Predicting the Elastic Moduli of Unidirectional Composite Materials Using Deep Feed Forward Neural Network
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Numerical Setup and Validation
3. FNN Architecture and Data Collection Strategy
4. Evaluation of FNN Model
5. Limitations
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rayhan, S.B.; Rahman, M.M. Modeling Elastic Properties of Unidirectional Composite Materials Using Ansys Material Designer. Procedia Struct. Integr. 2020, 28, 1892–1900. [Google Scholar] [CrossRef]
- Sayam, A.; Rahman, A.N.M.M.; Rahman, M.S.; Smriti, S.A.; Ahmed, F.; Rabbi, M.F.; Hossain, M.; Faruque, M.O. A Review on Carbon Fiber-Reinforced Hierarchical Composites: Mechanical Performance, Manufacturing Process, Structural Applications and Allied Challenges; Springer Nature: Singapore, 2022; Volume 32, ISBN 0123456789. [Google Scholar]
- Abramovich, H. Introduction to Composite Materials; Elsevier Ltd.: Amsterdam, The Netherlands, 2017; ISBN 9780081004296. [Google Scholar]
- Koyanagi, J.; Hatta, H.; Kotani, M.; Kawada, H. A Comprehensive Model for Determining Tensile Strengths of Various Unidirectional Composites. J. Compos. Mater. 2009, 43, 1901–1914. [Google Scholar] [CrossRef]
- Blok, L.G.; Longana, M.L.; Yu, H.; Woods, B.K.S. An Investigation into 3D Printing of Fibre Reinforced Thermoplastic Composites. Addit. Manuf. 2018, 22, 176–186. [Google Scholar] [CrossRef]
- Younes, R.; Hallal, A.; Fardoun, F.; Chehade, F.H. Comparative Review Study on Elastic Properties Modeling for Unidirectional Composite Materials; INTECH Open Access Publisher: London, UK, 2012. [Google Scholar]
- Andre, N.G.; Ishak, Z.A.M. Predicting the Tensile Modulus of Randomly Oriented Nonwoven Kenaf/Epoxy Composites. Procedia Chem. 2016, 19, 419–425. [Google Scholar] [CrossRef]
- Zhou, D.; Tong, X.; Liu, H.; Lv, S.; Srivatsan, T.S.; Gao, X. A Modified Halpin-Tsai Model for Predicting the Elastic Modulus of Composite Materials. AIP Adv. 2024, 14, 015157. [Google Scholar] [CrossRef]
- Fu, S.Y.; Hu, X.; Yue, C.Y. A New Model for the Transverse Modulus of Unidirectional Fiber Composites. J. Mater. Sci. 1998, 33, 4953–4960. [Google Scholar] [CrossRef]
- Chandekar, H.; Chaudhari, V.V.; Waigaonkar, S. Theoretical Models for Stiffness Prediction of Short Fibre Composites. Mater. Today Proc. 2022, 57, 711–714. [Google Scholar] [CrossRef]
- Raju, B.; Hiremath, S.R.; Roy Mahapatra, D. A Review of Micromechanics Based Models for Effective Elastic Properties of Reinforced Polymer Matrix Composites. Compos. Struct. 2018, 204, 607–619. [Google Scholar] [CrossRef]
- Yanase, K.; Ju, J.W. Effective Elastic Moduli of Spherical Particle Reinforced Composites Containing Imperfect Interfaces. Int. J. Damage Mech. 2012, 21, 97–127. [Google Scholar] [CrossRef]
- Lu, P. Further Studies on Mori-Tanaka Models for Thermal Expansion Coefficients of Composites. Polymer 2013, 54, 1691–1699. [Google Scholar] [CrossRef]
- Lee, D. Local Anisotropy Analysis Based on the Mori-Tanaka Model for Multiphase Composites with Fiber Length and Orientation Distributions. Compos. Part B Eng. 2018, 148, 227–234. [Google Scholar] [CrossRef]
- Abaimov, S.G.; Khudyakova, A.A.; Lomov, S.V. On the Closed FORM Expression of the Mori-Tanaka Theory Prediction for the Engineering Constants of a Unidirectional Fiber-Reinforced Ply. Compos. Struct. 2016, 142, 1–6. [Google Scholar] [CrossRef]
