. 190–197. [Google Scholar]
- Foster, J.G.; Grassberger, P.; Paczuski, M. Reinforced walks in two and three dimensions. New J. Phys. 2009, 11, 023009. [Google Scholar] [CrossRef]
- Boyer, D.; Pineda, I. Slow Lévy flights. Phys. Rev. E 2016, 93, 022103. [Google Scholar] [CrossRef] [PubMed]
- Bodrova, A.S.; Chechkin, A.V.; Cherstvy, A.G.; Metzler, R. Ultraslow scaled Brownian motion. New J. Phys. 2015, 17, 063038. [Google Scholar] [CrossRef]
- Gurnett, D.A.; Bhattacharjee, A. Introduction to Plasma Physics: With Space, Laboratory and Astrophysical Applications, 2nd ed.; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar] [CrossRef]
- Speiser, T.W. Particle trajectories in model current sheets: 1. Analytical solutions. J. Geophys. Res. 1965, 70, 4219–4226. [Google Scholar] [CrossRef]
- Büchner, J.; Zelenyi, L.M. Regular and chaotic charged particle motion in magnetotaillike field reversals: 1. Basic theory of trapped motion. J. Geophys. Res. Space Phys. 1989, 94, 11821–11842. [Google Scholar] [CrossRef]
- Lavine, E.S.; You, S. The topology of canonical flux tubes in flared jet geometry. Astrophys. J. 2017, 835, 89. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Light, A.D.; Srinivasulu, H.; Hansen, C.J.; Brown, M.R. Counterintuitive Particle Confinement in a Helical Force-Free Plasma. Plasma 2025, 8, 20. https://doi.org/10.3390/plasma8020020
Light AD, Srinivasulu H, Hansen CJ, Brown MR. Counterintuitive Particle Confinement in a Helical Force-Free Plasma. Plasma. 2025; 8(2):20. https://doi.org/10.3390/plasma8020020
Chicago/Turabian StyleLight, Adam D., Hariharan Srinivasulu, Christopher J. Hansen, and Michael R. Brown. 2025. "Counterintuitive Particle Confinement in a Helical Force-Free Plasma" Plasma 8, no. 2: 20. https://doi.org/10.3390/plasma8020020
APA StyleLight, A. D., Srinivasulu, H., Hansen, C. J., & Brown, M. R. (2025). Counterintuitive Particle Confinement in a Helical Force-Free Plasma. Plasma, 8(2), 20. https://doi.org/10.3390/plasma8020020