Charting the Future of Maritime Education and Training: A Technology-Acceptance-Model-Based Pilot Study on Students’ Behavioural Intention to Use a Fully Immersive VR Engine Room Simulator
Abstract
1. Introduction
HMD-VR Technology in Maritime Engineering Simulator Training
2. Theoretical Framework and Hypothesis Development
2.1. Technology Acceptance Model
2.2. Cross-Domain Review of Interrelationships Among TAM Constructs
2.3. Hypotheses
3. Materials and Methods
3.1. Hardware
Software
3.2. Sample
3.3. Experimental Protocol and Sampling
3.4. Measurement Instrument
3.5. Data Analysis
4. Results
4.1. Confirmatory Factor Analysis (CFA)
4.2. SEM Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
VR | Virtual Reality |
HMD | Head-Mounted Display |
HMD-VR | Head-Mounted Display Virtual Reality |
TAM | Technology Acceptance Model |
SEM | Structural Equation Modelling |
MET | Maritime Education and Training |
3D | Three Dimensional |
STCW | Standards of Training, Certification and Watchkeeping Convention |
PU | Perceived Usefulness |
PEU | Perceived Ease of Use |
BI | Behaviour Intention |
EVE | Educational Virtual Environments |
MERS | Marine Engine Room Simulators |
β | Coefficient Path |
ECDIS | Electronic Chart Display and Information |
GPS | Global Positioning System |
GB | Gigabyte |
MHz | Megahertz |
GHz | Gigahertz |
Mbps | Megabit Per Second |
CPU | Central Processing Unit |
RAM | Random Access Memory |
DDR | Double Data Rate |
GPU | Graphics Processing Unit |
VRAM | Video Random-Access Memory |
RO-RO | Roll-On/Roll-Off |
HFO | Heavy Fuel Oil |
CFA | Confirmatory Factor Analysis |
JASP | Jeffrey’s Amazing Statistics Program |
SPSS | Statistical Package for the Social Sciences |
χ2 | Chi-Square |
χ2/df | Relative Chi-Square |
CFI | Comparative Fit Index |
TLI | Tucker–Lewis Index |
RMSEA | Root Mean Square Error of Approximation |
SRMR | Standardised Root Mean Square Residual |
α | Cronbach’s Alpha |
ω | McDonald’s Omega |
AVE | Average Variance Extracted |
CR | Composite Reliability |
HTMT | Heterotrait–Monotrait Ratio |
SFL | Standardised Factor Loading |
R2 | Squared Multiple Correlations |
t | t-Value |
p | p-Value |
UTAUT | Theory of Acceptance and Use of Technology |
References
- Sharma, A.; Nazir, S. Assessing the Technology Self-Efficacy of Maritime Instructors: An Explorative Study. Educ. Sci. 2021, 11, 342. [Google Scholar] [CrossRef]
- International Maritime Organization (IMO). Standards of Training, Certification and Watchkeeping for Seafarers 1978, as Amended in 1995 and 1997 (STCW Convention); International Maritime Organization (IMO): London, UK, 2001; p. 346. [Google Scholar]
- International Maritime Organization (IMO). STCW: Including 2010 Manila Amendments: STCW Convention and STCW Code: International Convention on Standards of Training, Certification and Watchkeeping for Seafarers; International Maritime Organization (IMO): London, UK, 2011. [Google Scholar]
- Nazir, S.; Jungefeldt, S.; Sharma, A. Maritime simulator training across Europe: A comparative study. WMU J. Marit. Aff. 2018, 18, 197–224. [Google Scholar] [CrossRef]
- Mallam, S.C.; Nazir, S.; Renganayagalu, S.K. Rethinking Maritime Education, Training, and Operations in the Digital Era: Applications for Emerging Immersive Technologies. J. Mar. Sci. Eng. 2019, 7, 428. [Google Scholar] [CrossRef]
- Miyusov, M.V.; Nikolaieva, L.L.; Smolets, V.V. Future Perspectives of Immersive Learning in Maritime Education and Training. Trans. Marit. Sci. 2022, 11, 1–22. [Google Scholar] [CrossRef]
- Renganayagalu, S.K.; Mallam, S.; Hernes, M. Maritime Education and Training in the COVID-19 Era and Beyond. TransNav Int. J. Mar. Navig. Saf. Sea Transp. 2022, 16, 59–69. [Google Scholar] [CrossRef]