- Valentová, S.; Šejnoha, M.; Vorel, J. Comparing Mori-Tanaka Method and First-Order Homogenization Scheme in the Viscoelastic Modeling of Unidirectional Fibrous Composites. Acta Polytech. CTU Proc. 2020, 26, 133–138. [Google Scholar] [CrossRef]
- Rezasefat, M.; Mostafavi, Y.; Ma, D.; Manes, A. A Hybrid Micro-Macro Mechanical Damage Model to Consider the Influence of Resin-Rich Zones on the Transverse Tensile Behaviour of Unidirectional Composites. Compos. Struct. 2023, 308, 116714. [Google Scholar] [CrossRef]
- Huang, Z.M. Simulation of the Mechanical Properties of Fibrous Composites by the Bridging Micromechanics Model. Compos. Part A Appl. Sci. Manuf. 2001, 32, 143–172. [Google Scholar] [CrossRef]
- Mao, R.S.; Huang, Z.M.; Wang, Z.W. Predicting Strength of a Unidirectional Composite Containing Interface Crack. Compos. Sci. Technol. 2021, 207, 108665. [Google Scholar] [CrossRef]
- Potluri, R.; Diwakar, V.; Venkatesh, K.; Srinivasa Reddy, B. Analytical Model Application for Prediction of Mechanical Properties of Natural Fiber Reinforced Composites. Mater. Today Proc. 2018, 5, 5809–5818. [Google Scholar] [CrossRef]
- Udhayaraman, R.; Mulay, S.S. Multi-Scale Approach Based Constitutive Modelling of Plain Woven Textile Composites. Mech. Mater. 2017, 112, 172–192. [Google Scholar] [CrossRef]
- Balasubramani, N.K.; Zhang, B.; Chowdhury, N.T.; Mukkavilli, A.; Suter, M.; Pearce, G.M. Micro-Mechanical Analysis on Random RVE Size and Shape in Multiscale Finite Element Modelling of Unidirectional FRP Composites. Compos. Struct. 2022, 282, 115081. [Google Scholar] [CrossRef]
- Wan, L.; Ismail, Y.; Sheng, Y.; Ye, J.; Yang, D. A Review on Micromechanical Modelling of Progressive Failure in Unidirectional Fibre-Reinforced Composites. Compos. Part C Open Access 2023, 10, 100348. [Google Scholar] [CrossRef]
- Yao, Y.; Zhong, Y.; Su, Z.; Muhammad, R.; Wang, D.; Li, Y.; Li, S.; Sun, G. Micromechanical Analyses of Unidirectional (UD) Discontinuous Flax Fiber Reinforced Composites. Compos. Sci. Technol. 2024, 258, 110893. [Google Scholar] [CrossRef]
- Maragoni, L.; Carraro, P.A.; Quaresimin, M. Development, Validation and Analysis of an Efficient Micro-Scale Representative Volume Element for Unidirectional Composites. Compos. Part A Appl. Sci. Manuf. 2018, 110, 268–283. [Google Scholar] [CrossRef]
- Alhaddad, W.; He, M.; Halabi, Y.; Almajhali, K.Y.M. Influence of Fiber Volume Fraction on the Predictability of UD FRP Ply Behavior: A Validated Micromechanical Virtual Testing Approach. Materials 2024, 17, 4736. [Google Scholar] [CrossRef] [PubMed]
- Shah Mohammadi, M.; Komeili, M.; Phillion, A.B.; Milani, A.S. Toward Better Understanding of the Effect of Fiber Distribution on Effective Elastic Properties of Unidirectional Composite Yarns. Comput. Struct. 2016, 163, 29–40. [Google Scholar] [CrossRef]
- Bahmani, A.; Li, G.; Willett, T.L.; Montesano, J. Three-Dimensional Microscopic Assessment of Randomly Distributed Representative Volume Elements for High Fiber Volume Fraction Unidirectional Composites. Compos. Struct. 2018, 192, 153–164. [Google Scholar] [CrossRef]
- Devireddy, S.B.R.; Biswas, S. Effect of Fiber Geometry and Representative Volume Element on Elastic and Thermal Properties of Unidirectional Fiber-Reinforced Composites. J. Compos. 2014, 2014, 629175. [Google Scholar] [CrossRef]