- Hamad, A.; Jia, B. How Virtual Reality Technology Has Changed Our Lives: An Overview of the Current and Potential Applications and Limitations. Int. J. Environ. Res. Public Health 2022, 19, 11278. [Google Scholar] [CrossRef]
- Lähtevänoja, A.; Vesisenaho, M.; Vasalampi, K.; Holopainen, J.; Häkkinen, P. Learning Outcomes in HMD-VR: A Literature Review. Seminar.net 2022, 18, 1–29. [Google Scholar] [CrossRef]
- Renganayagalu, S.K.; Mallam, S.C.; Nazir, S. Effectiveness of VR Head Mounted Displays in Professional Training: A Systematic Review. Technol. Knowl. Learn. 2021, 26, 999–1041. [Google Scholar] [CrossRef]
- Wu, B.; Yu, X.; Gu, X. Effectiveness of immersive virtual reality using head-mounted displays on learning performance: A meta-analysis. Br. J. Educ. Technol. 2020, 51, 1991–2005. [Google Scholar] [CrossRef]
- Statista. Virtual Reality (VR)—Statistics & Facts. 2025. Available online: https://www.statista.com/topics/2532/virtual-reality-vr/ (accessed on 2 March 2025).
- Eschen, H.; Kötter, T.; Rodeck, R.; Harnisch, M.; Schüppstuhl, T. Augmented and Virtual Reality for Inspection and Maintenance Processes in the Aviation Industry. Procedia Manuf. 2018, 19, 156–163. [Google Scholar] [CrossRef]
- Kuncoro, T.; Ichwanto, M.A.; Muhammad, D.F. VR-Based Learning Media of Earthquake-Resistant Construction for Civil Engineering Students. Sustainability 2023, 15, 4282. [Google Scholar] [CrossRef]
- Li, X.; Yi, W.; Chi, H.-L.; Wang, X.; Chan, A.P.C. A critical review of virtual and augmented reality (VR/AR) applications in construction safety. Autom. Constr. 2018, 86, 150–162. [Google Scholar] [CrossRef]
- Masiello, I.; Herault, R.; Mansfeld, M.; Skogqvist, M. Simulation-Based VR Training for the Nuclear Sector—A Pilot Study. Sustainability 2022, 14, 7984. [Google Scholar] [CrossRef]
- Soliman, M.; Pesyridis, A.; Dalaymani-Zad, D.; Gronfula, M.; Kourmpetis, M. The Application of Virtual Reality in Engineering Education. Appl. Sci. 2021, 11, 2879. [Google Scholar] [CrossRef]
- Helal, H. Incorporating virtual reality into maritime safety training to enhance competency-based learning outcomes. In Proceedings of the 9th International Conference on Maritime Transport, Barcelona, Spain, 27–29 June 2022. [Google Scholar]
- Liker, L.; Barić, D.; Hadžić, A.P.; Bačnar, D. Profiling Students by Perceived Immersion: Insights from VR Engine Room Simulator Trials in Maritime Higher Education. Appl. Sci. 2025, 15, 3786. [Google Scholar] [CrossRef]
- Makransky, G.; Klingenberg, S. Virtual reality enhances safety training in the maritime industry: An organizational training experiment with a non-WEIRD sample. J. Comput. Assist. Learn. 2022, 38, 1127–1140. [Google Scholar] [CrossRef]
- Markopoulos, E.; Markopoulos, P.; Laivuori, N.; Moridis, C.; Luimula, M. Finger tracking and hand recognition technologies in virtual reality maritime safety training applications. In Proceedings of the 2020 11th IEEE International Conference on Cognitive Infocommunications (CogInfoCom), Mariehamn, Finland, 23–25 September 2020. [Google Scholar]
- Ogrizovic, D. Computer simulation of a marine engine room using fully immersive and interactive virtual reality. In Proceedings of the 2024 International Conference on Artificial Intelligence, Computer, Data Sciences and Applications (ACDSA), Victoria, Seychelles, 1–2 February 2024. [Google Scholar]
- Widiatmaka, F.P.; Pranyoto, P.; Suharso, D.D.; Kundori, K.; Annafril, R.D.; Sukrisno, S. Understanding Digital Technology Integration in Merchant Marine College: Examining Teacher Digital Competency through TAM Framework. Int. J. Multidiscip. Res. Anal. 2024, 7, 5047–5058. [Google Scholar] [CrossRef]
- Palapa, A.; Fakhruddin, F.; Prajanti, S.D.W.; Raharjo, T.J. The Role of Technology Acceptance Model (TAM) in Improving Learning Performance: Study at Maritime Vocational High School in Central Java. Proc. Int. Conf. Sci. Educ. Technol. 2021, 7, 958–963. [Google Scholar]
- Davis, F.D.; Granić, A. The Technology Acceptance Model: 30 Years of TAM, 1st ed.; Springer International Publishing: Cham, Switzerland, 2024; p. 117. [Google Scholar]
- Davis, F.D. A Technology Acceptance Model for Empirically Testing New End-User Information Systems. Ph.D. Dissertation, Massachusetts Institute of Technology, Cambridge, MA, USA, 1985. [Google Scholar]
- Davis, F.D. Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Q. 1989, 13, 319. [Google Scholar] [CrossRef]
- Cho, H.; Chi, C.; Chiu, W. Understanding sustained usage of health and fitness apps: Incorporating the technology acceptance model with the investment model. Technol. Soc. 2020, 63, 101429. [Google Scholar] [CrossRef]
- Dhingra, M.; Mudgal, R.K. Applications of Perceived Usefulness and Perceived Ease of Use: A Review. In Proceedings of the 2019 8th International Conference System Modeling and Advancement in Research Trends (SMART), Moradabad, India, 22–23 November 2019. [Google Scholar]
- Granić, A.; Marangunić, N. Technology acceptance model in educational context: A systematic literature review. Br. J. Educ. Technol. 2019, 50, 2572–2593. [Google Scholar] [CrossRef]
- Ma, Q.; Liu, L. The Technology Acceptance Model: A Meta-Analysis of Empirical Findings. In Advanced Topics in End User Computing Volume 4; IGI Global: Hershey, PA, USA, 2005; Chapter 6; pp. 112–128. [Google Scholar]
- Manis, K.T.; Choi, D. The virtual reality hardware acceptance model (VR-HAM): Extending and individuating the technology acceptance model (TAM) for virtual reality hardware. J. Bus. Res. 2019, 100, 503–513. [Google Scholar] [CrossRef]
- Wicaksono, A.; Maharani, A. The Effect of Perceived Usefulness and Perceived Ease of Use on the Technology Acceptance Model to Use Online Travel Agency. J. Bus. Manag. Rev. 2020, 1, 313–328. [Google Scholar] [CrossRef]
- Barrett, A.; Pack, A.; Guo, Y.; Wang, N.J. Technology acceptance model and multi-user virtual reality learning environments for Chinese language education. Interact. Learn. Environ. 2020, 31, 1665–1682. [Google Scholar] [CrossRef]
- Barrett, A.J.; Pack, A.; Quaid, E.D. Understanding learners’ acceptance of high-immersion virtual reality systems: Insights from confirmatory and exploratory PLS-SEM analyses. Comput. Educ. 2021, 169, 104214. [Google Scholar] [CrossRef]
- Hodgson, P.; Lee, V.W.Y.; Chan, J.C.S.; Fong, A.; Tang, C.S.Y.; Chan, L.; Wong, C. Immersive Virtual Reality (IVR) in Higher Education: Development and Implementation. In Augmented Reality and Virtual Reality; Springer International Publishing: Cham, Switzerland, 2019; pp. 161–173. [Google Scholar]
- Hu, F.; Lee, K. The impact of perceived usefulness, ease of use, trust, and usage attitude on the intention to maintain engagement in AR/VR sports: An exploration of the technology acceptance framework. J. Asian Sci. Res. 2025, 15, 1–10. [Google Scholar] [CrossRef]
- Patricia, E.; Louis, E.N.; Sartono, E.S.; Gui, A.; Shaharudin, M.S.; Pitchay, A.A. Analysis of Factors Affecting Students Intention to Use Virtual Reality in Education. In Proceedings of the 2023 8th International Conference on Business and Industrial Research (ICBIR), Bangkok, Thailand, 18–19 May 2023. [Google Scholar]
- Asante, I.K.; Kassah, J.E.; Ocran, J.K.; Badu, E.B. Acceptance of global positioning system (GPS) technology among artisanal fishers in the Central Region, Ghana: An extended technology acceptance model. Fisheries 2025, 50, 112–127. [Google Scholar] [CrossRef]