- Hyde, A.; He, J.; Cui, X.; Lua, J.; Liu, L. Effects of Microvoids on Strength of Unidirectional Fiber-Reinforced Composite Materials. Compos. Part B Eng. 2020, 187, 107844. [Google Scholar] [CrossRef]
- Ashouri Vajari, D.; González, C.; Llorca, J.; Legarth, B.N. A Numerical Study of the Influence of Microvoids in the Transverse Mechanical Response of Unidirectional Composites. Compos. Sci. Technol. 2014, 97, 46–54. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, P.; Fei, Q.; Guo, F. Computational Evaluation of the Effects of Void on the Transverse Tensile Strengths of Unidirectional Composites Considering Thermal Residual Stress. Compos. Struct. 2019, 227, 111287. [Google Scholar] [CrossRef]
- Kamiński, M. Probabilistic Entropy and Relative Entropy for the Effective Characteristics of the Fiber-Reinforced Composites with Stochastic Interface Defects. Comput. Methods Appl. Mech. Eng. 2024, 432, 117308. [Google Scholar] [CrossRef]
- Loh, J.Y.Y.; Yeoh, K.M.; Raju, K.; Pham, V.N.H.; Tan, V.B.C.; Tay, T.E. A Review of Machine Learning for Progressive Damage Modelling of Fiber-Reinforced Composites; Springer: Dordrecht, The Netherlands, 2024; Volume 31, ISBN 1044302410. [Google Scholar]
- Huang, H.; Hadigheh, S.A.; Aghabalaei Baghaei, K. Influences of Fibre Shape on the Transverse Modulus of Unidirectional Fibre Reinforced Composites Using Finite Element and Machine Learning Methods. Compos. Struct. 2023, 312, 116872. [Google Scholar] [CrossRef]
- Pathan, M.V.; Ponnusami, S.A.; Pathan, J.; Pitisongsawat, R.; Erice, B.; Petrinic, N.; Tagarielli, V.L. Predictions of the Mechanical Properties of Unidirectional Fibre Composites by Supervised Machine Learning. Sci. Rep. 2019, 9, 13964. [Google Scholar] [CrossRef]
- Chang, H.-S.; Huang, J.-H.; Tsai, J.-L. Predicting Mechanical Properties of Unidirectional Composites Using Machine Learning. Multiscale Sci. Eng. 2022, 4, 202–210. [Google Scholar] [CrossRef]
- Cheng, S.; Wang, X.; Gao, Y.; Zhu, R.; Chen, Y.; Liu, T. A Novel Framework to Predict Transversal and Shear Parameters of Unidirectional Composites by Combining Experimental, Numerical and Machine Learning Methods. Polym. Compos. 2025, 1–12. [Google Scholar] [CrossRef]
- Karadeniz, Z.H.; Kumlutas, D. A Numerical Study on the Coefficients of Thermal Expansion of Fiber Reinforced Composite Materials. Compos. Struct. 2007, 78, 1–10. [Google Scholar] [CrossRef]
- Rahman, M.M.; Sultana, J. Design and Optimization of Natural Fiber Reinforced Hybrid Composite RVE: A Finite Element Analysis. In Proceedings of the 2023 International Conference on Engineering, Science and Advanced Technology (ICESAT), Mosul, Iraq, 21–22 June 2023; pp. 204–209. [Google Scholar] [CrossRef]
- Yun, J.-H.; Jeon, Y.-J.; Kang, M.-S. Prediction of Elastic Properties Using Micromechanics of Polypropylene Composites Mixed with Ultrahigh-Molecular-Weight Polyethylene Fibers. Molecules 2022, 27, 5752. [Google Scholar] [CrossRef]
- Mali, R.; Pise, U. Modeling Elastic Properties of Biocomposites Using Various Analytical Models and Ansys Material Designer. Mater. Today Proc. 2023, 72, 1372–1378. [Google Scholar] [CrossRef]
- Okereke, M.I.; Akpoyomare, A.I. A Virtual Framework for Prediction of Full-Field Elastic Response of Unidirectional Composites. Comput. Mater. Sci. 2013, 70, 82–99. [Google Scholar] [CrossRef]