- Gündoğan, O.; Keçeci, T. A TAM-Based Study on the Adoption of Digital Transformation in the Maritime Transportation Logistics Sector. J. ETA Marit. Sci. 2024, 12, 92–105. [Google Scholar] [CrossRef]
- Panari, C.; Lorenzi, G.; Mariani, M.G. The Predictive Factors of New Technology Adoption, Workers’ Well-Being and Absenteeism: The Case of a Public Maritime Company in Venice. Int. J. Environ. Res. Public Health 2021, 18, 12358. [Google Scholar] [CrossRef]
- Hsu, S.F.; Hsu, Y.W. Extending perceived navigational risk and technology acceptance model to electronic chart display and information system. WSEAS Trans. Inf. Sci. Appl. 2012, 9, 189–198. [Google Scholar]
- Dictionary—Simulation; Cambridge University Press: Cambridge, UK, 2021.
- Kolb, D.A. Experimental Learning; Prentice-Hall: Englewood Cliffs, NJ, USA, 1984. [Google Scholar]
- Alinier, G.; Oriot, D. Simulation-based education: Deceiving learners with good intent. Adv. Simul. 2022, 7, 8. [Google Scholar] [CrossRef] [PubMed]
- Lateef, F. Simulation-based learning: Just like the real thing. J. Emergencies Trauma Shock 2010, 3, 348. [Google Scholar] [CrossRef] [PubMed]
- Saarsar, P. Exploring the Constructivist Approach in Education: Theory, Practice, and Implications. Int. J. Res. Anal. Rev. 2018, 5, 717–725. [Google Scholar]
- Dewan, M.H.; Godina, R.; Chowdhury, M.R.K.; Noor, C.W.M.; Nik, W.M.N.W.; Man, M. Immersive and Non-Immersive Simulators for the Education and Training in Maritime Domain—A Review. J. Mar. Sci. Eng. 2023, 11, 147. [Google Scholar] [CrossRef]
- Mangga, C.; Tibo-oc, P.; Montaño, R. Impact Of Engine Room Simulator as a Tool For Training And Assessing Bsmare Students’ Performance In Engine Watchkeeping. Pedagog.-Pedagog. 2021, 93, 88–100. [Google Scholar] [CrossRef]
- Zajda, J. Constructivist Learning Theory and Creating Effective Learning Environments. In Globalisation and Education Reforms; Zajda, J., Ed.; Springer International Publishing: Cham, Switzerland, 2021; pp. 35–50. [Google Scholar]
- Kim, T.; Sharma, A.; Bustgaard, M.; Gyldensten, W.C.; Nymoen, O.K.; Tusher, H.M.; Nazir, S. The continuum of simulator-based maritime training and education. WMU J. Marit. Aff. 2021, 20, 135–150. [Google Scholar] [CrossRef]
- Hontvedt, M. Professional vision in simulated environments—Examining professional maritime pilots’ performance of work tasks in a full-mission ship simulator. Learn. Cult. Soc. Interact. 2015, 7, 71–84. [Google Scholar] [CrossRef]
- Chen, X.-G.; Yu, Z.-M. Research on the Role of Marine Simulated Engine Room in the Teaching of Higher Vocational Marine Engineering Specialty. DEStech Trans. Soc. Sci. Educ. Hum. Sci. 2017. [Google Scholar] [CrossRef]
- Oje, A.V.; Hunsu, N.J.; May, D. Virtual reality assisted engineering education: A multimedia learning perspective. Comput. Educ. X Real. 2023, 3, 100033. [Google Scholar] [CrossRef]
- Tsoukalas, V.D.; Papachristos, D.A.; Tsoumas, N.K.; Mattheu, E.C. Marine engineers’ training: Educational assessment for an engine room simulator. WMU J. Marit. Aff. 2008, 7, 429–448. [Google Scholar] [CrossRef]
- Bačnar, D.; Barić, D.; Ogrizović, D. Exploring the Perceived Ease of Use of an Immersive VR Engine Room Simulator among Maritime Students: A Segmentation Approach. Appl. Sci. 2024, 14, 8208. [Google Scholar] [CrossRef]
- Mehraeen, E.; Dashti, M.; Ghasemzadeh, A.; Afsahi, A.M.; Shahidi, R.; Mirzapour, P.; Karimi, K.; Rouzi, M.D.; Bagheri, A.; Mohammadi, S.; et al. Virtual Reality in Medical Education during the COVID-19 Pandemic; A Systematic Review Research Square. 16 March 2023. Available online: https://www.researchsquare.com/article/rs-2551708/v1 (accessed on 18 April 2025).