- Maligno, A.R.; Warrior, N.A.; Long, A.C. Effects of Interphase Material Properties in Unidirectional Fibre Reinforced Composites. Compos. Sci. Technol. 2010, 70, 36–44. [Google Scholar] [CrossRef]
- Yu, Y.; Zhang, B.; Tang, Z.; Qi, G. Stress Transfer Analysis of Unidirectional Composites with Randomly Distributed Fibers Using Finite Element Method. Compos. Part B Eng. 2015, 69, 278–285. [Google Scholar] [CrossRef]
- Bulsara, V.N.; Talreja, R.; Qu, J. Damage Initiation under Transverse Loading of Unidirectional Composites with Arbitrarily Distributed Fibers. Compos. Sci. Technol. 1999, 59, 673–682. [Google Scholar] [CrossRef]
- Chen, J.; Wan, L.; Ismail, Y.; Hou, P.; Ye, J.; Yang, D. Micromechanical Analysis of UD CFRP Composite Lamina under Multiaxial Loading with Different Loading Paths. Compos. Struct. 2021, 269, 114024. [Google Scholar] [CrossRef]
- Tang, Z.; Guo, L.; Li, Z.; Huang, K.; Zheng, T.; Sun, R. A Comparative Study of Void Characteristics on the Mechanical Response of Unidirectional Composites. Mech. Mater. 2022, 174, 104456. [Google Scholar] [CrossRef]
- Li, N.; Chen, P.H.; Ling, X. A Microscopic Elasto-Plastic Damage Model for Characterizing Transverse Responses of Unidirectional Fiber-Reinforced Polymer Composites. Thin-Walled Struct. 2020, 154, 106828. [Google Scholar] [CrossRef]
- Fu, C.; Wang, X. Prediction of the Cohesive Strength for Simulating Composite Delamination by a Micro-Mechanical Model Based on Random RVE. Compos. Struct. 2021, 262, 113343. [Google Scholar] [CrossRef]
- Canonsburg, A.D. Material Designer User’s Guide; ANSYS: Canonsburg, PA, USA, 2024. [Google Scholar]
- Wang, N.; Li, Z.; Peng, Y.; Jiang, Z.; Li, H. Micro–Macro Coupling Study on the Mechanical Properties of Continuous Fiber-Reinforced Composites. Polymers 2024, 16, 2995. [Google Scholar] [CrossRef] [PubMed]
- Omairey, S.L.; Dunning, P.D.; Sriramula, S. Development of an ABAQUS Plugin Tool for Periodic RVE Homogenisation. Eng. Comput. 2019, 35, 567–577. [Google Scholar] [CrossRef]
- Sazlı, M.H. A Brief Review of Feed-Forward Neural Networks. Commun. Fac. Sci. Univ. Ankara Ser. A2–A3 Phys. Sci. Eng. 2006, 50, 11–17. [Google Scholar]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Han, D.; Kwon, S. Application of Machine Learning Method of Data-driven Deep Learning Model to Predict Well Production Rate in the Shale Gas Reservoirs. Energies 2021, 14, 3629. [Google Scholar] [CrossRef]
- Rayhan, S.B.; Rahman, M.M.; Sultana, J.; Szávai, S.; Varga, G. Finite Element and Machine Learning-Based Prediction of Buckling Strength in Additively Manufactured Lattice Stiffened Panels. Metals 2025, 15, 81. [Google Scholar] [CrossRef]
- Hooshmand, M.J.; Sakib-Uz-Zaman, C.; Khondoker, M.A.H. Machine Learning Algorithms for Predicting Mechanical Stiffness of Lattice Structure-Based Polymer Foam. Materials 2023, 16, 7173. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Mu, Z.; Ge, X. Machine Learning-Based Prediction of Elastic Buckling Coefficients on Diagonally Stiffened Plate Subjected to Shear, Bending, and Compression. Sustainability 2023, 15, 7815. [Google Scholar] [CrossRef]
Sl No. | Composites Combinations | E11 (GPa) | υ | References |
---|---|---|---|---|
1 | Glass-fiber | 72 | 0.2 | [39] |
Epoxy-matrix | 3.5 | 0.35 | ||
2 | Jute-fiber | 20 | 0.38 | [40] |
Epoxy-matrix | 5.35 | 0.25 | ||
3 | Sisal-fiber | 22 | 0.32 | |