- Rieke, L.; Laudan, M. Comparing a VR ship simulator using an HMD with a commercial ship handling simulator in a CAVE setup. In Proceedings of the 23rd International Conference on Harbor, Maritime and Multimodal Logistic Modeling & Simulation, Online, 15–17 September 2021. [Google Scholar]
- Tarkkanen, K.; Saarinen, J.; Luimula, M.; Haavisto, T. Pragmatic and hedonic experience of virtual maritime simulator. In Proceedings of the 7th International GamiFIN Conference 2023 (GamiFIN 2023), Lapland, Finland, 18–21 April 2023. [Google Scholar]
- Glujić, G. Advanced model of fire spread in ship engine room based on virtual reality. Ph.D. Dissertation, University of Rijeka, Rijeka, Croatia, 2024. [Google Scholar]
- Glujic, D.; Vukelic, G.; Bernecic, D.; Vizentin, G.; Ogrizovic, D. Coupling CFD and VR for advanced firefighting training in a virtual ship engine room. Results Eng. 2024, 24, 103025. [Google Scholar] [CrossRef]
- Vukelic, G.; Ogrizovic, D.; Bernecic, D.; Glujic, D.; Vizentin, G. Application of VR Technology for Maritime Firefighting and Evacuation Training—A Review. J. Mar. Sci. Eng. 2023, 11, 1732. [Google Scholar] [CrossRef]
- Fransson, G.; Holmberg, J.; Westelius, C. The challenges of using head mounted virtual reality in K-12 schools from a teacher perspective. Educ. Inf. Technol. 2020, 25, 3383–3404. [Google Scholar] [CrossRef]
- Maheshwari, I.; Maheshwari, P. Effectiveness of Immersive VR in STEM Education. In Proceedings of the 2020 Seventh International Conference on Information Technology Trends (ITT), Abu Dhabi, United Arab Emirates, 25–26 November 2020. [Google Scholar]
- Hill, R.J.; Fishbein, M.; Ajzen, I. Belief, Attitude, Intention and Behavior: An Introduction to Theory and Research. Contemp. Sociol. 1977, 6, 244. [Google Scholar] [CrossRef]
- Ajzen, I. The theory of planned behavior. Organ. Behav. Hum. Decis. Process. 1991, 50, 179–211. [Google Scholar] [CrossRef]
- Huang, H.-M.; Liaw, S.-S. An Analysis of Learners’ Intentions Toward Virtual Reality Learning Based on Constructivist and Technology Acceptance Approaches. Int. Rev. Res. Open Distrib. Learn. 2018, 19, 91–115. [Google Scholar] [CrossRef]
- Surendran, P. Technology Acceptance Model: A Survey of Literature. Int. J. Bus. Soc. Res. 2012, 2, 175–178. [Google Scholar]
- Disztinger, P.; Schlögl, S.; Groth, A. Technology Acceptance of Virtual Reality for Travel Planning. In Information and Communication Technologies in Tourism 2017, Proceedings of the International Conference in Rome, Italy, 24–26 January 2017; Springer International Publishing: Cham, Switzerland, 2017. [Google Scholar]
- Makransky, G.; Lilleholt, L. A structural equation modeling investigation of the emotional value of immersive virtual reality in education. Educ. Technol. Res. Dev. 2018, 66, 1141–1164. [Google Scholar] [CrossRef]
- Weng, F.; Yang, R.-J.; Ho, H.-J.; Su, H.-M. A TAM-Based Study of the Attitude towards Use Intention of Multimedia among School Teachers. Appl. Syst. Innov. 2018, 1, 36. [Google Scholar] [CrossRef]
- Xie, T.; Zheng, L.; Liu, G.; Liu, L. Exploring structural relations among computer self-efficacy, perceived immersion, and intention to use virtual reality training systems. Virtual Real. 2022, 26, 1725–1744. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.A.-L.; Wong, K.W.; Fung, C.C. How does desktop virtual reality enhance learning outcomes? A structural equation modeling approach. Comput. Educ. 2010, 55, 1424–1442. [Google Scholar]
- Huang, H.-M.; Liaw, S.-S.; Lai, C.-M. Exploring learner acceptance of the use of virtual reality in medical education: A case study of desktop and projection-based display systems. Interact. Learn. Environ. 2013, 24, 3–19. [Google Scholar] [CrossRef]
- Aykan, A.; Dursun, F. The Effect of Active Learning Techniques on Academic Performance and Learning Retention in Science Lesson: An Experimental Study. J. STEM Teach. Inst. 2022, 2, 42–48. [Google Scholar]
- Kovarik, M.L.; Robinson, J.K.; Wenzel, T.J. Why Use Active Learning? In Active Learning in the Analytical Chemistry Curriculum; ACS Symposium Series, Vol. 1409; American Chemical Society: Washington, DC, USA, 2022; pp. 1–12. [Google Scholar]
- Grasmeier, M.; Tadić, T. Enhancing Maritime Safety Training Through Active Learning: The Theoretical Framework and Prototype Development of the Virtual Training Vessel. 2023. Available online: https://www.researchgate.net/publication/376167960_Enhancing_Maritime_Safety_Training_Through_Active_Learning_The_Theoretical_Framework_and_Prototype_Development_of_the_Virtual_Training_Vessel (accessed on 18 April 2025).
- Lee, Y.; Kozar, K.A.; Larsen, K.R.T. The Technology Acceptance Model: Past, Present, and Future. Commun. Assoc. Inf. Syst. 2003, 12, 752–780. [Google Scholar] [CrossRef]
- King, W.R.; He, J. A meta-analysis of the technology acceptance model. Inf. Manag. 2006, 43, 740–755. [Google Scholar] [CrossRef]
- Šumak, B.; Heričko, M.; Pušnik, M. A meta-analysis of e-learning technology acceptance: The role of user types and e-learning technology types. Comput. Hum. Behav. 2011, 27, 2067–2077. [Google Scholar] [CrossRef]
- Sagnier, C.; Loup-Escande, E.; Lourdeaux, D.; Thouvenin, I.; Valléry, G. User Acceptance of Virtual Reality: An Extended Technology Acceptance Model. Int. J. Hum. –Comput. Interact. 2020, 36, 993–1007. [Google Scholar] [CrossRef]
- Shyr, W.-J.; Wei, B.-L.; Liang, Y.-C. Evaluating Students’ Acceptance Intention of Augmented Reality in Automation Systems Using the Technology Acceptance Model. Sustainability 2024, 16, 2015. [Google Scholar] [CrossRef]
- Tokel, S.T.; İsler, V. Acceptance of virtual worlds as learning space. Innov. Educ. Teach. Int. 2013, 52, 254–264. [Google Scholar] [CrossRef]
- Wang, X.; Chou, M.; Lai, X.; Tang, J.; Chen, J.; Kong, W.K.; Chi, H.-L.; Yam, M.C.H. Examining the Effects of an Immersive Learning Environment in Tertiary AEC Education: CAVE-VR System for Students’ Perception and Technology Acceptance. J. Civ. Eng. Educ. 2024, 150, 05023012. [Google Scholar] [CrossRef]
- Yadegaridehkordi, E.; Shuib, L.; Nilashi, M.; Asadi, S. Decision to adopt online collaborative learning tools in higher education: A case of top Malaysian universities. Educ. Inf. Technol. 2018, 24, 79–102. [Google Scholar] [CrossRef]