Epoxy-matrix | 5.35 | 0.25 | ||
4 | UHMWPE-fiber | 25 | 0.2 | [41] |
Polypropylene | 1.325 | 0.43 | ||
5 | Hemp-fiber | 70 | 0.4 | [42] |
Epoxy-matrix | 3.78 | 0.35 | ||
6 | Flax-fiber | 27.6 | 0.45 | |
Epoxy-matrix | 3.78 | 0.35 | ||
7 | Sisal-fiber | 22 | 0.32 | |
Epoxy-matrix | 3.78 | 0.35 | ||
8 | Alfa-fiber | 19.4 | 0.34 | |
Epoxy-matrix | 3.78 | 0.35 | ||
9 | Glass-fiber | 73 | 0.20 | [43] |
Polypropylene-matrix | 1.308 | 0.43 | ||
10 | Carbon-fiber | 23.34 | 0.25 | [32] |
Epoxy-matrix | 3.45 | 0.35 | ||
11 | E-glass-fiber | 80 | 0.2 | [44] |
Epoxy-matrix | 3.35 | 0.35 | ||
12 | T800-carbon-fiber | 294 | 0.3 | [45] |
Epoxy-matrix | 3.4 | 0.4 | ||
13 | NICALON™-fiber | 193 | 0.22 | [46] |
MAS-5 | 129 | 0.22 |
Sl No. | Composites Combinations | E11 (GPa) | E22 = E33 (GPa) | G12 = G31 (GPa) | G23 (GPa) | υ23 | υ12 = υ13 | References |
---|---|---|---|---|---|---|---|---|
1 | IM7-carbon-fiber | 287 | 13.40 | 23.8 | 7 | 0.48 | 0.29 | [47] |
8552-epoxy | 4.08 | 0.38 | ||||||
2 | AS4-carbon-fiber | 234 | 15 | 15 | 7 | 0.2 | [48] | |
3501-epoxy | 4.2 | 0.34 | ||||||
3 | Carbon-fiber | 245 | 19.8 | 29.191 | 5.922 | 0.28 | [49] | |
Epoxy-matrix | 3.73 | 1.351 | 0.38 | |||||
4 | T300-fiber | 230 | 15 | 15 | 0.2 | 0.2 | [19] | |
7901-matrix | 3.17 | 1.17 | 0.35 | |||||
5 | Aramid-fiber | 124.1 | 4.1 | 2.9 | 0.35 | 0.35 | ||
Epoxy-matrix | 3.28 | 1.21 | 0.36 | |||||
6 | Flax-fiber | 41.7 | 7 | 3 | 2 | 0.75 | 0.3 | [24] |
GE-7118 A-matrix | 3.05 | 0.3 | ||||||
7 | Carbon-fiber | 228 | 17.2 | 27.6 | 5.73 | 0.5 | 0.2 | [50] |
Epoxy-matrix | 3.6 | 0.39 |
Maximum Mesh Size (µm) | E11 (GPa) | E22 = E33 (GPa) | G12 = G31 (GPa) | G23 (GPa) | υ23 | υ12 = υ13 |
---|---|---|---|---|---|---|
5 | 37.7 | 11.4 | 3.58 | 2.74 | 0.31 | 0.26 |
4 | 37.7 | 11.4 | 3.58 | 2.74 | 0.31 | 0.26 |
3 | 37.7 | 11.4 | 3.58 | 2.74 | 0.31 | 0.26 |
2 | 37.7 | 11.3 | 3.56 | 2.69 | 0.32 | 0.26 |
1 | 37.7 | 11.3 | 3.56 | 2.69 | 0.32 | 0.26 |
0.5 | 37.7 | 11.3 | 3.56 | 2.69 | 0.32 | 0.26 |
Elastic Modulus | Vf | Experimental [6] | Ansys | Deviation (%) | Elastic Modulus | Vf | Experimental [6] | Ansys | Deviation (%) |
---|---|---|---|---|---|---|---|---|---|
E11 (GPa) | 0.5 | 116 | 114.16 | 1.59% | E11 (GPa) | 0.6 | 148.2 | 138.45 | 6.57% |
E22 = E33 (GPa) | 9.28 | 9.27 | 0.01% | E22 = E33 (GPa) | 10.14 | 10.31 | 1.67% | ||
G12 = G31 (GPa) | 4.50 | 4.94 | 9.7% | G12 (GPa) | 6.75 | 6.34 | 6.07% | ||
G23 (GPa) | 3.54 | 3.82 | 7.9% | G13 = G23 (GPa) | 4.22 | 4.79 | 13.50% | ||
Elastic modulus | Vf | M-T | Ansys | Deviation (%) | Elastic modulus | Vf | M-T | Ansys | Deviation (%) |
υ12 | 0.5 | 0.32 | 0.32 | 0% | υ12 | 0.6 | 0.30 | 0.30 | 0% |
Hyperparameter | Description | Values Studied for the Current Research |
---|---|---|
Network Architecture | The network architecture mainly defines the number of hidden layers and neurons assigned to each layer. | 66/33/16/8/4/4/1, 33/16/8/4/2/1, 33/16/8/4/1, 16/8/4/4/1, 16/4/1 [Numbers represent the neuron count in each layer, with the sequence representing the input layer, hidden layers, and output layer] |
Activation Function | Activation functions in neural networks transform the input sum into a specific range, such as (0,1) for Sigmoid, (−1,1) for Tanh, (0, ∞) for ReLU, and probabilities summing to 1 for Softmax, enabling the network to learn complex patterns. | Softplus, Softmax, ReLU, Sigmoid, Linear [The output layer activation function is Linear for regression tasks] |