- Renganayagalu, S.K.; Mallam, S.; Nazir, S.; Ernstsen, J.; Haavardtun, P. Impact of Simulation Fidelity on Student Self-efficacy and Perceived Skill Development in Maritime Training. TransNav Int. J. Mar. Navig. Saf. Sea Transp. 2019, 13, 663–669. [Google Scholar] [CrossRef]
- Boateng, G.O.; Neilands, T.B.; Frongillo, E.A.; Melgar-Quiñonez, H.R.; Young, S.L. Best Practices for Developing and Validating Scales for Health, Social, and Behavioral Research: A Primer. Front. Public Health 2018, 6, 149. [Google Scholar] [CrossRef]
- Hu, L.; Bentler, P.M. Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Struct. Equ. Model. A Multidiscip. J. 1999, 6, 1–55. [Google Scholar] [CrossRef]
- Kline, R.B. Principles and Practice of Structural Equation Modeling, 3rd ed.; Guilford Press: New York, NY, USA, 2011. [Google Scholar]
- Hair, J.F. Partial Least Squares Structural Equation Modeling (PLS-SEM) Using R; Hult, G.T.M., Ringle, C.M., Sarstedt, M., Danks, N.P., Ray, S., Eds.; Springer International Publishing: Cham, Switzerland, 2021. [Google Scholar]
- Nunnally, J.C. An Overview of Psychological Measurement. In Clinical Diagnosis of Mental Disorders; Springer: Boston, MA, USA, 1978; pp. 97–146. [Google Scholar]
- Dunn, T.J.; Baguley, T.; Brunsden, V. From alpha to omega: A practical solution to the pervasive problem of internal consistency estimation. Br. J. Psychol. 2013, 105, 399–412. [Google Scholar] [CrossRef]
- Fornell, C.; Larcker, D.F. Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. J. Mark. Res. 1981, 18, 39. [Google Scholar] [CrossRef]
- Hair, J.F.; Ringle, C.M.; Sarstedt, M. Partial Least Squares Structural Equation Modeling: Rigorous Applications, Better Results and Higher Acceptance. Long Range Plan. 2013, 46, 1–12. [Google Scholar] [CrossRef]
- Henseler, J.; Ringle, C.M.; Sarstedt, M. A new criterion for assessing discriminant validity in variance-based structural equation modeling. J. Acad. Mark. Sci. 2014, 43, 115–135. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Routledge: New York, NY, USA, 1998. [Google Scholar]
- Kulzer, M.; Burmester, M. Towards Explainable and Sustainable Wow Experiences with Technology. Multimodal Technol. Interact. 2020, 4, 49. [Google Scholar] [CrossRef]
- Imtiaz, M.A.; Maarop, N. A Review of Technology Acceptance Studies in the Field of Education. J. Teknol. 2014, 69, 27–32. [Google Scholar] [CrossRef]
- Liu, Y.; Lan, Z.; Tschoerner, B.; Virdi, S.S.; Cui, J.; Li, F.; Sourina, O.; Zhang, D.; Chai, D.; Muller-Wittig, W. Human Factors Assessment in VR-based Firefighting Training in Maritime: A Pilot Study. In Proceedings of the 2020 International Conference on Cyberworlds (CW), Caen, France, 29 September–1 October 2020. [Google Scholar]
- MacNeil, A.; Ghosh, S. Gender imbalance in the maritime industry: Impediments, initiatives and recommendations. Aust. J. Marit. Ocean Aff. 2016, 9, 42–55. [Google Scholar] [CrossRef]
- Venkatesh, V.; Morris, M.G.; Davis, G.B.; Davis, F.D. User Acceptance of Information Technology: Toward a Unified View. MIS Q. 2003, 27, 425. [Google Scholar] [CrossRef]
- Marikyan, D.; Papagiannidis, S. Unified Theory of Acceptance and Use of Technology: A review. In TheoryHub Book; Papagiannidis, S., Ed.; 2023; Available online: https://open.ncl.ac.uk (accessed on 4 June 2025)ISBN 9781739604400.