Cost Function | The cost function measures the difference between predicted and actual outcomes. | For regression-based task, MSE is set as a cost function |
Optimizer | An optimizer is an algorithm that updates the weight of the model to minimize the cost function and improve learning. Most popular optimizers, such as Adam, use an adaptive learning rate that adjusts over time, helping the model to train faster with higher accuracy. | Adam, Nadam, AdamW |
Learning Rate | The learning rate controls the size of the steps the model takes when adjusting its weights during training to minimize the cost function. If the learning rate is too low, the model will take a longer time to train, which is computationally expensive. On the other hand, if the learning rate is too large, the model will train faster; however, it will lose the ability to recognize patterns and make predictions for complex datasets. | Dynamic value, adjusted by optimizer |
Batch Size | The number of batch sizes determines how many subsets the training data are divided into for processing. For instance, if the batch size is set to 20 and the training dataset has 700 samples, the number of batches will be 35. In other words, the dataset will be divided into 35 batches, each containing 20 training samples. | 4, 8, 12, 16, 32 |
Epoch Number | The number of epochs defines how many times the model will process the samples by updating the weights to minimize the cost function. For instance, if the number of batches is 35, then the number of iterations will also be 35, corresponding to one epoch. | 100, 200, 300, 400, 500 |
Name of the Hyperparameters | Ranges |
---|---|
Activation Function | relu Final hidden layer to output layer: Linear activation |
Optimizer | AdamW |
Number of Batches | 32 |
Hidden Layer Architecture | 33/16/8/4/1 |
Number of Epochs | 400 |
Effective Elastic Properties | MAE | MSE | RMSE | R2 Score |
---|---|---|---|---|
E11 (GPa) | 0.0927 | 0.0177 | 0.1332 | 0.9999 |
E22 = E23 (GPa) | 0.0177 | 0.0078 | 0.0177 | 0.9999 |
G12 = G31 (GPa) | 0.0263 | 0.0016 | 0.0403 | 0.9999 |
G23 (GPa) | 0.0368 | 0.0026 | 0.0514 | 0.9999 |
V12 = V13 | 0.0002 | 1.06 × 10−7 | 0.0003 | 0.9999 |
V23 | 0.0023 | 1.01 × 10−5 | 0.0031 | 0.9999 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rayhan, S.B.; Rahman, M.M.; Sultana, J.; Varga, G. Predicting the Elastic Moduli of Unidirectional Composite Materials Using Deep Feed Forward Neural Network. J. Compos. Sci. 2025, 9, 278. https://doi.org/10.3390/jcs9060278
Rayhan SB, Rahman MM, Sultana J, Varga G. Predicting the Elastic Moduli of Unidirectional Composite Materials Using Deep Feed Forward Neural Network. Journal of Composites Science. 2025; 9(6):278. https://doi.org/10.3390/jcs9060278
Chicago/Turabian StyleRayhan, Saiaf Bin, Md Mazedur Rahman, Jakiya Sultana, and Gyula Varga. 2025. "Predicting the Elastic Moduli of Unidirectional Composite Materials Using Deep Feed Forward Neural Network" Journal of Composites Science 9, no. 6: 278. https://doi.org/10.3390/jcs9060278
APA StyleRayhan, S. B., Rahman, M. M., Sultana, J., & Varga, G. (2025). Predicting the Elastic Moduli of Unidirectional Composite Materials Using Deep Feed Forward Neural Network. Journal of Composites Science, 9(6), 278. https://doi.org/10.3390/jcs9060278