- Rogers, E.M. Diffusion of Innovations, 3rd ed.; Free Press: New York, NY, USA, 1983; pp. 105–117. [Google Scholar]
Component | Specifications | PC 1 | PC 2 | PC 3 | PC 4 |
---|---|---|---|---|---|
CPU | Manufacturer | Intel | Intel | Intel | Intel |
Generation | 13th | 13th | 13th | 12th | |
Model | Core i7-13700F | Core i7-13700F | Core i7-13700F | Core i7-12700F | |
Frequency | 2.10 GHz | 2.10 GHz | 2.10 GHz | 2.10 GHz | |
RAM | Capacity | 32 GB | 32 GB | 32 GB | 8 GB |
Type | DDR5-4800 | DDR5-4800 | DDR5-4800 | DDR4-2400 | |
Speed | 2400 MHz | 2400 MHz | 2400 MHz | 1200 MHz | |
GPU | Manufacturer | NVIDIA | NVIDIA | NVIDIA | NVIDIA |
Model | GeForce RTX 4070 Ti | GeForce RTX 4070 Ti | GeForce RTX 3080 | GeForce RTX 4070 Ti | |
VRAM | 12 GB | 12 GB | 10 GB | 12 GB |
Latent Construct | Items | SFL | α | AVE | CR | Model Fit Indices and HTMT |
---|---|---|---|---|---|---|
Perceived Ease of Use (PEU) | PEU 1 | 0.619 | 0.790 | 0.504 | 0.793 | χ2(51) = 54.326, p = 0.349 χ2/df = 1.065 CFI = 0.992 TLI = 0.990 RMSEA = 0.028 SRMR = 0.052 HTMT PEU-PU = 0.474 PEU-BI = 0.435 PLB-BI = 0.742 |
PEU 2 | 0.649 | |||||
PEU 3 | 0.838 | |||||
PEU 4 | 0.683 | |||||
Perceived Usefulness (PU) | PU 1 | 0.531 | 0.855 | 0.552 | 0.872 | |
PU 2 | 0.830 | |||||
PU 3 | 0.879 | |||||
PU 4 | 0.709 | |||||
PU 5 | 0.821 | |||||
Behavioural Intention (BI) | BI 1 | 0.705 | 0.759 | 0.521 | 0.762 | |
BI 2 | 0.757 | |||||
BI 3 | 0.693 |
Hypothesis | Path | β | t-Value | p-Value | Supported? |
---|---|---|---|---|---|
H1 | PU → BI | 0.694 | 6.447 | <0.001 | Yes |
H2 | PEU → BI | 0.064 | 0.504 | 0.610 | Yes |
H3 | PEU → PU | 0.535 | 5.479 | <0.001 | Yes |
H4 | PEU → PU → BI (indirect effect) | 0.375 | 3.996 | <0.001 | Yes |
PEU → BI (total effect) | 0.443 | 3.770 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the International Institute of Knowledge Innovation and Invention. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bačnar, D.; Barić, D.; Ogrizović, D. Charting the Future of Maritime Education and Training: A Technology-Acceptance-Model-Based Pilot Study on Students’ Behavioural Intention to Use a Fully Immersive VR Engine Room Simulator. Appl. Syst. Innov. 2025, 8, 84. https://doi.org/10.3390/asi8030084
Bačnar D, Barić D, Ogrizović D. Charting the Future of Maritime Education and Training: A Technology-Acceptance-Model-Based Pilot Study on Students’ Behavioural Intention to Use a Fully Immersive VR Engine Room Simulator. Applied System Innovation. 2025; 8(3):84. https://doi.org/10.3390/asi8030084
Chicago/Turabian StyleBačnar, David, Demir Barić, and Dario Ogrizović. 2025. "Charting the Future of Maritime Education and Training: A Technology-Acceptance-Model-Based Pilot Study on Students’ Behavioural Intention to Use a Fully Immersive VR Engine Room Simulator" Applied System Innovation 8, no. 3: 84. https://doi.org/10.3390/asi8030084
APA StyleBačnar, D., Barić, D., & Ogrizović, D. (2025). Charting the Future of Maritime Education and Training: A Technology-Acceptance-Model-Based Pilot Study on Students’ Behavioural Intention to Use a Fully Immersive VR Engine Room Simulator. Applied System Innovation, 8(3), 84. https://doi.org/10.3390/asi8030084